期刊文献+
共找到133篇文章
< 1 2 7 >
每页显示 20 50 100
Approximate Controllability of Second-Order Neutral Stochastic Differential Equations with Infinite Delay and Poisson Jumps 被引量:4
1
作者 PALANISAMY Muthukumar CHINNATHAMBI Rajivganthi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第5期1033-1048,共16页
The modelling of risky asset by stochastic processes with continuous paths, based on Brow- nian motions, suffers from several defects. First, the path continuity assumption does not seem reason- able in view of the po... The modelling of risky asset by stochastic processes with continuous paths, based on Brow- nian motions, suffers from several defects. First, the path continuity assumption does not seem reason- able in view of the possibility of sudden price variations (jumps) resulting of market crashes. A solution is to use stochastic processes with jumps, that will account for sudden variations of the asset prices. On the other hand, such jump models are generally based on the Poisson random measure. Many popular economic and financial models described by stochastic differential equations with Poisson jumps. This paper deals with the approximate controllability of a class of second-order neutral stochastic differential equations with infinite delay and Poisson jumps. By using the cosine family of operators, stochastic analysis techniques, a new set of sufficient conditions are derived for the approximate controllability of the above control system. An example is provided to illustrate the obtained theory. 展开更多
关键词 Approximate controllability Hilbert space poisson jumps second-order neutral stochas-tic differential equations semigroup theory.
下载PDF
Freidlin-Wentzell’s Large Deviations for Stochastic Evolution Equations with Poisson Jumps 被引量:1
2
作者 Huiyan Zhao Siyan Xu 《Advances in Pure Mathematics》 2016年第10期676-694,共20页
We establish a Freidlin-Wentzell’s large deviation principle for general stochastic evolution equations with Poisson jumps and small multiplicative noises by using weak convergence method.
关键词 Stochastic Evolution Equation poisson jumps Freidlin-Wentzell’s Large Deviation Weak Convergence Method
下载PDF
Estimation of Stochastic Volatility with a Compensated Poisson Jump Using Quadratic Variation
3
作者 Perpetual Saah Andam Joseph Ackora-Prah Sure Mataramvura 《Applied Mathematics》 2017年第7期987-1000,共14页
The degree of variation of trading prices with respect to time is volatility-measured by the standard deviation of returns. We present the estimation of stochastic volatility from the stochastic differential equation ... The degree of variation of trading prices with respect to time is volatility-measured by the standard deviation of returns. We present the estimation of stochastic volatility from the stochastic differential equation for evenly spaced data. We indicate that, the price process is driven by a semi-martingale and the data are evenly spaced. The results of Malliavin and Mancino [1] are extended by adding a compensated poisson jump that uses a quadratic variation to calculate volatility. The volatility is computed from a daily data without assuming its functional form. Our result is well suited for financial market applications and in particular the analysis of high frequency data for the computation of volatility. 展开更多
关键词 STOCHASTIC VOLATILITY Compensated poisson jump QUADRATIC VARIATION
下载PDF
MEAN SQUARE STABILITY AND DISSIPATIVITY OF SPLIT- STEP THETA METHOD FOR NONLINEAR NEUTRAL STOCHASTIC DELAY DIFFERENTIAL EQUATIONS WITH POISSON JUMPS 被引量:3
4
作者 Haiyan Yuan Jihong Shen Cheng Song 《Journal of Computational Mathematics》 SCIE CSCD 2017年第6期766-779,共14页
In this paper, a split-step 0 (SST) method is introduced and used to solve the non- linear neutral stochastic differential delay equations with Poisson jumps (NSDDEwPJ). The mean square asymptotic stability of the... In this paper, a split-step 0 (SST) method is introduced and used to solve the non- linear neutral stochastic differential delay equations with Poisson jumps (NSDDEwPJ). The mean square asymptotic stability of the SST method for nonlinear neutral stochastic differential equations with Poisson jumps is studied. It is proved that under the one-sided Lipschitz condition and the linear growth condition, the SST method with ∈ E (0, 2 -√2) is asymptotically mean square stable for all positive step sizes, and the SST method with ∈ E (2 -√2, 1) is asymptotically mean square stable for some step sizes. It is also proved in this paper that the SST method possesses a bounded absorbing set which is independent of initial data, and the mean square dissipativity of this method is also proved. 展开更多
关键词 Neutral stochastic delay differential equations Split-step method Stability poisson jumps.
原文传递
Strong convergence rate of truncated Euler-Maruyama method for stochastic differential delay equations with Poisson jumps 被引量:1
5
作者 Shuaibin GAO Junhao HU +1 位作者 Li TAN Chenggui YUAN 《Frontiers of Mathematics in China》 SCIE CSCD 2021年第2期395-423,共29页
We study a class of super-linear stochastic differential delay equations with Poisson jumps (SDDEwPJs). The convergence and rate of the convergence of the truncated Euler-Maruyama numerical solutions to SDDEwPJs are i... We study a class of super-linear stochastic differential delay equations with Poisson jumps (SDDEwPJs). The convergence and rate of the convergence of the truncated Euler-Maruyama numerical solutions to SDDEwPJs are investigated under the generalized Khasminskii-type condition. 展开更多
关键词 Truncated Euler-Maruyama method stochastic differential delay equations poisson jumps rate of the convergence
原文传递
Optimal control of Hilfer fractional stochastic integrodifferential systems driven by Rosenblatt process and Poisson jumps
6
作者 K.Ramkumar K.Ravikumar E.M.Elsayed 《Journal of Control and Decision》 EI 2023年第4期538-546,共9页
In this work,the optimal control for a class of Hilfer fractional stochastic integrodifferential systems driven by Rosenblatt process and Poisson jumps has been discussed in infinite dimensional space involving the Hi... In this work,the optimal control for a class of Hilfer fractional stochastic integrodifferential systems driven by Rosenblatt process and Poisson jumps has been discussed in infinite dimensional space involving the Hilfer fractional derivative.First,we study the existence and uniqueness of mild solution results are proved by the virtue of fractional calculus,successive approximation method and stochastic analysis techniques.Second,the optimal control of the proposed problem is presented by using Balder’s theorem.Finally,an example is demonstrated to illustrate the obtained theoretical results. 展开更多
关键词 Hilfer fractional derivative stochastic integrodifferential systems Rosenblatt process poisson jumps successive approximation optimal control
原文传递
Global Attracting Sets of Neutral Stochastic Functional Differential Equations Driven by Poisson Jumps
7
作者 XIE Qiaoqiao YANG Bin LI Zhi 《Journal of Partial Differential Equations》 CSCD 2021年第2期103-115,共13页
By means of the Banach fixed point principle,we establish some sufficient conditions ensuring the existence of the global attracting sets and the exponential decay in the mean square of mild solutions for a class of n... By means of the Banach fixed point principle,we establish some sufficient conditions ensuring the existence of the global attracting sets and the exponential decay in the mean square of mild solutions for a class of neutral stochastic functional differential equations by Poisson jumps.An example is presented to illustrate the effectiveness of the obtained result. 展开更多
关键词 Global attracting set mild solution Banach fixed point principle poisson jumps
原文传递
Poisson Process Modeling of Pure Jump Equities on the Ghana Stock Exchange
8
作者 Osei Antwi Kyere Bright Martinu Issa 《Journal of Applied Mathematics and Physics》 2022年第10期3101-3120,共20页
Although Geometric Brownian Motion and Jump Diffusion Models have largely dominated the literature on asset price modeling, studies of the empirical stock price data on the Ghana Stock Exchange have led to the conclus... Although Geometric Brownian Motion and Jump Diffusion Models have largely dominated the literature on asset price modeling, studies of the empirical stock price data on the Ghana Stock Exchange have led to the conclusion that there are some stocks in which the return processes consistently depart from these models in theory as well as in its statistical properties. This paper gives a fundamental review of the development of a stock price model based on pure jump processes to capture the unique behavior exhibited by some stocks on the Exchange. Although pure jump processes have been examined thoroughly by other authors, there is a lack of mathematical clarity in terms of deriving the underlying stock price process. This paper provides a link between stock prices existing on a measure space to its development as a pure jump Levy process. We test the suitability of the model to the empirical evidence using numerical procedures. The simulation results show that the trajectories of the model are a better fit for the empirical data than those produced by the diffusion and jump diffusion models. 展开更多
关键词 poisson Process Pure jump Process Compound poisson Process jump Diffusion
下载PDF
带有Poisson跳的股票价格模型的期权定价 被引量:46
9
作者 闫海峰 刘三阳 《工程数学学报》 CSCD 北大核心 2003年第2期35-40,共6页
利用公平保费原则和价格过程的实际概率测度推广了Mogensbladt和HinaHviidRydberg关于欧式期权定价的结果。假定股票价格过程遵循带非时齐Poisson跳跃的扩散过程,并且股票预期收益率、波动率和无风险利率均为时间函数的情况下,获得了欧... 利用公平保费原则和价格过程的实际概率测度推广了Mogensbladt和HinaHviidRydberg关于欧式期权定价的结果。假定股票价格过程遵循带非时齐Poisson跳跃的扩散过程,并且股票预期收益率、波动率和无风险利率均为时间函数的情况下,获得了欧式期权精确定价公式和买权与卖权之间的平价关系。 展开更多
关键词 扩散过程 BLACK-SCHOLES公式 保险精算定价 期权定价
下载PDF
股票价格跳过程为复合Poisson过程的期权定价模型 被引量:13
10
作者 杨云锋 刘新平 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第3期14-17,共4页
研究了股票价格的行为模式,运用随机分析中的鞅方法推广了Merton关于欧式期权定价的结果.改变了Merton期权定价模型的基本假设,认为股票价格的跳跃过程为一类特殊的复合Poisson过程且无跳时的波动率为时间的函数,建立了股票价格服从跳... 研究了股票价格的行为模式,运用随机分析中的鞅方法推广了Merton关于欧式期权定价的结果.改变了Merton期权定价模型的基本假设,认为股票价格的跳跃过程为一类特殊的复合Poisson过程且无跳时的波动率为时间的函数,建立了股票价格服从跳扩散过程的行为模型.在风险中性的假设下,推导出了股票价格的跳过程为复合Poisson过程的欧式期权定价公式,推广了Merton的结果. 展开更多
关键词 期权定价 复合poisson过程 跳扩散过程
下载PDF
带Poisson跳和Markovian转换的随机时滞泛函微分方程数值解的收敛性(英文) 被引量:2
11
作者 卢俊香 武宇 +1 位作者 马梅 杜艳丽 《纺织高校基础科学学报》 CAS 2016年第3期373-384,共12页
为了近一步研究带Poisson跳和Markovian转换的随机时滞泛函微分方程数值解的收敛性问题,文中给出带Poisson跳和Markovian转换的随机时滞泛函微分方程Euler数值解迭代格式.在弱条件下,利用Laypunov泛函方法和随机分析理论证明了数值解依... 为了近一步研究带Poisson跳和Markovian转换的随机时滞泛函微分方程数值解的收敛性问题,文中给出带Poisson跳和Markovian转换的随机时滞泛函微分方程Euler数值解迭代格式.在弱条件下,利用Laypunov泛函方法和随机分析理论证明了数值解依概率收敛于方程的解.所得结果覆盖了许多非线性时滞微分方程已经存在的某些理论,而且实验说明此结论比以往的结论更容易验证. 展开更多
关键词 泛函随机微分方程 poisson Markovian转换 Euler数值解
下载PDF
一类带Poisson跳的随机森林发展系统数值解的收敛性 被引量:4
12
作者 吕淑婷 张启敏 《宁夏大学学报(自然科学版)》 CAS 北大核心 2010年第4期301-304,308,共5页
根据显式Euler数值方法,构造了一类带Possion跳的随机森林发展系统的数值解,并应用It公式和Burkholder-Davis-Gundy不等式证明了数值解的收敛性,给出了数值解收敛于解析解的充分条件.
关键词 随机森林系统 Possion跳 EULER方法 收敛
下载PDF
一类带Poisson跳随机森林发展系统数值解的存在唯一性 被引量:1
13
作者 吕淑婷 张启敏 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期350-355,共6页
根据Gronwall和Barkholder-Davis-Gundy引理,采用显式Euler方法讨论了Hilbert空间的带Poisson跳的随机森林发展系统解的存在性和唯一性,给出了一类带Poisson跳随机森林发展系统数值解的存在及唯一性的充分条件.
关键词 poisson 森林发展系统 存在性 唯一性
下载PDF
基于Poisson跳跃的信用价差期权定价 被引量:2
14
作者 刘艳萍 李欢欢 《技术经济与管理研究》 2013年第11期19-23,共5页
信用价差是用以向投资者补偿参照资产违约风险的、高于无风险利率的利差。信用价差期权作为风险控制的重要手段之一,其定价也日益得到人们的关注。现有文献几乎是单纯地利用几何布朗运动来刻画资产的价格变化过程从而对信用价差期权进... 信用价差是用以向投资者补偿参照资产违约风险的、高于无风险利率的利差。信用价差期权作为风险控制的重要手段之一,其定价也日益得到人们的关注。现有文献几乎是单纯地利用几何布朗运动来刻画资产的价格变化过程从而对信用价差期权进行定价。而在实际中会出现某些不寻常的事件导致资产价格出现不间断的跳跃现象,普通的定价方法对这种现象的解释力度不够。因此本文引入Poisson跳跃来描述信用价差变化过程中的异常情况,更好地解释当遇到金融危机等情况时资产价值的跳跃现象。由于Longstaff和Schwartz的模型引入了随机利率,可以给出定价公式的封闭解析解的优点,本文在此模型上进行进行研究,将刻画信用价差动态过程的O-U过程与Poisson跳跃结合,利用伊藤公式进行推导并引入了利率的平方根过程,得到了欧式信用价差期权的定价公式,更好地考虑了资产价格的跳跃情况。 展开更多
关键词 信用价差期权定价 poisson跳跃 O-U过程
下载PDF
一类带Poisson跳的随机森林发展系统数值解的稳定性 被引量:1
15
作者 吕淑婷 张启敏 《兰州理工大学学报》 CAS 北大核心 2012年第3期143-146,共4页
根据显式Euler数值方法,构造一类带Poisson跳的随机森林发展系统的数值解,并运用Burkholder-Davis-Gundy不等式、Gronwall引理和Kolmogorov不等式对随机时变森林发展系统解的均方稳定性和指数稳定性进行讨论,得到数值解均方稳定和指数... 根据显式Euler数值方法,构造一类带Poisson跳的随机森林发展系统的数值解,并运用Burkholder-Davis-Gundy不等式、Gronwall引理和Kolmogorov不等式对随机时变森林发展系统解的均方稳定性和指数稳定性进行讨论,得到数值解均方稳定和指数稳定的充分条件. 展开更多
关键词 随机森林系统 Possion跳 EULER方法 指数稳定性
下载PDF
带Poisson跳的无套利模型下的寿险定价分析 被引量:1
16
作者 柳向东 寇璐 《暨南大学学报(自然科学与医学版)》 CAS CSCD 北大核心 2012年第5期439-443,共5页
主要讨论带Poisson跳的无套利模型下的寿险定价问题.资产价格变动既有"正常"的变动,也有"不正常"的变动."不正常"的变动通常是重要的信息到达所造成的.由于信息的到达往往在一些离散的时间点,因而用Pois... 主要讨论带Poisson跳的无套利模型下的寿险定价问题.资产价格变动既有"正常"的变动,也有"不正常"的变动."不正常"的变动通常是重要的信息到达所造成的.由于信息的到达往往在一些离散的时间点,因而用Poisson过程来描述这一变动,从而得出了带Poisson跳的无套利模型下的寿险定价的偏微分方程;此外,将其与资产份额定价方法结合,并通过严格的证明,得到了相应的投资策略. 展开更多
关键词 poisson跳的无套利模型 寿险定价 偏微分方程 资产份额定价
下载PDF
常利力下双复合Poisson风险过程的生存概率 被引量:2
17
作者 魏广华 高启兵 刘国祥 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2013年第2期27-30,38,共5页
本文考虑了常利力下双复合Poisson风险过程,分别获得了生存概率和有限时间内生存概率的积分微分方程.当保费和索赔都服从指数分布时,得到了生存概率的微分方程.
关键词 双复合泊松风险模型 跳扩散过程 生存概率 积分微分方程
下载PDF
具有Poisson跳的随机中立型微分方程的数值分析 被引量:1
18
作者 许新忠 张启敏 《宁夏大学学报(自然科学版)》 CAS 北大核心 2009年第2期116-119,共4页
通常情况下,大多数随机中立型时滞微分方程没有精确解,因此,数值逼近方法成为研究系统特性的主要工具.给出具有Poisson跳的随机中立型微分方程的数值解,应用It公式,根据Gronwall引理和Doob不等式,证明了具有Poisson跳的随机中立型微分... 通常情况下,大多数随机中立型时滞微分方程没有精确解,因此,数值逼近方法成为研究系统特性的主要工具.给出具有Poisson跳的随机中立型微分方程的数值解,应用It公式,根据Gronwall引理和Doob不等式,证明了具有Poisson跳的随机中立型微分方程的数值解收敛到解析解. 展开更多
关键词 随机中立型微分方程 poisson 数值解
下载PDF
带Poisson跳随机微分方程解的存在与唯一性 被引量:2
19
作者 陈建斌 王拉省 《渭南师范学院学报》 2007年第5期3-8,共6页
讨论了一类带Poisson跳的随机微分方程解的存在唯一性问题,在局部Lipschitz条件下给出了带跳随机微分方程解的存在与唯一性的充分条件.
关键词 poisson 局部LIPSCHITZ条件 带跳的Ito公式
下载PDF
带Poisson跳的随机种群扩散系统半隐式欧拉方法的数值解 被引量:1
20
作者 马东娟 张启敏 《宁夏大学学报(自然科学版)》 CAS 北大核心 2010年第3期207-212,共6页
讨论了带Poisson跳的随机种群扩散系统,利用It公式、Burkholder-Davis-Gundy不等式、Gronwall引理及一些不等式,根据半隐式欧拉方法,证明了带Poisson跳的随机种群扩散系统数值解的收敛性.最后,通过数值算例对数值方法进行了说明.
关键词 随机种群扩散系统 半隐式欧拉方法 poisson 数值解
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部