Global concerns about the environmental impact of combustion emissions from petroleum fuels influence new research to seek for alternative energy sources. The current study investigates the possibility of using safflo...Global concerns about the environmental impact of combustion emissions from petroleum fuels influence new research to seek for alternative energy sources. The current study investigates the possibility of using safflower (Carthamus tinctorius L.) as an alternative biodiesel raw material. Four plant growth regulators (PGR) were used to boost the production of safflower. Thirteen treatments were constituted from the four plant regulators and applied to the safflower crop arranged in completely randomised design, repeated three times. The results show that the effect of plant growth regulators was not more than that of the control. More studies have to be channelled towards the relationship between safflower and plant growth regulators.展开更多
[Objective] This study aimed to investigate the influence of different plant growth regulators on apricot pollen germination and pollen tube growth. [Method] Pollens of six kinds of Xinjiang apricots were cultured in ...[Objective] This study aimed to investigate the influence of different plant growth regulators on apricot pollen germination and pollen tube growth. [Method] Pollens of six kinds of Xinjiang apricots were cultured in solid media supplemented with five plant growth regulators (GA3 , NAA, 2, 4-D, 6-BA, IAA). Then the rate of pollen germination and the length of pollen tube were respectively measured. [Result] In a certain concentration range, GA3 most significantly promoted the pollen germination and the pollen tube growth of Shushanggan, Kalayulvke, Dayoujia, Yiliakeyulvke and Kabakehuanna; NNA had the strongest improvement function on Kumaiti’s pollen germination and pollen tube growth. [Conclusion] All the five plant growth regulators promoted the pollen germination and the pollen tube growth of apricots at low concentration but inhibited them at high concentration.展开更多
The effects of four kinds of plant growth regulators with different concentrations on narcissi were studied in 2001. The results showed that the regulators could inhibit the growths of height and leaves of narcissi. O...The effects of four kinds of plant growth regulators with different concentrations on narcissi were studied in 2001. The results showed that the regulators could inhibit the growths of height and leaves of narcissi. Of the four regulators, the dwarfing effects of paclobatrazol (PP333) and uniconazole (S3307) on narcissi were better than those of chlorocholine (CCC) and dimethyl amino-sussinamic acid (B9). All of the regulators did not have significant effect on the root length. Moreover, the time of flowering was later for the narcissi treated with regulators than that of the control to a certain extent, and the range delayed was from 2 days to 19 days. The correlation analysis results showed that there was a significant correlation between the time of flowering and the concentrations of regulators. The ornament value of narcissi was obviously improved by using the regulators.展开更多
The effect of vernalization and two growth regulators Fascination^TM and Pro-Gibb^R on the growth, inflorescence development and flowering of Omithogalurrt Chesapeake Snowflake' was studied. Regardless of growth regu...The effect of vernalization and two growth regulators Fascination^TM and Pro-Gibb^R on the growth, inflorescence development and flowering of Omithogalurrt Chesapeake Snowflake' was studied. Regardless of growth regulator treatment, chilling bulbs for 3 weeks at 10℃ before planting accelerated flowering of the first inflorescence by 5 to 6 days, elongated floral stem length by 1.5 to 2 cm and shortened leaf length by 4 to 5 cm as compared with non-chilled bulbs. When bulbs were chilled 3 weeks at 10℃ before planting, Fascination 2% and Pro-Gibb accelerated flowering of the first inflorescence by 2 to 6 days respectively as compared with the control. When bulbs were not chilled before planting, Fascination 2% and Pro-Gibb accelerated flowering of the first inflorescence by 6 to12 days respectively as compared with the control. The lengths of the leaves and the inflorescences were not affected by PGR treatment. Higher rates of Pro-Gibb (100 mg.L^-1 and 200 mg.L^-1) and more amount of Fascination 2%(100 μL and 200 μL) can cause abortion of inflorescence.展开更多
[Objective]In order to increase anther culture efficiency of pepper.[Method]MS culture media and Bolajiaohong were used in this experiment to study the influences of carbon sources and concentrations on anther callus ...[Objective]In order to increase anther culture efficiency of pepper.[Method]MS culture media and Bolajiaohong were used in this experiment to study the influences of carbon sources and concentrations on anther callus induction of pepper.Jiayu was taken as a material to study influences of plant growth regulators and concentrations on anther callus induction of pepper according to L16(4^5) orthogonal design.[Result]The average callus and embryoid induction rates of maltose at all concentrations were higher than these of sucrose but the difference was not significant.Taking maltose or sucrose as a carbon source,3% to 6% concentration was good for increasing induction frequencies of calli and embryoids.However,If the concentration was over 6%,the induction rates were declined dramatically with the increase of sugar concentration.The influences of growth regulators on induction rate of calli were listed as 2,4-D﹥ZT﹥NAA﹥KT﹥6-BA;the influences on induction rates of embryoids were listed as 2,4-D﹥NAA﹥ZT﹥KT﹥6-BA.The 2,4-D,ZT,NAA and KT had signficant or extremely significant influences on induction rates of calli and embryoids.2,4-D,ZT at 1.0 mg/L and NNA,KT at 0.5 mg/L had the best effects.The influences of ZT on calli and embryoids were better than those of KT and 6-BA.1.0 mg/L 2,4-D +1.0 mg/L ZT +0.5 mg/L KT +0.5 mg/L 6-BA was the best regulator combination for induction culture of Jiayu anther.[Conclusion]The experiment provided research basis for anther culture of pepper.展开更多
The endangered tropical tree, Aquilaria malaccensis, produces agarwood for use in fragrance and medicines. Efforts are currently un-derway to produce valuable agarwood compoundsn tissue culture. The purpose of this st...The endangered tropical tree, Aquilaria malaccensis, produces agarwood for use in fragrance and medicines. Efforts are currently un-derway to produce valuable agarwood compoundsn tissue culture. The purpose of this study was to develop an optimal growth medium, specif-ically, the best hormone combination for callus suspension culture. Using nursery-grown A. malaccensis, sterilized leaf explants were first incu-bated on basic Murashige and Skoog (MS) gel medium containing 15g/L sucrose and at pH 5.7. Different auxin types including 1-naphthaleneacetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), and indole-3-butyric acid (IBA), were tested at various concentrations (0.55, 1.1 and 1.65 μM) using the basic medium. Leaf explants were incubated for 30 days in the dark. Callus induced by 1.1 μM NAA had the highest biomass dry weight (DW) of 17.3 mg;however the callus was of a compact type. This auxin concentration was then combined with either 6-benzylaminopurine (BAP) or kinetin at 0.55, 1.1, 2.2 or 3.3 μM to induce growth of friable callus. The 1.1μM NAA+2.2μM BAP com-bination produced friable callus with the highest biomass (93.3mg DW). When testing the different carbon sources and pHs, sucrose at 15g/L and pH at 5.7 yielded highest biomasses at 87.7mg and 83mg DW, respec-tively. Microscopic observations revealed the arrangement of the friable cells as loosely packed with relatively large cells, while for the compact callus, the cells were small and densely packed. We concluded that MS medium containing 15 g/L sucrose, 1.1 μM NAA + 2.2 μM BAP hor-mone combination, and a pH of 5.7 was highly effective for inducing friable callus from leaf explants of A. malaccensis for the purpose of establishing cell suspension culture.展开更多
In this study,the seeds of wild Petunia Juss.were used as explants to investigate the optimal condition for tissue culture.Several different kinds and concentrations of growth regulators were adopted to produce more m...In this study,the seeds of wild Petunia Juss.were used as explants to investigate the optimal condition for tissue culture.Several different kinds and concentrations of growth regulators were adopted to produce more multiple bud clumps,callus or roots in this study.The experiments may provide experimental foundation for the rapid propagation technology and establishment of tissue culture system for wild Petunia Juss.展开更多
[Objective] The aim was to investigate the effects of plant growth regulators on contents of reducing sugar and starch in potato(Solanum tuberosum L.).[Method]A potato cultivar named 'Holand-212' with three treatm...[Objective] The aim was to investigate the effects of plant growth regulators on contents of reducing sugar and starch in potato(Solanum tuberosum L.).[Method]A potato cultivar named 'Holand-212' with three treatments by spraying Diethyl aminoethyl hexanoate(DTA-6),Uniconazole(S3307)and SOD mimics(SODM)were employed to compare differences of the contents of reducing sugar and starch in potato leaves,stolons and tubers in a field experiment.[Result]DTA-6 treatment could significantly reduce the contents of starch and reducing sugar in potato stolons in the period of 100-110 d after seeding,and it could also reduce the content of reducing sugar in tubers,but there is an opposite result in leaves in the same period,significantly.S3307 could extremely significantly increase the content of starch,and can promote the transfer of starch in stolons,in addition,it also could reduce the content of reducing sugar in tubers,and extremely significantly increase the content of starch in leaves at the 110 d after sowing.Moreover,there is a similar effect between SODM and S3307.[Conclusion]The research results are significant for understanding mechanisms of plant growth regulators and promoting application of plant growth regulator in potato.展开更多
Chonemorpha fragrans is an endangered medicinal woody climber,regarded among alternative plant sources of camptothecin.Camptothecin is a monoterpene indole anti-cancer alkaloid with annual trade value of over three bi...Chonemorpha fragrans is an endangered medicinal woody climber,regarded among alternative plant sources of camptothecin.Camptothecin is a monoterpene indole anti-cancer alkaloid with annual trade value of over three billion U.S.dollars in the recent,and is used in the production of its analog drugs approved for the chemotherapy of cancer of varied types.Effects of plant growth regulators,culture media strength and photoperi-odic duration on the micropropagation ef ciency of C.fragrans from nodal segment explants were studied on Murashige and Skoog(MS)medium amended with Thidiazuron(TDZ),Benzylaminopurine(BAP)or Kinetin(Kin).Thidiazuron was more ef cient over BAP and Kin when half basal MS medium was used over full or quarter strength.Results of carbon source experiment showed sucrose as the most effective over glucose,fructose,and maltose in the clonal production.Studies on the photope-riodic incubation duration showed 12 h as the best light period and sub or supra-optimal resulted in the production of abnormal and albino micro shoots.Experimental results on the evaluation of physiological,biochemical parameters showed the role of pigment molecules and antioxidant systems in the production of albino micro shoots.展开更多
[Objectives]This study was conducted to effectively monitor PGR residues in bean sprouts to provide guarantee for the food safety of agricultural products.[Methods]A high-performance liquid chromatography-tandem mass ...[Objectives]This study was conducted to effectively monitor PGR residues in bean sprouts to provide guarantee for the food safety of agricultural products.[Methods]A high-performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS)method for the determination of residues of 15 plant growth regulators(PGRs)in bean sprouts was established using bean sprouts as an experimental material.Samples were extracted with a solution containing 5%acetic acid-acetonitrile(1∶99,V/V),purified with anhydrous magnesium sulfate,and diluted with methanol solvent to constant volume.The solutions were filtered through 0.22μm filtering membrane and the target analytes were separated on a Phenomenex H18 column.The identification of each compound was established by retention time matching along with the accurate mass measurement of the precursor ions and their main fragment ions.The quantification was carried out using matrix-matched external standard method.[Results]The retention time of the 15 PGRs were found in the range from 5.8-11.7 min under the optimized conditions.The linear relation was good in the concentration range of 0.005-0.050μg/ml,and the correlation coefficients of the 15 PGRs were≥0.9990.The limits of detection were in the range of 0.03-0.92 g/kg,and the limits of quantification were in the range of 0.50-2.10μg/kg.The average recovery in the recovery test at 3 concentration levels was 80%-110%,and the relative standard deviations were in the range of 2.8%-7.5%.[Conclusions]This method is simple and accurate,and can quickly qualitatively and quantitatively analyze the residues of 15 PGRs in bean sprouts.The proposed procedure was simple,quick and accurate for the simultaneous determination of the 15 PGRs in bean sprout.展开更多
Tests of new natural non-polluting regulators of growth Verva (vegetative terpenoids from Abies sibirica) and Larixin (vegetative flavonoids from Larix) on growth, development and productivity of fibre flax are co...Tests of new natural non-polluting regulators of growth Verva (vegetative terpenoids from Abies sibirica) and Larixin (vegetative flavonoids from Larix) on growth, development and productivity of fibre flax are conducted. The level of phytohormones in vegetating plants (IAA, ABA, zeatine and zeatinriboside) is studied. Preparations stimulate germination of seeds and growth of plants. Field experiment fixed yield increase of flax straw and the seeds of flax-fibre with the use of growth regulators. Industrial experiment represents VERVA product effectiveness on yields increase of flax straw, seeds and flax fiber output.展开更多
Using Xinshikui No. 5 as the experimental material, the effects of different concentrations of mepiquat chloride (100, 200, 300,400, 500 mg/L), chlormequat chloride (800, 1200,1 600, 2 000, 2 400 rag/L) and paclob...Using Xinshikui No. 5 as the experimental material, the effects of different concentrations of mepiquat chloride (100, 200, 300,400, 500 mg/L), chlormequat chloride (800, 1200,1 600, 2 000, 2 400 rag/L) and paclobutracol (50, 75, 100, 125, 150 mg/L) on yield and quality of sunflower were investigated. The results showed that plant growth regulators could improve the yield and quality of sunflower seeds to varying degrees. Specifically, 400 mg/L mepiquat chloride ( D4 ), 800 mg/L chlormequat chloride ( Cl ) and 75 mg/L paelobutracol ( P2 ) significantly improved disk diameter, seed weight per disc, 100-sced weight, seed kernel rate and yield of sunflower; 400 mg/L mepiquat chloride ( D4 ), 1 200 mg/L chlormequat chloride ( C2 ) and 75 mg/L paclobutracol ( P2 ) improved crude protein content, crude fat content, length and width of sunflower seeds. Based on comprehensive consideration, paclobutraeol is the most appropriate plant growth regulator for improving the yield and quality of sunflower in Xinjiang, and the optimal application concentration is 75 mg/L.展开更多
In recent years,plant growth regulators are widely used in agricultural products.As the toxicity of plant growth regulator residues has gained increasing concerns,trace analysis methods for plant growth regulators hav...In recent years,plant growth regulators are widely used in agricultural products.As the toxicity of plant growth regulator residues has gained increasing concerns,trace analysis methods for plant growth regulators have been developed.In this paper,the major methods with advantages and disadvantages for the detection and pre-treatment of plant growth regulator residues in agricultural products were summarized,including gas chromatography(GC),high performance liquid chromatography(HPLC),chromatographic technique combined with mass spectrometry,enzyme-linked immunosorbent assay(ELISA),capillary electrophoresis(CE)and so on.Meanwhile,the development prospects were also discussed.展开更多
The effects of different treatments on the seedlessness and fruit quality of‘Miguang’table grape was studied by using plant growth regulators,gibberellin acid(GA 3)and forchlorfenuron(CPPU),under different concentra...The effects of different treatments on the seedlessness and fruit quality of‘Miguang’table grape was studied by using plant growth regulators,gibberellin acid(GA 3)and forchlorfenuron(CPPU),under different concentrations and application time.The results showed that the effects of different treatments on the seedlessness and fruit quality were different.Seedless rate,cluster weight,berry weight,berry shape index,soluble solid content,total acid content,soluble solids to acidity ratio,pulling resistance,turgor pressure and flesh firmness without skin were comprehensively evaluated,as a result of which,the optimum treatment on‘Miguang’table grape was to apply with GA 320 mg/L+SM 200 mg/L at one week before bloom and GA 325 mg/L+CPPU 3 mg/L at two weeks after bloom.展开更多
Plant growth regulators(PGRs)are chemical substances that imitate the functions of phytohormones to enhance the crop yield and the harvest process.Phenylurea-derived plant growth regulators are known for their excelle...Plant growth regulators(PGRs)are chemical substances that imitate the functions of phytohormones to enhance the crop yield and the harvest process.Phenylurea-derived plant growth regulators are known for their excellent efficacy in promoting fruit growth,particularly in kiwifruit,grapes,and melons.Phenylurea derivatives represent one class of the highly efficient and versatile PGRs.Specifically,forchlorfenuron(CPPU,N-(2-chloro-4-pyridinyl)-N0-phenylurea)exhibits similar growth-regulating efficacy to cytokinins and has a significant impact on the plant growth and the crop yield.As a result,there is growing interest in exploring the incorporation of various phenylurea moieties into agrochemicals to enhance their regulatory properties on crops.This review aims to provide a comprehensive overview on representative synthetic approaches for phenylurea derived PGRs.Additionally,we provide our perspective on the future development in this active researchfield.展开更多
Plant growth regulators(PGRs)play an important role in increasing crop yield,and quality,and enhancing crop stress resistance in agricultural production,especially for important crops.PGRs can affect the transport and...Plant growth regulators(PGRs)play an important role in increasing crop yield,and quality,and enhancing crop stress resistance in agricultural production,especially for important crops.PGRs can affect the transport and distribution of assimilates by changing the content and distribution of endogenous hormones in plants.Numerous empirical research results have proven that PGRs have an important impact on the growth,development,and yield composition of wheat.Taking wheat plants as an example,this study reviews the application of PGRs in wheat production and explores their impact on wheat growth and yield.Furthermore,residues and microbial degradation of PGRs are summarized in detail.Finally,future research directions on PGR application in wheat production are proposed.This summary is of great significance for understanding the role of PGRs in wheat production.展开更多
Plant growth regulators(PGRs)are a critical regulatory factor that influences plant development and against abiotic or biotic stress.The chemical synthesis of phytohormone analogues represents an effective approach fo...Plant growth regulators(PGRs)are a critical regulatory factor that influences plant development and against abiotic or biotic stress.The chemical synthesis of phytohormone analogues represents an effective approach for developing novel PGRs with enhanced bioactivity,reduced costs,and simplified synthesis.This review provides a comprehensive examination of artificially synthesized PGRs(phytohormone structural analogues and functional analogues)over the past five years,emphasizing the synthesis strategy,bioactivity,structure-activity relationships,and target protein.This review argues that the synthesis of functional analogues of phytohormones represents a crucial in the advancement of novel PGRs,and optimization of synthetic procedures would greatly facilitate the commercialization of these PGRs.展开更多
Drought is one of the main abiotic stresses that cause crop yield loss.Improving crop yield under drought stress is a major goal of crop breeding,as it is critical to food security.The mechanism of plant drought resis...Drought is one of the main abiotic stresses that cause crop yield loss.Improving crop yield under drought stress is a major goal of crop breeding,as it is critical to food security.The mechanism of plant drought resistance has been well studied,and diverse drought resistance genes have been identified in recent years,but transferring this knowledge from the laboratory to field production remains a significant challenge.Recently,some new strategies have become research frontiers owing to their advantages of low cost,convenience,strong field operability,and/or environmental friendliness.Exogenous plant growth regulator(PGR)treatment and microbe-based plant biotechnology have been used to effectively improve crop drought tolerance and preserve yield under drought stress.However,our understanding of the mechanisms by which PGRs regulate plant drought resistance and of plant-microbiome interactions under drought is still incomplete.In this review,we summarize these two strategies reported in recent studies,focusing on the mechanisms by which these exogenous treatments regulate crop drought resistance.Finally,future challenges and directions in crop drought resistance breeding are discussed.展开更多
Objective: Labisia pumila var. alata, commonly known as 'Kacip Fatimah' or 'Selusuh Fatimah' in Southeast Asia, is traditionally used by members of the Malay community because of its post-partum medici...Objective: Labisia pumila var. alata, commonly known as 'Kacip Fatimah' or 'Selusuh Fatimah' in Southeast Asia, is traditionally used by members of the Malay community because of its post-partum medicinal properties. Its various pharmaceutical applications cause an excessive harvesting and lead to serious shortage in natural habitat. Thus, this in vitro propagation study investigated the effects of different plant growth regulators (PGRs) on in vitro leaf and stem explants of L. pumila. Methods: The capabilities of callus, shoot, and root formation were evaluated by culturing both explants on Murashige and Skoog (MS) medium supplemented with various PGRs at the concentrations of 0, 1, 3, 5, and 7 mg/L. Results: Medium supplemented with 3 mg/L indole-3-butyric acid (IBA) showed the optimal callogenesis from both leaf and stem explants with (72.34±19.55)% and (70.40±14.14)% efficacy, respectively. IBA was also found to be the most efficient PGR for root induction. A total of (50.00±7.07)% and (77.78±16.47)% of root formation were obtained from the in vitro stem and leaf explants after being cultured for (26.5±5.0) and (30.0±8.5) d in the medium supplemented with 1 and 3 mg/L of IBA, respectively. Shoot formation was only observed in stem explant, with the maximum percentage of formation ((100.00±0.00)%) that was obtained in 1 mg/L zeatin after (11.0±2.8) d of culture. Conclusions: Callus, roots, and shoots can be induced from in vitro leaf and stem explants of L. pumila through the manipulation of types and concentrations of PGRs.展开更多
The cell cycle is an important research field in cell biology and it is genetically and developmentally regulated in animals and plants. The aim of this study was to review knowledge about the biochemical regulation o...The cell cycle is an important research field in cell biology and it is genetically and developmentally regulated in animals and plants. The aim of this study was to review knowledge about the biochemical regulation of the cell cycle by plant growth regulators through molecular checkpoints that regulate the transition from G0-G1-S-phase and G2-M in higher plants. Recent research has shown that zeatin treatment led to the up-regulation of CycD3 in Arabidopsis. Benzyladenine treatment can also shorten the duration of S-phase through recruitment of latent origins of DNA replication. Kinetin is involved in the phosphoregulation of the G2-M checkpoint; the major cyclin-dependent kinase (Cdk) at this checkpoint has recently shown to be dephosphorylated as a result of cytokinin treatment, an effect that can also be mimicked by the fission yeast Cdc25 phos-phatase. Gibberellic acid (GA) treatment induces internode elongation in deepwater rice, this response is mediated by a GA-induced up-regulation of a cyclin-Cdk at the G2-M checkpoint. Recent evidence has also linked abscisic acid to a cy-clin-dependent kinase inhibitor. A new D-type cyclin, recently discovered in Arabidopsis may have a key role in this process. A brief review on plant growth regulator-cell cycle interfacing during development and a cytokinin-induced continuum of cell cycle activation through the up-regulation of a plant D-type cyclin at the G1 checkpoint and the phosphoregulation of the Cdk at the G2/M checkpoint had been concluded. This review could be valuable to research on cell and developmental biology in plants.展开更多
文摘Global concerns about the environmental impact of combustion emissions from petroleum fuels influence new research to seek for alternative energy sources. The current study investigates the possibility of using safflower (Carthamus tinctorius L.) as an alternative biodiesel raw material. Four plant growth regulators (PGR) were used to boost the production of safflower. Thirteen treatments were constituted from the four plant regulators and applied to the safflower crop arranged in completely randomised design, repeated three times. The results show that the effect of plant growth regulators was not more than that of the control. More studies have to be channelled towards the relationship between safflower and plant growth regulators.
基金Supported by Key Technology Integration and Demonstration of Xinjiang Characteristic Fruit Trees'High Efficiency and Safe Production,Science and Technical Plan Project of Xinjiang Uygur Autonomous Region(201130102)Key Technology Integration and Demonstration of Xinjiang Apricot Industrial Development,Science and Technical Plan Project of Xinjiang Uygur Autonomous Region(200931101)Financial Support from Xinjiang Uygur Autonomous Region Fruit Trees Key Subject~~
文摘[Objective] This study aimed to investigate the influence of different plant growth regulators on apricot pollen germination and pollen tube growth. [Method] Pollens of six kinds of Xinjiang apricots were cultured in solid media supplemented with five plant growth regulators (GA3 , NAA, 2, 4-D, 6-BA, IAA). Then the rate of pollen germination and the length of pollen tube were respectively measured. [Result] In a certain concentration range, GA3 most significantly promoted the pollen germination and the pollen tube growth of Shushanggan, Kalayulvke, Dayoujia, Yiliakeyulvke and Kabakehuanna; NNA had the strongest improvement function on Kumaiti’s pollen germination and pollen tube growth. [Conclusion] All the five plant growth regulators promoted the pollen germination and the pollen tube growth of apricots at low concentration but inhibited them at high concentration.
文摘The effects of four kinds of plant growth regulators with different concentrations on narcissi were studied in 2001. The results showed that the regulators could inhibit the growths of height and leaves of narcissi. Of the four regulators, the dwarfing effects of paclobatrazol (PP333) and uniconazole (S3307) on narcissi were better than those of chlorocholine (CCC) and dimethyl amino-sussinamic acid (B9). All of the regulators did not have significant effect on the root length. Moreover, the time of flowering was later for the narcissi treated with regulators than that of the control to a certain extent, and the range delayed was from 2 days to 19 days. The correlation analysis results showed that there was a significant correlation between the time of flowering and the concentrations of regulators. The ornament value of narcissi was obviously improved by using the regulators.
文摘The effect of vernalization and two growth regulators Fascination^TM and Pro-Gibb^R on the growth, inflorescence development and flowering of Omithogalurrt Chesapeake Snowflake' was studied. Regardless of growth regulator treatment, chilling bulbs for 3 weeks at 10℃ before planting accelerated flowering of the first inflorescence by 5 to 6 days, elongated floral stem length by 1.5 to 2 cm and shortened leaf length by 4 to 5 cm as compared with non-chilled bulbs. When bulbs were chilled 3 weeks at 10℃ before planting, Fascination 2% and Pro-Gibb accelerated flowering of the first inflorescence by 2 to 6 days respectively as compared with the control. When bulbs were not chilled before planting, Fascination 2% and Pro-Gibb accelerated flowering of the first inflorescence by 6 to12 days respectively as compared with the control. The lengths of the leaves and the inflorescences were not affected by PGR treatment. Higher rates of Pro-Gibb (100 mg.L^-1 and 200 mg.L^-1) and more amount of Fascination 2%(100 μL and 200 μL) can cause abortion of inflorescence.
文摘[Objective]In order to increase anther culture efficiency of pepper.[Method]MS culture media and Bolajiaohong were used in this experiment to study the influences of carbon sources and concentrations on anther callus induction of pepper.Jiayu was taken as a material to study influences of plant growth regulators and concentrations on anther callus induction of pepper according to L16(4^5) orthogonal design.[Result]The average callus and embryoid induction rates of maltose at all concentrations were higher than these of sucrose but the difference was not significant.Taking maltose or sucrose as a carbon source,3% to 6% concentration was good for increasing induction frequencies of calli and embryoids.However,If the concentration was over 6%,the induction rates were declined dramatically with the increase of sugar concentration.The influences of growth regulators on induction rate of calli were listed as 2,4-D﹥ZT﹥NAA﹥KT﹥6-BA;the influences on induction rates of embryoids were listed as 2,4-D﹥NAA﹥ZT﹥KT﹥6-BA.The 2,4-D,ZT,NAA and KT had signficant or extremely significant influences on induction rates of calli and embryoids.2,4-D,ZT at 1.0 mg/L and NNA,KT at 0.5 mg/L had the best effects.The influences of ZT on calli and embryoids were better than those of KT and 6-BA.1.0 mg/L 2,4-D +1.0 mg/L ZT +0.5 mg/L KT +0.5 mg/L 6-BA was the best regulator combination for induction culture of Jiayu anther.[Conclusion]The experiment provided research basis for anther culture of pepper.
基金supported by the Universiti Putra Malaysia Research University Grant Scheme(Project No.03-02-11-1370RU and 03-03-11-1438RU)
文摘The endangered tropical tree, Aquilaria malaccensis, produces agarwood for use in fragrance and medicines. Efforts are currently un-derway to produce valuable agarwood compoundsn tissue culture. The purpose of this study was to develop an optimal growth medium, specif-ically, the best hormone combination for callus suspension culture. Using nursery-grown A. malaccensis, sterilized leaf explants were first incu-bated on basic Murashige and Skoog (MS) gel medium containing 15g/L sucrose and at pH 5.7. Different auxin types including 1-naphthaleneacetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), and indole-3-butyric acid (IBA), were tested at various concentrations (0.55, 1.1 and 1.65 μM) using the basic medium. Leaf explants were incubated for 30 days in the dark. Callus induced by 1.1 μM NAA had the highest biomass dry weight (DW) of 17.3 mg;however the callus was of a compact type. This auxin concentration was then combined with either 6-benzylaminopurine (BAP) or kinetin at 0.55, 1.1, 2.2 or 3.3 μM to induce growth of friable callus. The 1.1μM NAA+2.2μM BAP com-bination produced friable callus with the highest biomass (93.3mg DW). When testing the different carbon sources and pHs, sucrose at 15g/L and pH at 5.7 yielded highest biomasses at 87.7mg and 83mg DW, respec-tively. Microscopic observations revealed the arrangement of the friable cells as loosely packed with relatively large cells, while for the compact callus, the cells were small and densely packed. We concluded that MS medium containing 15 g/L sucrose, 1.1 μM NAA + 2.2 μM BAP hor-mone combination, and a pH of 5.7 was highly effective for inducing friable callus from leaf explants of A. malaccensis for the purpose of establishing cell suspension culture.
基金Supported by Talent Introduction Project of Anhui Science and Technology University(ZRC2007147)General Project of Natural Scientific Research from Education Department of Anhui Province(KJ2010B052,KJ2010B294)
文摘In this study,the seeds of wild Petunia Juss.were used as explants to investigate the optimal condition for tissue culture.Several different kinds and concentrations of growth regulators were adopted to produce more multiple bud clumps,callus or roots in this study.The experiments may provide experimental foundation for the rapid propagation technology and establishment of tissue culture system for wild Petunia Juss.
基金Supported by Daqing Scientific and Technological Project in Heilongjiang Province(SGG2007-054)Demonstration and Promotion Projects of Potato Comprehensive High Yield Cultivation Technologyin Western Regions of Heilongjiang Province(PC07B09)~~
文摘[Objective] The aim was to investigate the effects of plant growth regulators on contents of reducing sugar and starch in potato(Solanum tuberosum L.).[Method]A potato cultivar named 'Holand-212' with three treatments by spraying Diethyl aminoethyl hexanoate(DTA-6),Uniconazole(S3307)and SOD mimics(SODM)were employed to compare differences of the contents of reducing sugar and starch in potato leaves,stolons and tubers in a field experiment.[Result]DTA-6 treatment could significantly reduce the contents of starch and reducing sugar in potato stolons in the period of 100-110 d after seeding,and it could also reduce the content of reducing sugar in tubers,but there is an opposite result in leaves in the same period,significantly.S3307 could extremely significantly increase the content of starch,and can promote the transfer of starch in stolons,in addition,it also could reduce the content of reducing sugar in tubers,and extremely significantly increase the content of starch in leaves at the 110 d after sowing.Moreover,there is a similar effect between SODM and S3307.[Conclusion]The research results are significant for understanding mechanisms of plant growth regulators and promoting application of plant growth regulator in potato.
基金supported by the Department of Biotechnology,Government of India New Delhithe World Academy of Science(TWAS)for the Advancement of Science in the Developing World TriesteItaly through DBT-TWAS Postgraduate Research Fellowship
文摘Chonemorpha fragrans is an endangered medicinal woody climber,regarded among alternative plant sources of camptothecin.Camptothecin is a monoterpene indole anti-cancer alkaloid with annual trade value of over three billion U.S.dollars in the recent,and is used in the production of its analog drugs approved for the chemotherapy of cancer of varied types.Effects of plant growth regulators,culture media strength and photoperi-odic duration on the micropropagation ef ciency of C.fragrans from nodal segment explants were studied on Murashige and Skoog(MS)medium amended with Thidiazuron(TDZ),Benzylaminopurine(BAP)or Kinetin(Kin).Thidiazuron was more ef cient over BAP and Kin when half basal MS medium was used over full or quarter strength.Results of carbon source experiment showed sucrose as the most effective over glucose,fructose,and maltose in the clonal production.Studies on the photope-riodic incubation duration showed 12 h as the best light period and sub or supra-optimal resulted in the production of abnormal and albino micro shoots.Experimental results on the evaluation of physiological,biochemical parameters showed the role of pigment molecules and antioxidant systems in the production of albino micro shoots.
基金Supported by Research Projects Funded by Talent Project Training Funds in Hebei Province(A201901128)Key R&D Project of Tangshan City(20150210C).
文摘[Objectives]This study was conducted to effectively monitor PGR residues in bean sprouts to provide guarantee for the food safety of agricultural products.[Methods]A high-performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS)method for the determination of residues of 15 plant growth regulators(PGRs)in bean sprouts was established using bean sprouts as an experimental material.Samples were extracted with a solution containing 5%acetic acid-acetonitrile(1∶99,V/V),purified with anhydrous magnesium sulfate,and diluted with methanol solvent to constant volume.The solutions were filtered through 0.22μm filtering membrane and the target analytes were separated on a Phenomenex H18 column.The identification of each compound was established by retention time matching along with the accurate mass measurement of the precursor ions and their main fragment ions.The quantification was carried out using matrix-matched external standard method.[Results]The retention time of the 15 PGRs were found in the range from 5.8-11.7 min under the optimized conditions.The linear relation was good in the concentration range of 0.005-0.050μg/ml,and the correlation coefficients of the 15 PGRs were≥0.9990.The limits of detection were in the range of 0.03-0.92 g/kg,and the limits of quantification were in the range of 0.50-2.10μg/kg.The average recovery in the recovery test at 3 concentration levels was 80%-110%,and the relative standard deviations were in the range of 2.8%-7.5%.[Conclusions]This method is simple and accurate,and can quickly qualitatively and quantitatively analyze the residues of 15 PGRs in bean sprouts.The proposed procedure was simple,quick and accurate for the simultaneous determination of the 15 PGRs in bean sprout.
文摘Tests of new natural non-polluting regulators of growth Verva (vegetative terpenoids from Abies sibirica) and Larixin (vegetative flavonoids from Larix) on growth, development and productivity of fibre flax are conducted. The level of phytohormones in vegetating plants (IAA, ABA, zeatine and zeatinriboside) is studied. Preparations stimulate germination of seeds and growth of plants. Field experiment fixed yield increase of flax straw and the seeds of flax-fibre with the use of growth regulators. Industrial experiment represents VERVA product effectiveness on yields increase of flax straw, seeds and flax fiber output.
基金Supported by Modern Agricultural Science and Technology Research and Achievements Transformation Fund of Xinjiang Production and Construction Corps(2016AC027,2016AC024)
文摘Using Xinshikui No. 5 as the experimental material, the effects of different concentrations of mepiquat chloride (100, 200, 300,400, 500 mg/L), chlormequat chloride (800, 1200,1 600, 2 000, 2 400 rag/L) and paclobutracol (50, 75, 100, 125, 150 mg/L) on yield and quality of sunflower were investigated. The results showed that plant growth regulators could improve the yield and quality of sunflower seeds to varying degrees. Specifically, 400 mg/L mepiquat chloride ( D4 ), 800 mg/L chlormequat chloride ( Cl ) and 75 mg/L paelobutracol ( P2 ) significantly improved disk diameter, seed weight per disc, 100-sced weight, seed kernel rate and yield of sunflower; 400 mg/L mepiquat chloride ( D4 ), 1 200 mg/L chlormequat chloride ( C2 ) and 75 mg/L paclobutracol ( P2 ) improved crude protein content, crude fat content, length and width of sunflower seeds. Based on comprehensive consideration, paclobutraeol is the most appropriate plant growth regulator for improving the yield and quality of sunflower in Xinjiang, and the optimal application concentration is 75 mg/L.
基金Tangshan Science and Technology Planning Project(20150210C)Hebei Provincial Phase II Modern Agricultural Industry Technology System Innovation Team Building Project(HBCT2018120207,HBCT2018160403).
文摘In recent years,plant growth regulators are widely used in agricultural products.As the toxicity of plant growth regulator residues has gained increasing concerns,trace analysis methods for plant growth regulators have been developed.In this paper,the major methods with advantages and disadvantages for the detection and pre-treatment of plant growth regulator residues in agricultural products were summarized,including gas chromatography(GC),high performance liquid chromatography(HPLC),chromatographic technique combined with mass spectrometry,enzyme-linked immunosorbent assay(ELISA),capillary electrophoresis(CE)and so on.Meanwhile,the development prospects were also discussed.
基金Supported by Basic Research Funds of Hebei Academy of Agriculture and Forestry Sciences(2023020103)Domestic Training Program for Young Scientific and Technological Talents of Agriculture and Forestry Sciences+3 种基金Hebei Agriculture Research System(HBCT2023150202)Key R&D Program Project of Hebei Provincial Department of Science and Technology(20326813D)The innovation project of modern seed technology(21326310D)HAAFS Science and Technology Innovation Special Project(2022KJCXZX-CGS-1).
文摘The effects of different treatments on the seedlessness and fruit quality of‘Miguang’table grape was studied by using plant growth regulators,gibberellin acid(GA 3)and forchlorfenuron(CPPU),under different concentrations and application time.The results showed that the effects of different treatments on the seedlessness and fruit quality were different.Seedless rate,cluster weight,berry weight,berry shape index,soluble solid content,total acid content,soluble solids to acidity ratio,pulling resistance,turgor pressure and flesh firmness without skin were comprehensively evaluated,as a result of which,the optimum treatment on‘Miguang’table grape was to apply with GA 320 mg/L+SM 200 mg/L at one week before bloom and GA 325 mg/L+CPPU 3 mg/L at two weeks after bloom.
基金support from the National Natural Science Foundation of China(22371058,21961006,32172459,22371057,22071036)the National Key Research and Development Program of China(2022YFD1700300)+3 种基金the Science and Technology Department of Guizhou Province(Qiankehejichu-ZK[2021]Key033)the Program of Introducing Talents of Discipline to Universities of China(111 Program,D20023)at Guizhou University,Frontiers Science Center for Asymmetric Synthesis and Medicinal MoleculesDepartment of Education,Guizhou Province[Qianjiaohe KY(2020)004]Guizhou University(China).
文摘Plant growth regulators(PGRs)are chemical substances that imitate the functions of phytohormones to enhance the crop yield and the harvest process.Phenylurea-derived plant growth regulators are known for their excellent efficacy in promoting fruit growth,particularly in kiwifruit,grapes,and melons.Phenylurea derivatives represent one class of the highly efficient and versatile PGRs.Specifically,forchlorfenuron(CPPU,N-(2-chloro-4-pyridinyl)-N0-phenylurea)exhibits similar growth-regulating efficacy to cytokinins and has a significant impact on the plant growth and the crop yield.As a result,there is growing interest in exploring the incorporation of various phenylurea moieties into agrochemicals to enhance their regulatory properties on crops.This review aims to provide a comprehensive overview on representative synthetic approaches for phenylurea derived PGRs.Additionally,we provide our perspective on the future development in this active researchfield.
基金supported by the Anhui Natural Science Foundation Project(No.2008085MB45).
文摘Plant growth regulators(PGRs)play an important role in increasing crop yield,and quality,and enhancing crop stress resistance in agricultural production,especially for important crops.PGRs can affect the transport and distribution of assimilates by changing the content and distribution of endogenous hormones in plants.Numerous empirical research results have proven that PGRs have an important impact on the growth,development,and yield composition of wheat.Taking wheat plants as an example,this study reviews the application of PGRs in wheat production and explores their impact on wheat growth and yield.Furthermore,residues and microbial degradation of PGRs are summarized in detail.Finally,future research directions on PGR application in wheat production are proposed.This summary is of great significance for understanding the role of PGRs in wheat production.
基金the National Natural Science Foundation of China(No.32072445,21762012)the Program of Introducing Talents to Chinese Universities(No.D20023)+1 种基金the Natural Science research project of Guizhou Education Department(No.KY(2018)009)the specific research fund of The Innovation Platform for Academicians of Hainan Province(No.SQ2020PTZ0009)。
文摘Plant growth regulators(PGRs)are a critical regulatory factor that influences plant development and against abiotic or biotic stress.The chemical synthesis of phytohormone analogues represents an effective approach for developing novel PGRs with enhanced bioactivity,reduced costs,and simplified synthesis.This review provides a comprehensive examination of artificially synthesized PGRs(phytohormone structural analogues and functional analogues)over the past five years,emphasizing the synthesis strategy,bioactivity,structure-activity relationships,and target protein.This review argues that the synthesis of functional analogues of phytohormones represents a crucial in the advancement of novel PGRs,and optimization of synthetic procedures would greatly facilitate the commercialization of these PGRs.
基金This work was supported by grants from the Wuhan Applied Foundational Frontier Project(2020020601012258)the National Natural Science Foundation of China(32061143031)the Fundamental Research Funds for the Central Universities(2662020SKY009).
文摘Drought is one of the main abiotic stresses that cause crop yield loss.Improving crop yield under drought stress is a major goal of crop breeding,as it is critical to food security.The mechanism of plant drought resistance has been well studied,and diverse drought resistance genes have been identified in recent years,but transferring this knowledge from the laboratory to field production remains a significant challenge.Recently,some new strategies have become research frontiers owing to their advantages of low cost,convenience,strong field operability,and/or environmental friendliness.Exogenous plant growth regulator(PGR)treatment and microbe-based plant biotechnology have been used to effectively improve crop drought tolerance and preserve yield under drought stress.However,our understanding of the mechanisms by which PGRs regulate plant drought resistance and of plant-microbiome interactions under drought is still incomplete.In this review,we summarize these two strategies reported in recent studies,focusing on the mechanisms by which these exogenous treatments regulate crop drought resistance.Finally,future challenges and directions in crop drought resistance breeding are discussed.
文摘Objective: Labisia pumila var. alata, commonly known as 'Kacip Fatimah' or 'Selusuh Fatimah' in Southeast Asia, is traditionally used by members of the Malay community because of its post-partum medicinal properties. Its various pharmaceutical applications cause an excessive harvesting and lead to serious shortage in natural habitat. Thus, this in vitro propagation study investigated the effects of different plant growth regulators (PGRs) on in vitro leaf and stem explants of L. pumila. Methods: The capabilities of callus, shoot, and root formation were evaluated by culturing both explants on Murashige and Skoog (MS) medium supplemented with various PGRs at the concentrations of 0, 1, 3, 5, and 7 mg/L. Results: Medium supplemented with 3 mg/L indole-3-butyric acid (IBA) showed the optimal callogenesis from both leaf and stem explants with (72.34±19.55)% and (70.40±14.14)% efficacy, respectively. IBA was also found to be the most efficient PGR for root induction. A total of (50.00±7.07)% and (77.78±16.47)% of root formation were obtained from the in vitro stem and leaf explants after being cultured for (26.5±5.0) and (30.0±8.5) d in the medium supplemented with 1 and 3 mg/L of IBA, respectively. Shoot formation was only observed in stem explant, with the maximum percentage of formation ((100.00±0.00)%) that was obtained in 1 mg/L zeatin after (11.0±2.8) d of culture. Conclusions: Callus, roots, and shoots can be induced from in vitro leaf and stem explants of L. pumila through the manipulation of types and concentrations of PGRs.
文摘The cell cycle is an important research field in cell biology and it is genetically and developmentally regulated in animals and plants. The aim of this study was to review knowledge about the biochemical regulation of the cell cycle by plant growth regulators through molecular checkpoints that regulate the transition from G0-G1-S-phase and G2-M in higher plants. Recent research has shown that zeatin treatment led to the up-regulation of CycD3 in Arabidopsis. Benzyladenine treatment can also shorten the duration of S-phase through recruitment of latent origins of DNA replication. Kinetin is involved in the phosphoregulation of the G2-M checkpoint; the major cyclin-dependent kinase (Cdk) at this checkpoint has recently shown to be dephosphorylated as a result of cytokinin treatment, an effect that can also be mimicked by the fission yeast Cdc25 phos-phatase. Gibberellic acid (GA) treatment induces internode elongation in deepwater rice, this response is mediated by a GA-induced up-regulation of a cyclin-Cdk at the G2-M checkpoint. Recent evidence has also linked abscisic acid to a cy-clin-dependent kinase inhibitor. A new D-type cyclin, recently discovered in Arabidopsis may have a key role in this process. A brief review on plant growth regulator-cell cycle interfacing during development and a cytokinin-induced continuum of cell cycle activation through the up-regulation of a plant D-type cyclin at the G1 checkpoint and the phosphoregulation of the Cdk at the G2/M checkpoint had been concluded. This review could be valuable to research on cell and developmental biology in plants.