The theoretical optimization of tensile strained InGaAsP/InGaAsP MQW for 1.55μm windows polarization-independent semiconductor optical amplifier is reported.The valence-band structure of the MQW is calculated by usin...The theoretical optimization of tensile strained InGaAsP/InGaAsP MQW for 1.55μm windows polarization-independent semiconductor optical amplifier is reported.The valence-band structure of the MQW is calculated by using k·p method,in which 6×6 Luttinger effective-mass Hamiltonian is taken into account.The polarization dependent optical gain is calculated with various well width,strain,and carrier density.展开更多
An electro absorption modulator is fabricated for optical network system.The strained InGaAs/InAlAs MQW shows improved modulation properties,including polarization independent,high extinction ratio (>40dB) and low...An electro absorption modulator is fabricated for optical network system.The strained InGaAs/InAlAs MQW shows improved modulation properties,including polarization independent,high extinction ratio (>40dB) and low capacitance (<0 5pF),with which,an ultra high frequency(>10GHz) can be obtained.展开更多
We propose an ultra-broadband and polarization independent planar absorber comprising multilayered graphene. The bandwidth of the proposed absorber is extended by increasing the number of layers of graphene, and it is...We propose an ultra-broadband and polarization independent planar absorber comprising multilayered graphene. The bandwidth of the proposed absorber is extended by increasing the number of layers of graphene, and it is polarization independent due to its symmetrical unit structure. The full wave simulation results show that an absorber with three graphenebased layers can efficiently harvest an electromagnetic wave with random polarization from 17.9 GHz to 188.7 GHz(i.e.,covering frequency regimes from K to D bands and relative bandwidth of - 165%). The physical absorption mechanism of ultra-broadband absorption has been elaborated upon using the destructive interference method and multiple resonances approach in a multilayered medium. The proposed absorber can be used in many applications such as medical treatment,electromagnetic compatibility, and stealth technique.展开更多
A chiral metasurface is proposed to realize a tri-band polarization angle insensitive cross-polarization converter. The unit cell of the chiral metamaterial is composed by four twisted anisotropic structure pairs in f...A chiral metasurface is proposed to realize a tri-band polarization angle insensitive cross-polarization converter. The unit cell of the chiral metamaterial is composed by four twisted anisotropic structure pairs in four-fold rotation symmetry. The simulation results show that this device can work at 9.824 GHz, 11.39 GHz, and 13.37 GHz with low loss and a high polarization conversion ratio (PCR) of more than 99%. The proposed design can transmit the co-polarization wave at 14.215 GHz, like a frequency selective surface. The study of the current and electric fields distributions indicates that the cross-polarization transmission is due to electric dipole coupling.展开更多
This paper investigates the frequency-selective property of a planar layer consisting of period arrays both theoretically and experimentally for different polarizations at arbitrary incident angle. The novel element i...This paper investigates the frequency-selective property of a planar layer consisting of period arrays both theoretically and experimentally for different polarizations at arbitrary incident angle. The novel element is designed by loading the rectangular microstrip element with L-shaped conducting patch at its two ends. Based on the spectral-domain method, the frequency response including angle effect and polarization effect of the frequency selective surface (FSS) structure are analysed and the plots of the frequency versus transmission coefficient are obtained. As a result of the numerical analysis, it is shown that if the source polarization is changed, polarization-independence of previous FSS design can be achieved only for normal incidence, which limits most FSS applications. But in our proposed structure, the better polarization-independency for arbitrary incident angle can be achieved. It is observed that the simulated result comes very close to the experimental result.展开更多
The self-similarity,high geometric symmetry and spatial utilization properties of fractal structures provide new methods for the development of absorbing metamaterials.In this paper,the microwave absorption properties...The self-similarity,high geometric symmetry and spatial utilization properties of fractal structures provide new methods for the development of absorbing metamaterials.In this paper,the microwave absorption properties of the gradient dendritic fractal metamaterial structure(GDFMs)based on carbon black and acrylonitrile-butadiene-styrene composites were investigated.The optimal metamaterial structure has an effective absorption in the frequency range of 4.5-40 GHz.The rotational-symmetry GDFMs leads to the polarization independence,and the GDFMs exhibits a wide-angle absorption performance for both TE and TM waves.It is expected that the proposed GDFMs has good application prospects in electromagnetic wave absorption.展开更多
Polarization-independent liquid-crystal(LC)phase modulators can significantly improve the efficiency and reduce the complexity of optical systems.However,achieving good polarization independence for LC phase modulator...Polarization-independent liquid-crystal(LC)phase modulators can significantly improve the efficiency and reduce the complexity of optical systems.However,achieving good polarization independence for LC phase modulators with a simple structure is difficult.A light-controlled azimuth angle(LCAA)process based on the optical rotatory effect of cholesteric liquid crystals(CLC)was developed for fabricating single-layer,multi-microdomain,orthogonally twisted(MMOT)structures.The developed LC phase modulator with a single-layer MMOT structure may have a low polarization dependence with a large phase depth.This device shows good potential for applications in optical communications,wearable devices,and displays.展开更多
An encapsulated metal-dielectric reflective grating is presented for broadband polarization-independent twoport beam splitting under normal incidence at the central wavelength of 800 nm. Different from traditional two...An encapsulated metal-dielectric reflective grating is presented for broadband polarization-independent twoport beam splitting under normal incidence at the central wavelength of 800 nm. Different from traditional two-port grating splitters in the resonant region, this grating splitter is capable of separating light energy into±1 storders with high efficiency in a broad waveband for both TE and TM polarizations. A unified method is proposed here for designing this grating splitter, which enables one to choose a grating structure quickly to realize an ultrabroad working waveband. The simulation results indicate that a bandwidth of 46.4 nm could be achieved for diffraction efficiency(defined as the ratio of the light energy diffracted only at the first order to the incident light energy) over 46% at the central wavelength of 800 nm. Moreover, the parameters of the grating structure can be flexibly adjusted with wavelengths using the unified method for various other applications, such as augmented reality, optical interconnections for computing, coherent beam combination, and complex vector beam shaping.展开更多
A thick-screen frequency selective surface (FSS) has not only a broad bandwidth but also the advantages of overcoming the multilayer FSS shortcoming of complex structure and low transmittance of centre frequency due...A thick-screen frequency selective surface (FSS) has not only a broad bandwidth but also the advantages of overcoming the multilayer FSS shortcoming of complex structure and low transmittance of centre frequency due to the cascade of FSSs, and this means it could potentially be applied in a stealth curved streamlined radome. However, there is an unsteadiness of centre frequency in a wide range of incident angles and another unsteadiness of polarization in a big incident angle. In order to solve these problems, in this paper we provide a novel four-legged loaded element thick-screen FSS. The structure is analysed and simulated using the mode matching method and moment method. The centre frequency, the transmittance of centre frequency, and bandwidth of the structure are investigated when some parameters including the polarization at a big incident angle and the incident angles of TE &: TM waves are changed. The novel four-legged loaded element thick-screen FSS has better transmission properties with a better steadiness of polarization and incident angle independence. The novel structure of the four-legged loaded element thick-screen FSS provides a valuable reference for their application in a stealth curved streamlined radome.展开更多
Metalenses are expected to play an increasingly important role in miniaturized and integrated optical imaging components/systems.However,devising broadband achromatic metalenses with high focusing efficiencies is stil...Metalenses are expected to play an increasingly important role in miniaturized and integrated optical imaging components/systems.However,devising broadband achromatic metalenses with high focusing efficiencies is still quite challenging.In this work,we proposed an aperture-shared partition phase cooperative manipulation approach for designing a highefficiency broadband achromatic metalens composed of two concentric sub-metalenses.As a proof-of-concept,an achromatic polarization-independent metalens is successfully designed for the visible and near-infrared range from450 nm to 1400 nm with the focusing efficiency over 70% for the wavelength range of 600 nm to 1400 nm.The approach reported here provides a possibility for designing a high-performance metalens,which has great potential applications in integrated optics.展开更多
New techniques for controlling the amplitudes of two orthogonal linearly polarized light are presented. One is based on adjusting the DC voltage into a Mach–Zehnder modulator(MZM) to alter the amplitude of the ligh...New techniques for controlling the amplitudes of two orthogonal linearly polarized light are presented. One is based on adjusting the DC voltage into a Mach–Zehnder modulator(MZM) to alter the amplitude of the light traveling on the slow axis of a fiber into the modulator with little changes in the fast-axis light amplitude.Another is based on adjusting the input DC voltages of a dual-polarization MZM operating in the reverse direction, which enables independent control of the two input orthogonal linearly polarized light amplitudes.Experimental results demonstrate that more than 30 dB difference in slow-and fast-axis light power can be obtained by controlling an MZM input DC voltage, and over 24 dB independent power adjustment for light traveling on the slow and fast axes into a dual-polarization MZM.展开更多
A retroreflector that reflects light along its incident direction has found numerous applications in photonics, but the available metasurface schemes suffer from the issue of narrow bandwidth and/or a single angle of ...A retroreflector that reflects light along its incident direction has found numerous applications in photonics, but the available metasurface schemes suffer from the issue of narrow bandwidth and/or a single angle of incidence. Here, a retroreflector using double layers of achromatic gradient metasurfaces is reported, which can realize retroreflection over a continuous range of incidence angles within a wide spectral band. The first metasurface serves as a transmissive achromatic lens that performs a broadband spatial Fourier transform and its inverse, while the second metasurface works as a reflective achromatic lens that undergoes wavelength-and position-dependent phase dispersions. Using this design strategy, a near-infrared retroreflector comprised of silicon nanopillars with the cross sections of square pillars and square holes is numerically demonstrated, providing a high-performance retroreflection for polarization-independent incident light waves over a continuous range of incidence angles from 0° to 16° within an extremely broad wavelength range between 1.35 and 1.95 μm. The scheme herein can offer a design strategy of broadband retroreflectors and impact numerous photonics applications.展开更多
A 10-channel, 200 GHz channel spacing InP arrayed waveguide grating was designed, and the deep ridge waveguide design makes it polarization independent. Under the technologies of molecular beam epitaxy, lithography, a...A 10-channel, 200 GHz channel spacing InP arrayed waveguide grating was designed, and the deep ridge waveguide design makes it polarization independent. Under the technologies of molecular beam epitaxy, lithography, and induced coupler plasma etching, the chip was fabricated in our laboratory. The test results show that the insertion loss is about -8 dB, and the crosstalk is less than -17 dB.展开更多
Based on phase randomization theory, a method for manufacturing metasurface with diffuse scatter performance is proposed. By using the line-shaped elements with random rotate angles and random distributing positions, ...Based on phase randomization theory, a method for manufacturing metasurface with diffuse scatter performance is proposed. By using the line-shaped elements with random rotate angles and random distributing positions, the metasurface can achieve good diffusion scatter performance with polarization independent characteristic. This paper studies the effects of the length of line-shaped elements on the metasurface response frequency and the radar cross section (RCS) reduction bandwidth. The simulated result shows that the wideband properties of metasurface benefit from two different length line-shaped elements. The proposed metasurface can reduce the RCS significantly for both normal and oblique incident waves. The line-shaped element is suitable for all sizes of detected objects and it can be directly sprayed on the detected object surface. To demonstrate the effectiveness of the proposed method, the metasurface prototype is fabricated and measured. Experimental results show that the fabricated metasur-face can effectively reduce RCS, and it has great application prospects in stealth technology. Keywords: Diffuse scatter characteristics;polarization independent;radar cross section reduction.展开更多
文摘The theoretical optimization of tensile strained InGaAsP/InGaAsP MQW for 1.55μm windows polarization-independent semiconductor optical amplifier is reported.The valence-band structure of the MQW is calculated by using k·p method,in which 6×6 Luttinger effective-mass Hamiltonian is taken into account.The polarization dependent optical gain is calculated with various well width,strain,and carrier density.
文摘An electro absorption modulator is fabricated for optical network system.The strained InGaAs/InAlAs MQW shows improved modulation properties,including polarization independent,high extinction ratio (>40dB) and low capacitance (<0 5pF),with which,an ultra high frequency(>10GHz) can be obtained.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61661012,61461016,61361005,and 61561013)the Natural Science Foundation of Guangxi,China(Grant No.2017JJB160028)+1 种基金the Program for Innovation Research Team of Guilin University of Electronic Technology,Chinathe Dean Project of Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing,China
文摘We propose an ultra-broadband and polarization independent planar absorber comprising multilayered graphene. The bandwidth of the proposed absorber is extended by increasing the number of layers of graphene, and it is polarization independent due to its symmetrical unit structure. The full wave simulation results show that an absorber with three graphenebased layers can efficiently harvest an electromagnetic wave with random polarization from 17.9 GHz to 188.7 GHz(i.e.,covering frequency regimes from K to D bands and relative bandwidth of - 165%). The physical absorption mechanism of ultra-broadband absorption has been elaborated upon using the destructive interference method and multiple resonances approach in a multilayered medium. The proposed absorber can be used in many applications such as medical treatment,electromagnetic compatibility, and stealth technique.
基金supported by the National Natural Science Foundation of China(Grant Nos.61331005,61001039,and 41390454)
文摘A chiral metasurface is proposed to realize a tri-band polarization angle insensitive cross-polarization converter. The unit cell of the chiral metamaterial is composed by four twisted anisotropic structure pairs in four-fold rotation symmetry. The simulation results show that this device can work at 9.824 GHz, 11.39 GHz, and 13.37 GHz with low loss and a high polarization conversion ratio (PCR) of more than 99%. The proposed design can transmit the co-polarization wave at 14.215 GHz, like a frequency selective surface. The study of the current and electric fields distributions indicates that the cross-polarization transmission is due to electric dipole coupling.
基金supported by the National Defense Innovation Foundation of Chinese Academy of Sciences (Grant No CXJJ-149)
文摘This paper investigates the frequency-selective property of a planar layer consisting of period arrays both theoretically and experimentally for different polarizations at arbitrary incident angle. The novel element is designed by loading the rectangular microstrip element with L-shaped conducting patch at its two ends. Based on the spectral-domain method, the frequency response including angle effect and polarization effect of the frequency selective surface (FSS) structure are analysed and the plots of the frequency versus transmission coefficient are obtained. As a result of the numerical analysis, it is shown that if the source polarization is changed, polarization-independence of previous FSS design can be achieved only for normal incidence, which limits most FSS applications. But in our proposed structure, the better polarization-independency for arbitrary incident angle can be achieved. It is observed that the simulated result comes very close to the experimental result.
基金Project supported by the Natural Science Foundation of Shaanxi Province of China(Grant No.2022JQ-356)the Youth Fund of Rocket Force University of Engineering(Grant No.2022QN-B017)the National Natural Science Foundation of China(Grant No.51905542)。
文摘The self-similarity,high geometric symmetry and spatial utilization properties of fractal structures provide new methods for the development of absorbing metamaterials.In this paper,the microwave absorption properties of the gradient dendritic fractal metamaterial structure(GDFMs)based on carbon black and acrylonitrile-butadiene-styrene composites were investigated.The optimal metamaterial structure has an effective absorption in the frequency range of 4.5-40 GHz.The rotational-symmetry GDFMs leads to the polarization independence,and the GDFMs exhibits a wide-angle absorption performance for both TE and TM waves.It is expected that the proposed GDFMs has good application prospects in electromagnetic wave absorption.
基金supported by the National Natural Science Foundation of China under Grant No.62175148。
文摘Polarization-independent liquid-crystal(LC)phase modulators can significantly improve the efficiency and reduce the complexity of optical systems.However,achieving good polarization independence for LC phase modulators with a simple structure is difficult.A light-controlled azimuth angle(LCAA)process based on the optical rotatory effect of cholesteric liquid crystals(CLC)was developed for fabricating single-layer,multi-microdomain,orthogonally twisted(MMOT)structures.The developed LC phase modulator with a single-layer MMOT structure may have a low polarization dependence with a large phase depth.This device shows good potential for applications in optical communications,wearable devices,and displays.
基金supported in part by the National Key Research and Development Program of China(No.2019YFF0216402)Cutting-Edge Sciences Important Research Program+2 种基金Bureau of Frontier Sciences and EducationChinese Academy of Sciences(No.QYZDJSSW-JSC014)Shanghai Science and Technology Committee(Nos.17ZR1448100,19DZ2291102,and19JC1415400)
文摘An encapsulated metal-dielectric reflective grating is presented for broadband polarization-independent twoport beam splitting under normal incidence at the central wavelength of 800 nm. Different from traditional two-port grating splitters in the resonant region, this grating splitter is capable of separating light energy into±1 storders with high efficiency in a broad waveband for both TE and TM polarizations. A unified method is proposed here for designing this grating splitter, which enables one to choose a grating structure quickly to realize an ultrabroad working waveband. The simulation results indicate that a bandwidth of 46.4 nm could be achieved for diffraction efficiency(defined as the ratio of the light energy diffracted only at the first order to the incident light energy) over 46% at the central wavelength of 800 nm. Moreover, the parameters of the grating structure can be flexibly adjusted with wavelengths using the unified method for various other applications, such as augmented reality, optical interconnections for computing, coherent beam combination, and complex vector beam shaping.
文摘A thick-screen frequency selective surface (FSS) has not only a broad bandwidth but also the advantages of overcoming the multilayer FSS shortcoming of complex structure and low transmittance of centre frequency due to the cascade of FSSs, and this means it could potentially be applied in a stealth curved streamlined radome. However, there is an unsteadiness of centre frequency in a wide range of incident angles and another unsteadiness of polarization in a big incident angle. In order to solve these problems, in this paper we provide a novel four-legged loaded element thick-screen FSS. The structure is analysed and simulated using the mode matching method and moment method. The centre frequency, the transmittance of centre frequency, and bandwidth of the structure are investigated when some parameters including the polarization at a big incident angle and the incident angles of TE &: TM waves are changed. The novel four-legged loaded element thick-screen FSS has better transmission properties with a better steadiness of polarization and incident angle independence. The novel structure of the four-legged loaded element thick-screen FSS provides a valuable reference for their application in a stealth curved streamlined radome.
基金supported by the National Natural Science Foundation of China (Nos. 61875042, 11627803, DMR-61804010, and 11204209)Youth Innovation Promotion Association CAS (No. Y201911)+1 种基金Scientific Instrument Developing Project CAS (No. Y8512911)Natural Science Foundation of Tianjin (No. 17JCYBJC16200)
文摘Metalenses are expected to play an increasingly important role in miniaturized and integrated optical imaging components/systems.However,devising broadband achromatic metalenses with high focusing efficiencies is still quite challenging.In this work,we proposed an aperture-shared partition phase cooperative manipulation approach for designing a highefficiency broadband achromatic metalens composed of two concentric sub-metalenses.As a proof-of-concept,an achromatic polarization-independent metalens is successfully designed for the visible and near-infrared range from450 nm to 1400 nm with the focusing efficiency over 70% for the wavelength range of 600 nm to 1400 nm.The approach reported here provides a possibility for designing a high-performance metalens,which has great potential applications in integrated optics.
文摘New techniques for controlling the amplitudes of two orthogonal linearly polarized light are presented. One is based on adjusting the DC voltage into a Mach–Zehnder modulator(MZM) to alter the amplitude of the light traveling on the slow axis of a fiber into the modulator with little changes in the fast-axis light amplitude.Another is based on adjusting the input DC voltages of a dual-polarization MZM operating in the reverse direction, which enables independent control of the two input orthogonal linearly polarized light amplitudes.Experimental results demonstrate that more than 30 dB difference in slow-and fast-axis light power can be obtained by controlling an MZM input DC voltage, and over 24 dB independent power adjustment for light traveling on the slow and fast axes into a dual-polarization MZM.
基金supported by the National Natural Science Foundation of China(Nos.11674118 and 12074137)the National Major Research and Development Program(No.2018YFB2200200)the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology)。
文摘A retroreflector that reflects light along its incident direction has found numerous applications in photonics, but the available metasurface schemes suffer from the issue of narrow bandwidth and/or a single angle of incidence. Here, a retroreflector using double layers of achromatic gradient metasurfaces is reported, which can realize retroreflection over a continuous range of incidence angles within a wide spectral band. The first metasurface serves as a transmissive achromatic lens that performs a broadband spatial Fourier transform and its inverse, while the second metasurface works as a reflective achromatic lens that undergoes wavelength-and position-dependent phase dispersions. Using this design strategy, a near-infrared retroreflector comprised of silicon nanopillars with the cross sections of square pillars and square holes is numerically demonstrated, providing a high-performance retroreflection for polarization-independent incident light waves over a continuous range of incidence angles from 0° to 16° within an extremely broad wavelength range between 1.35 and 1.95 μm. The scheme herein can offer a design strategy of broadband retroreflectors and impact numerous photonics applications.
基金supported by the National High Technology Research and Development Program of China(No.2011AA010303)the National Natural Science Foundation of China(Nos.61090390,60837001,60877014,60776057)
文摘A 10-channel, 200 GHz channel spacing InP arrayed waveguide grating was designed, and the deep ridge waveguide design makes it polarization independent. Under the technologies of molecular beam epitaxy, lithography, and induced coupler plasma etching, the chip was fabricated in our laboratory. The test results show that the insertion loss is about -8 dB, and the crosstalk is less than -17 dB.
文摘Based on phase randomization theory, a method for manufacturing metasurface with diffuse scatter performance is proposed. By using the line-shaped elements with random rotate angles and random distributing positions, the metasurface can achieve good diffusion scatter performance with polarization independent characteristic. This paper studies the effects of the length of line-shaped elements on the metasurface response frequency and the radar cross section (RCS) reduction bandwidth. The simulated result shows that the wideband properties of metasurface benefit from two different length line-shaped elements. The proposed metasurface can reduce the RCS significantly for both normal and oblique incident waves. The line-shaped element is suitable for all sizes of detected objects and it can be directly sprayed on the detected object surface. To demonstrate the effectiveness of the proposed method, the metasurface prototype is fabricated and measured. Experimental results show that the fabricated metasur-face can effectively reduce RCS, and it has great application prospects in stealth technology. Keywords: Diffuse scatter characteristics;polarization independent;radar cross section reduction.