In this paper a numerical analysis method combining FEM incemental technique with limit analysis concept is proposed for the study of the static strength of offshore platform in collision. Large deformation and plasti...In this paper a numerical analysis method combining FEM incemental technique with limit analysis concept is proposed for the study of the static strength of offshore platform in collision. Large deformation and plasticity are accounted for and the limit yield surface expressed by generalized stress for a tubular section is derived. The modified stiffness matrix of space beam element is formulated by Plastic Node Method. The buckling behavior of beam columns can also be taken into account. It can trace the generation of plastic hinges during loading and finally the ultimate strength of offshore platform against collision is obtained.展开更多
文摘In this paper a numerical analysis method combining FEM incemental technique with limit analysis concept is proposed for the study of the static strength of offshore platform in collision. Large deformation and plasticity are accounted for and the limit yield surface expressed by generalized stress for a tubular section is derived. The modified stiffness matrix of space beam element is formulated by Plastic Node Method. The buckling behavior of beam columns can also be taken into account. It can trace the generation of plastic hinges during loading and finally the ultimate strength of offshore platform against collision is obtained.