A hierarchical reduced graphene oxide-MnO_(2)@polypyrrole coaxial nanotube composite hydrogel was prepared via oxidative polymerization of pyrrole in the presence of MnO_(2)nanotubes,followed by the hydrothermal treat...A hierarchical reduced graphene oxide-MnO_(2)@polypyrrole coaxial nanotube composite hydrogel was prepared via oxidative polymerization of pyrrole in the presence of MnO_(2)nanotubes,followed by the hydrothermal treatment of graphene oxide and MnO_(2)@polypyrrole coaxial nanotubes.The stable composite hydrogel with a hierarchical network was composed of one-dimensional MnO_(2)@polypyrrole coaxial nanotube and two-dimensional graphene nanosheet and characterized by scanning electron microscope,Fourier transform infrared spectroscopy,X-ray diffraction,Brunauer-Emmett-Teller surface,and X-ray photoelectron spectroscopy measurements.The composite hydrogel can be used as an efficient adsorbent for Cr(Ⅵ)removal due to the synergistic interaction between graphene and MnO_(2)@polypyrrole and the hierarchical structure of the hydrogel.Moreover,the composite hydrogel is easily separated because of its stable monolith,and it is reusable(76.8%of removal ability remaining after five adsorption-desorption cycles).The simple fabrication and cost-effective separation process together with the excellent absorption performance endow the composite hydrogel with great potential for practical wastewater treatment.展开更多
Although metal oxide compounds are considered as desirable anode materials for potassium-ion batteries(PIBs)due to their high theoretical capacity,the large volume variation remains a key issue in realizing metal oxid...Although metal oxide compounds are considered as desirable anode materials for potassium-ion batteries(PIBs)due to their high theoretical capacity,the large volume variation remains a key issue in realizing metal oxide anodes with long cycle life and excellent rate property.In this study,polypyrroleencapsulated Sb_(2)WO_(6)(denoted Sb_(2)WO_(6)@PPy)microflowers are synthesized by a one-step hydrothermal method followed by in-situ polymerization and coating by pyrrole.Leveraging the nanosheet-stacked Sb_(2)WO_(6)microflower structure,the improved electronic conductivity,and the architectural protection offered by the PPy coating,Sb_(2)WO_(6)@PPy exhibits boosted potassium storage properties,thereby demonstrating an outstanding rate property of 110.3 m A h g^(-1)at 5 A g^(-1)and delivering a long-period cycling stability with a reversible capacity of 197.2 m A h g^(-1)after 500 cycles at 1 A g^(-1).In addition,the conversion and alloying processes of Sb_(2)WO_(6)@PPy in PIBs with the generation of intermediates,K_(2)WO_(4)and K_(3)Sb,is determined by X-ray photoelectron spectroscopy,transmission electron microscopy,and exsitu X-ray diffraction during potassiation/depotassiation.Density functional theory calculations demonstrate that the robust coupling between PPy and Sb_(2)WO_(6)endues it with a much stronger total density of states and a built-in electric field,thereby increasing the electronic conductivity,and thus effectively reduces the K^(+)diffusion barrier.展开更多
The tireless pursuit of supercapacitors with high energy density entails the parallel advancement of wellsuited electrode materials and elaborately engineered architectures.Polypyrrole(PPy)emerges as an exceedingly co...The tireless pursuit of supercapacitors with high energy density entails the parallel advancement of wellsuited electrode materials and elaborately engineered architectures.Polypyrrole(PPy)emerges as an exceedingly conductive polymer and a prospective pseudocapacitive materials for supercapacitors,yet the inferior cyclic stability and unpredictable polymerization patterns severely impede its real-world applicability.Here,for the first time,an innovative seed-induced in-situ polymerization assisted 3D printing strategy is proposed to fabricate PPy-reduced graphene oxide/poly(vinylidene difluoride-cohexafluoropropylene)(PVDF-HFP)(PPy-rGO/PH)electrodes with controllable polymerization behavior and exceptional areal mass loading.The preferred active sites uniformly pre-planted on the 3D-printed graphene substrates serve as reliable seeds to induce efficient polypyrrole deposition,achieving an impressive mass loading of 185.6 mg cm^(-2)(particularly 79.2 mg cm^(-2)for polypyrrole)and a superior areal capacitance of 25.2 F cm^(-2)at 2 mA cm^(-2)for a 12-layer electrode.In agreement with theses appealing features,an unprecedented areal energy density of 1.47 mW h cm^(-2)for a symmetrical device is registered,a rarely achieved value for other PPy/rGO-based supercapacitors.This work highlights a promising route to preparing high energy density energy storage modules for real-world applications.展开更多
The development of highly efficient catalysts for cathodes remains an important objective of fuel cell research. Here, we report Co3O4 nanoparticles assembled on a polypyrrole/graphene oxide electrocatalyst (C...The development of highly efficient catalysts for cathodes remains an important objective of fuel cell research. Here, we report Co3O4 nanoparticles assembled on a polypyrrole/graphene oxide electrocatalyst (Co3O4/Ppy/GO) as an efficient catalyst for the oxygen reduction reaction (ORR) in alkaline media. The catalyst was prepared via the hydrothermal reaction of Co2+ ions with Ppy-modified GO. The GO, Ppy/GO, and Co3O4/Ppy/GO were characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The incorporation of Ppy into GO nanosheets resulted in the formation of a nitrogen-modified GO po-rous structure, which acted as an efficient electron-transport network for the ORR. With further anchoring of Co3O4 on Ppy/GO, the as-prepared Co3O4/Ppy/GO exhibited excellent ORR activity and followed a four-electron route mechanism for the ORR in alkaline solution. An onset potential of -0.10 V vs. a saturated calomel electrode and a diffusion limiting current density of 2.30 mA/cm^2 were achieved for the Co3O4/Ppy/GO catalyst heated at 800 ℃; these values are comparable to those for noble-metal-based Pt/C catalysts. Our work demonstrates that Co3O4/Ppy/GO is highly active for the ORR. Notably, the Ppy coupling effects between Co3O4 and GO provide a new route for the preparation of efficient non-precious electrocatalysts with hierarchical porous structures for fuel cell applications.展开更多
BaTiO3 powders are prepared by sol-gel method by cotton template. Polypyrrole is prepared by chemical oxidation route in the emulsion polymerization system. Then BaTiO3- polypyrrole composites with different mixture r...BaTiO3 powders are prepared by sol-gel method by cotton template. Polypyrrole is prepared by chemical oxidation route in the emulsion polymerization system. Then BaTiO3- polypyrrole composites with different mixture ratios are prepared by as-prepared material. The structure, morphology, and properties of the composites are characterized with Infrared spectrum, X-ray diffraction, scanning electron microscope, and net-wok analyzer. The com- plex permittivity and reflection loss of the composites are measured at different microwave frequencies in S-band and C-band (0.03-6 GHz) employing vector network analyzer model PNA 3629D vector. The effect of the mass ratio of BaTiO3 to polypyrrole on the microwave loss properties of the composites is investigated. A possible microwave absorbing mechanism of BaTiOa-polypyrrole composite is proposed. The BaTiO3-polypyrrole composite can find applications in suppression of electromagnetic interference and reduction of radar signature.展开更多
Polypyrrole (PPY) microbelts are synthesized via the absorbent cotton template for the first time. PPY microbelts are characterized by Fourier transform infrared spectroscopy.The stability, the morphology and electr...Polypyrrole (PPY) microbelts are synthesized via the absorbent cotton template for the first time. PPY microbelts are characterized by Fourier transform infrared spectroscopy.The stability, the morphology and electrical conductivity of such microbelts are evaluated by means of scanning electron microscope, thermo-gravimetric analysis and four-probe con-ductivity. A possible mechanism for the formation of PPY microbelts are proposed. The conductivity is measured, and the conductivity variation mechanism of the PPY microbelts with the pyrrole monomer concentrations is analyzed.展开更多
Three dimensional(3D) bioprinting, which involves depositing bioinks(mixed biomaterials) layer by layer to form computer-aided designs, is an ideal method for fabricating complex 3D biological structures. However,...Three dimensional(3D) bioprinting, which involves depositing bioinks(mixed biomaterials) layer by layer to form computer-aided designs, is an ideal method for fabricating complex 3D biological structures. However, it remains challenging to prepare biomaterials with micro-nanostructures that accurately mimic the nanostructural features of natural tissues. A novel nanotechnological tool, electrospinning, permits the processing and modification of proper nanoscale biomaterials to enhance neural cell adhesion, migration, proliferation, differentiation, and subsequent nerve regeneration. The composite scaffold was prepared by combining 3D bioprinting with subsequent electrochemical deposition of polypyrrole and electrospinning of silk fibroin to form a composite polypyrrole/silk fibroin scaffold. Fourier transform infrared spectroscopy was used to analyze scaffold composition. The surface morphology of the scaffold was observed by light microscopy and scanning electron microscopy. A digital multimeter was used to measure the resistivity of prepared scaffolds. Light microscopy was applied to observe the surface morphology of scaffolds immersed in water or Dulbecco's Modified Eagle's Medium at 37℃ for 30 days to assess stability. Results showed characteristic peaks of polypyrrole and silk fibroin in the synthesized conductive polypyrrole/silk fibroin scaffold, as well as the structure of the electrospun nanofiber layer on the surface. The electrical conductivity was 1 × 10^-5–1 × 10^-3 S/cm, while stability was 66.67%. A 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay was employed to measure scaffold cytotoxicity in vitro. Fluorescence microscopy was used to observe Ed U-labeled Schwann cells to quantify cell proliferation. Immunohistochemistry was utilized to detect S100β immunoreactivity, while scanning electron microscopy was applied to observe the morphology of adherent Schwann cells. Results demonstrated that the polypyrrole/silk fibroin scaffold was not cytotoxic and did not affect Schwann cell proliferation. Moreover, filopodia formed on the scaffold and Schwann cells were regularly arranged. Our findings verified that the composite polypyrrole/silk fibroin scaffold has good biocompatibility and may be a suitable material for neural tissue engineering.展开更多
Lithium/polypyrrole (Li/PPy) batteries were fabricated using lithium sheet as cathode, PPy as anode, microporous membrane polypropylene/polyethylene/polypropylene (PP/PE/PP) composite as separator and LiPF6/ethyle...Lithium/polypyrrole (Li/PPy) batteries were fabricated using lithium sheet as cathode, PPy as anode, microporous membrane polypropylene/polyethylene/polypropylene (PP/PE/PP) composite as separator and LiPF6/ethylene carbonate-dimethyl carbonate-methyl ethyl carbonate (EC-DMC-EMC) as electrolyte. Polypyrrole was prepared by chemical polymerization. Certain fundamental electrochemical performances were investigated. Properties of the batteries were characterized and tested by SEM, galvanostatic charge/discharge tests, cyclic voltammetry (CV), and a.c. impedance spectroscopy. The influences of separator, morphology, and conductivity of PPy anode, cold-molded pressure, and electric current on the performances of the batteries were studied. Using PP/PE/PP membranes as separator, the battery showed good storage stability and cycling property. The conductivity of materials rather than morphology affected the behavior of the battery. The higher the conductivity, the better performances the cells had. Proper cold-molded pressure 20 MPa of the anode pellet would make the properties of the cells good and the fitted charge/discharge current was 0.1 mA. The cells showed excellent performance with 97%-100% coulombic efficiency. The highest discharge capacity of 95.2 mAh/g was obtained.展开更多
In this work hollow rectangular microtubes of polypyrrole(PPy)films were potentiostatically electrodeposited on magnesium alloy AZ91D in salicylate solution.The substrate was previously anodized under potentiostatic c...In this work hollow rectangular microtubes of polypyrrole(PPy)films were potentiostatically electrodeposited on magnesium alloy AZ91D in salicylate solution.The substrate was previously anodized under potentiostatic conditions in a molybdate solution in order to improve the adherence of polymer.Finally the duplex film was modified by the incorporation of silver species.The obtained coatings were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD)and X-ray photoelectron spectroscopies(XPS)and the antimicrobial activity against the bacteria Escherichia coli was evaluated.The corrosion protection properties of the coatings were examined in Ringer solution by monitoring the open circuit potential,polarization techniques and electrochemical spectroscopy(EIS).The duplex coating presents an improved anticorrosive performance with respect to the PPy film.The best results concerning corrosion protection and antibacterial activity were obtained for the silver-modified composite coating.展开更多
316L stainless steel(SS 316L) is quite attractive as bipolar plates in proton exchange membrane fuel cells(PEMFC).In this study,graphite-polypyrrole was coated on SS 316L by the method of cyclic voltammetry.The su...316L stainless steel(SS 316L) is quite attractive as bipolar plates in proton exchange membrane fuel cells(PEMFC).In this study,graphite-polypyrrole was coated on SS 316L by the method of cyclic voltammetry.The surface morphology and chemical composition of the graphite-polypyrrole composite coating were investigated by scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS).A simulated working environment of PEMFC was applied for testing the corrosion properties of graphite-polypyrrole coated SS 316L.The current densities in the simulated PEMFC anode and cathode conditions are around 3×10-9 and 9×10-5 A·cm-2,respectively.In addition,the interfacial contact resistance(ICR) was also investigated.The ICR value of graphite-polypyrrole coated SS 316L is much lower than that of bare SS 316L.Therefore,graphite-polypyrrole coated SS 316L indicates a great potential for the application in PEMFC.展开更多
Fe2O3@polypyrrole nanotubes (Fe2O3@PPy nanotubes) have been successfully prepared by in-situ polymerization of the pyrrole on the surface of Fe2O3 nanotubes (Fe2O3-NTs), via using L-Lysine as modified surfactant. ...Fe2O3@polypyrrole nanotubes (Fe2O3@PPy nanotubes) have been successfully prepared by in-situ polymerization of the pyrrole on the surface of Fe2O3 nanotubes (Fe2O3-NTs), via using L-Lysine as modified surfactant. Hollow PPy nanotubes were also produced by dissolution of the Fe2O3 core from the core/shell composite nanotubes with 1 mol,L-1 HC1. Scanning electron microscopy(SEM), transmission electron microscope (TEM), selective-area electron diffraction (SAED), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy(FT-IR) confirmed the formation of Fe2O3-NTs and Fe2O3@PPy core/shell nanotubes. Its catalytic properties were investigated under the ultrasound. The results of UV-vis spectroscopy (UV) demonstrated Rhodamine B (RhB) can be efficiently degraded by Fe2O3 @PPy nanotubes.展开更多
A solid-state powerful supercapacitor(SC) is fabricated with a substrate of Xerox paper. Its current collector based on a foldable electronic circuit is developed by simply pencil drawing. Thin graphite sheets on pape...A solid-state powerful supercapacitor(SC) is fabricated with a substrate of Xerox paper. Its current collector based on a foldable electronic circuit is developed by simply pencil drawing. Thin graphite sheets on paper provide effective channels for electron transmission with a low resistance of 95 X sq-1. The conductive organic material of polypyrrole coated on thin graphite sheets acts as the electrode material of the device. The as-fabricated SC exhibits a high specific capacitance of 52.9 F cm-3at a scan rate of 1 m V s-1. An energy storage unit fabricated by three full-charged series SCs can drive a commercial light-emitting diode robustly. This work demonstrated a simple, versatile and costeffective method for paper-based devices.展开更多
Lithium metal anode is the most potential anode material for the next generation high-energy rechargeable batteries owing to its highest specific capacity and lowest redox potential.Unfortunately,the uneven deposition...Lithium metal anode is the most potential anode material for the next generation high-energy rechargeable batteries owing to its highest specific capacity and lowest redox potential.Unfortunately,the uneven deposition of Li during plating/stripping and the formation of uncontrolled Li dendrites,which might cause poor battery performance and serious safety problems,are demonstrating to be a huge challenge for its practical application.Here,we show that a flexible and free-standing film hybriding with polypyrrole(PPy) nanotubes and reduced graphene oxide(rGO) can significantly regulate the Li nucleation and deposition,and further prohibit the formation of Li dendrites,owing to the large specific surface area,rich of nitrogen functional groups and porous structures.Finally,the high Coulombic efficiency and stable Li plating/stripping cycling performance with 98% for 230 cycles at 0.5 mA cm^(-2) and more than 900 hours stable lifespan are achieved.No Li dendrites form even at a Li deposition capacity as high as4.0 mA h cm^(-2).Besides,the designed PPy/rGO hybrid anode scaffold can also drive a superior battery performance in the lithium-metal full cell applications.展开更多
This paper describes the electrodeposition of polyphosphate-doped polypyrrole/nanosilica nano-composite coating on steel wire for direct solid-phase microextraction of bisphenol A and five phthalates. We optimized inf...This paper describes the electrodeposition of polyphosphate-doped polypyrrole/nanosilica nano-composite coating on steel wire for direct solid-phase microextraction of bisphenol A and five phthalates. We optimized influencing parameters on the extraction efficiency and morphology of the nanocomposite such as deposition potential, concentration of pyrrole and polyphosphate, deposition time and the nanosilica amount. Under the optimized conditions, characterization of the nanocomposite was inves-tigated by scanning electron microscopy and Fourier transform infra-red spectroscopy. Also, the factors related to the solid-phase microextraction method including desorption temperature and time, extrac-tion temperature and time, ionic strength and pH were studied in detail. Subsequently, the proposed method was validated by gas chromatography-mass spectrometry by thermal desorption and acceptable figures of merit were obtained. The linearity of the calibration curves was between 0.01 and 50 ng/mL with acceptable correlation coefficients (0.9956-0.9987) and limits of detection were in the range 0.002-0.01 ng/mL. Relative standard deviations in terms of intra-day and inter-day by five replicate analyses from aqueous solutions containing 0.1 ng/mL of target analytes were in the range 3.3%-5.4% and 5%-7.1%, respectively. Fiber-to-fiber reproducibilities were measured for three different fibers prepared in the same conditions and the results were between 7.3% and 9.8%. Also, extraction recoveries at two different concentrations were ≥96%. Finally, the suitability of the proposed method was demonstrated through its application to the analysis of some eye drops and injection solutions.展开更多
Polypyrrole (PPy) is a biocompatible polymer with good conductivity. Studies combining PPy with electrospinning have been reported; however, the associated decrease in PPy conductivity has not yet been resolved. We ...Polypyrrole (PPy) is a biocompatible polymer with good conductivity. Studies combining PPy with electrospinning have been reported; however, the associated decrease in PPy conductivity has not yet been resolved. We embedded PPy into poly(lactic acid) (PLA) nanofibers via electrospinning and fabricated a PLA/PPy nanofibrous scaffold containing 15% PPy with sustained conductivity and aligned topog- raphy, qhere was good biocompatibility between the scaffold and human umbilical cord mesenchymal stem cells as well as Schwann cells. Additionally, the direction of cell elongation on the scaffold was parallel to the direction of fibers. Our findings suggest that the aligned PLA/PPy nanofibrous scaffold is a promising biomaterial for peripheral nerve regeneration.展开更多
Glutaraldehyde(GA)crosslinked chitosan(CHIT)was modified on nylon fibers.Afterwards,pyrrole was in-situ polymerized on the surface of the CHIT/Nylon fiber.The SEM and FT-IR results show that the functional fiber is su...Glutaraldehyde(GA)crosslinked chitosan(CHIT)was modified on nylon fibers.Afterwards,pyrrole was in-situ polymerized on the surface of the CHIT/Nylon fiber.The SEM and FT-IR results show that the functional fiber is successfully prepared,and the obtained polypyrrole(PPy)presents nanorods morphology on the fiber surface.The mechanical properties of the fibers were studied by Instron.The organic electrochemical transistors based on PPy/Nylon fiber,PPy/CHIT/Nylon fiber,and PPy/GA-CHIT/Nylon fiber as channels were prepared and their transistors performance was compared.It is found that PPy/GA-CHIT/Nylon fiber-based transistor has great output,transfer,transient curves,and excellent transconductance of 6.8 mS,providing a new platform for the field of wearable devices.Furthermore,the study introduces chitosan material with excellent biocompatibility,which makes prepared transistors also have potential applications in the field of biosensing.展开更多
To improve the separation capacity of uranium in aqueous solutions, 3R-MoS2 nanosheets were prepared with molten salt electro- lysis and further modified with polypyrrole (PPy) to synthesize a hybrid nanoadsorbent (PP...To improve the separation capacity of uranium in aqueous solutions, 3R-MoS2 nanosheets were prepared with molten salt electro- lysis and further modified with polypyrrole (PPy) to synthesize a hybrid nanoadsorbent (PPy/3R-MoS2). The preparation conditions of PPy/3R- MoS2 were investigated and the obtained nanosheets were characterized with scanning electron microscope (SEM), high resolution transmis- sion electron microscope (HRTEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectro- scopy (XPS). The results showed that PPy/3R-MoS2 exhibited enhanced adsorption capacity toward U(VI) compared to pure 3R-MoS2 and PPy;the maximum adsorption was 200.4 mg/g. The adsorption mechanism was elucidated with XPS and FTIR: (1) negatively charged PPy/3R-MoS2 nanosheets attracted by an electrostatic interaction;(2) exposed C, N, Mo, and S atoms complexed with U(VI) through co- ordination;(3) Mo in the complex partly reduced the adsorbed U(VI) to U(IV), which further regenerated the adsorption point and continu- ously adsorbed U(VI). The design of the PPy/3R-MoS2 composite with a high adsorption capacity and chemical stability provides a new direc- tion for the removal of radionuclide.展开更多
Conducting polymers have been studied extensively. An interesting property of the conducting polymer is that the conductivity of some polymers, such as polypyrrolc, polyaniline, poly(3-methylthiophene) etc. , is affec...Conducting polymers have been studied extensively. An interesting property of the conducting polymer is that the conductivity of some polymers, such as polypyrrolc, polyaniline, poly(3-methylthiophene) etc. , is affected by the voltage applied to them. For polypyrrole, the oxidized state is an electronic conductor and the reduced state is essentially insulating. Using this property, one can fabricate the polymer-based electronic devices. Experimental results of Pickun展开更多
In situ chemical oxidation polymerization of pyrrole on the surface of sulfur particles was carried out to synthesize a sulfur/polypyrrole (SIPPy) nanocomposite with core-shell structure. The composite was character...In situ chemical oxidation polymerization of pyrrole on the surface of sulfur particles was carried out to synthesize a sulfur/polypyrrole (SIPPy) nanocomposite with core-shell structure. The composite was characterized by elemental analysis, X-ray diffraction, scanning/transmission electron microscopy, and electrochemical measurements. XRD and FTIR results showed that sulfur well dispersed in the core-shell structure and PPy structure was successfully obtained via in situ oxidative polymerization of pyrrole on the surface of sulfur particles. TEM observation revealed that PPy was formed and fixed to the surface of sulfur nanoparticle after polymerization, developing a well-defined core-shell structure and the thickness of PPy coating layer was in the range of 20-30 nm. In the composite, PPy worked as a conducting matrix as well as a coating agent, which confined the active materials within the electrode. Consequently, the as prepared SIPPy composite cathode exhibited good cycling and rate performances for rechargeable lithium/sulfur batteries. The resulting cell containing SIPPy composite cathode yields a discharge capacity of 1039 mAh·g^-1 at the initial cycle and retains 59% of this value over 50 cycles at 0.1 C rate. At 1 C rate, the SIPPy composite showed good cycle stability, and the discharge capacity was 475 mAh·g^-1 after 50 cycles.展开更多
Polypyrrole (PPy) was synthesized by chemical oxidative polymerization technique using monomer pyrrole and ammo-nium persulphate as an oxidant in a ratio of 1:1. Thin films of polypyrrole were prepared by dissolving p...Polypyrrole (PPy) was synthesized by chemical oxidative polymerization technique using monomer pyrrole and ammo-nium persulphate as an oxidant in a ratio of 1:1. Thin films of polypyrrole were prepared by dissolving polypyrrole in mcresol and cast using spin coating technique on glass substrates. Thin films of polypyrrole were characterized by X ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infra red spectroscopy (FTIR), UV visible spectroscopy and electrical resistivity by four probe method. The XRD spectra showed that the polypyrrole is amorphous in nature. SEM studies revealed a uniform granular structure of PPy. The FTIR spectra shows that the presence of all characteristics absorption peaks of polypyrrole that is, 890 cm?1 (=C–H out-of-plane vibration), 1040 cm?1 (=C–H in-plane vibration), 1170 cm?1 (N–C stretch bending) and 1410 cm?1 (pyrrole ring vibration). UV visible study shows PPy films exhibit absorption peak at 446 nm (2.77 eV). Room temperature electrical resistivity of PPy is in the critical regime of the metal –to –insulator (M-I) transition.展开更多
基金Funded by the Open/Innovation Fund of Hubei Three Gorges Laboratory(No.SK212002)。
文摘A hierarchical reduced graphene oxide-MnO_(2)@polypyrrole coaxial nanotube composite hydrogel was prepared via oxidative polymerization of pyrrole in the presence of MnO_(2)nanotubes,followed by the hydrothermal treatment of graphene oxide and MnO_(2)@polypyrrole coaxial nanotubes.The stable composite hydrogel with a hierarchical network was composed of one-dimensional MnO_(2)@polypyrrole coaxial nanotube and two-dimensional graphene nanosheet and characterized by scanning electron microscope,Fourier transform infrared spectroscopy,X-ray diffraction,Brunauer-Emmett-Teller surface,and X-ray photoelectron spectroscopy measurements.The composite hydrogel can be used as an efficient adsorbent for Cr(Ⅵ)removal due to the synergistic interaction between graphene and MnO_(2)@polypyrrole and the hierarchical structure of the hydrogel.Moreover,the composite hydrogel is easily separated because of its stable monolith,and it is reusable(76.8%of removal ability remaining after five adsorption-desorption cycles).The simple fabrication and cost-effective separation process together with the excellent absorption performance endow the composite hydrogel with great potential for practical wastewater treatment.
基金supported by the National Natural Science Foundation of China(22075147 and 22179063)。
文摘Although metal oxide compounds are considered as desirable anode materials for potassium-ion batteries(PIBs)due to their high theoretical capacity,the large volume variation remains a key issue in realizing metal oxide anodes with long cycle life and excellent rate property.In this study,polypyrroleencapsulated Sb_(2)WO_(6)(denoted Sb_(2)WO_(6)@PPy)microflowers are synthesized by a one-step hydrothermal method followed by in-situ polymerization and coating by pyrrole.Leveraging the nanosheet-stacked Sb_(2)WO_(6)microflower structure,the improved electronic conductivity,and the architectural protection offered by the PPy coating,Sb_(2)WO_(6)@PPy exhibits boosted potassium storage properties,thereby demonstrating an outstanding rate property of 110.3 m A h g^(-1)at 5 A g^(-1)and delivering a long-period cycling stability with a reversible capacity of 197.2 m A h g^(-1)after 500 cycles at 1 A g^(-1).In addition,the conversion and alloying processes of Sb_(2)WO_(6)@PPy in PIBs with the generation of intermediates,K_(2)WO_(4)and K_(3)Sb,is determined by X-ray photoelectron spectroscopy,transmission electron microscopy,and exsitu X-ray diffraction during potassiation/depotassiation.Density functional theory calculations demonstrate that the robust coupling between PPy and Sb_(2)WO_(6)endues it with a much stronger total density of states and a built-in electric field,thereby increasing the electronic conductivity,and thus effectively reduces the K^(+)diffusion barrier.
基金financially supported by the National Natural Science Foundation of China(No.51933007,No.52373047,No.52302106)the Sichuan Youth Science and Technology Innovation Research Team Project(No.2022JDTD0012)+2 种基金the Program for Featured Directions of Engineering Multidisciplines of Sichuan University(No.2020SCUNG203)the Natural Science Foundation of Sichuan Province(No.2023NSFSC0418)the Program for State Key Laboratory of Polymer Materials Engineering(No.sklpme2022-3-10)。
文摘The tireless pursuit of supercapacitors with high energy density entails the parallel advancement of wellsuited electrode materials and elaborately engineered architectures.Polypyrrole(PPy)emerges as an exceedingly conductive polymer and a prospective pseudocapacitive materials for supercapacitors,yet the inferior cyclic stability and unpredictable polymerization patterns severely impede its real-world applicability.Here,for the first time,an innovative seed-induced in-situ polymerization assisted 3D printing strategy is proposed to fabricate PPy-reduced graphene oxide/poly(vinylidene difluoride-cohexafluoropropylene)(PVDF-HFP)(PPy-rGO/PH)electrodes with controllable polymerization behavior and exceptional areal mass loading.The preferred active sites uniformly pre-planted on the 3D-printed graphene substrates serve as reliable seeds to induce efficient polypyrrole deposition,achieving an impressive mass loading of 185.6 mg cm^(-2)(particularly 79.2 mg cm^(-2)for polypyrrole)and a superior areal capacitance of 25.2 F cm^(-2)at 2 mA cm^(-2)for a 12-layer electrode.In agreement with theses appealing features,an unprecedented areal energy density of 1.47 mW h cm^(-2)for a symmetrical device is registered,a rarely achieved value for other PPy/rGO-based supercapacitors.This work highlights a promising route to preparing high energy density energy storage modules for real-world applications.
基金supported by the National Natural Science Foundation of China(21373042)~~
文摘The development of highly efficient catalysts for cathodes remains an important objective of fuel cell research. Here, we report Co3O4 nanoparticles assembled on a polypyrrole/graphene oxide electrocatalyst (Co3O4/Ppy/GO) as an efficient catalyst for the oxygen reduction reaction (ORR) in alkaline media. The catalyst was prepared via the hydrothermal reaction of Co2+ ions with Ppy-modified GO. The GO, Ppy/GO, and Co3O4/Ppy/GO were characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The incorporation of Ppy into GO nanosheets resulted in the formation of a nitrogen-modified GO po-rous structure, which acted as an efficient electron-transport network for the ORR. With further anchoring of Co3O4 on Ppy/GO, the as-prepared Co3O4/Ppy/GO exhibited excellent ORR activity and followed a four-electron route mechanism for the ORR in alkaline solution. An onset potential of -0.10 V vs. a saturated calomel electrode and a diffusion limiting current density of 2.30 mA/cm^2 were achieved for the Co3O4/Ppy/GO catalyst heated at 800 ℃; these values are comparable to those for noble-metal-based Pt/C catalysts. Our work demonstrates that Co3O4/Ppy/GO is highly active for the ORR. Notably, the Ppy coupling effects between Co3O4 and GO provide a new route for the preparation of efficient non-precious electrocatalysts with hierarchical porous structures for fuel cell applications.
文摘BaTiO3 powders are prepared by sol-gel method by cotton template. Polypyrrole is prepared by chemical oxidation route in the emulsion polymerization system. Then BaTiO3- polypyrrole composites with different mixture ratios are prepared by as-prepared material. The structure, morphology, and properties of the composites are characterized with Infrared spectrum, X-ray diffraction, scanning electron microscope, and net-wok analyzer. The com- plex permittivity and reflection loss of the composites are measured at different microwave frequencies in S-band and C-band (0.03-6 GHz) employing vector network analyzer model PNA 3629D vector. The effect of the mass ratio of BaTiO3 to polypyrrole on the microwave loss properties of the composites is investigated. A possible microwave absorbing mechanism of BaTiOa-polypyrrole composite is proposed. The BaTiO3-polypyrrole composite can find applications in suppression of electromagnetic interference and reduction of radar signature.
基金This work was supported by the National Natural Science Foundation of China (No.20571066 and No.20871108), the Program for the Top Scietutions of Shanxi, and the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi.nce and Technology Inovation Team of Higher Learning Insti
文摘Polypyrrole (PPY) microbelts are synthesized via the absorbent cotton template for the first time. PPY microbelts are characterized by Fourier transform infrared spectroscopy.The stability, the morphology and electrical conductivity of such microbelts are evaluated by means of scanning electron microscope, thermo-gravimetric analysis and four-probe con-ductivity. A possible mechanism for the formation of PPY microbelts are proposed. The conductivity is measured, and the conductivity variation mechanism of the PPY microbelts with the pyrrole monomer concentrations is analyzed.
基金supported by the National Natural Science Foundation of China,No.81671823,81701835a grant from the National Key Research and Development Program of China,No.2016YFC1101603a grant from the Natural Science Research Program of Nantong of China,No.MS12016056
文摘Three dimensional(3D) bioprinting, which involves depositing bioinks(mixed biomaterials) layer by layer to form computer-aided designs, is an ideal method for fabricating complex 3D biological structures. However, it remains challenging to prepare biomaterials with micro-nanostructures that accurately mimic the nanostructural features of natural tissues. A novel nanotechnological tool, electrospinning, permits the processing and modification of proper nanoscale biomaterials to enhance neural cell adhesion, migration, proliferation, differentiation, and subsequent nerve regeneration. The composite scaffold was prepared by combining 3D bioprinting with subsequent electrochemical deposition of polypyrrole and electrospinning of silk fibroin to form a composite polypyrrole/silk fibroin scaffold. Fourier transform infrared spectroscopy was used to analyze scaffold composition. The surface morphology of the scaffold was observed by light microscopy and scanning electron microscopy. A digital multimeter was used to measure the resistivity of prepared scaffolds. Light microscopy was applied to observe the surface morphology of scaffolds immersed in water or Dulbecco's Modified Eagle's Medium at 37℃ for 30 days to assess stability. Results showed characteristic peaks of polypyrrole and silk fibroin in the synthesized conductive polypyrrole/silk fibroin scaffold, as well as the structure of the electrospun nanofiber layer on the surface. The electrical conductivity was 1 × 10^-5–1 × 10^-3 S/cm, while stability was 66.67%. A 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay was employed to measure scaffold cytotoxicity in vitro. Fluorescence microscopy was used to observe Ed U-labeled Schwann cells to quantify cell proliferation. Immunohistochemistry was utilized to detect S100β immunoreactivity, while scanning electron microscopy was applied to observe the morphology of adherent Schwann cells. Results demonstrated that the polypyrrole/silk fibroin scaffold was not cytotoxic and did not affect Schwann cell proliferation. Moreover, filopodia formed on the scaffold and Schwann cells were regularly arranged. Our findings verified that the composite polypyrrole/silk fibroin scaffold has good biocompatibility and may be a suitable material for neural tissue engineering.
基金the Foundation of Science and Technology Department of Heibei Province (No. 05547003D-4)the Foundation of the Education Department of Hebei Province, China (No. 2005356).
文摘Lithium/polypyrrole (Li/PPy) batteries were fabricated using lithium sheet as cathode, PPy as anode, microporous membrane polypropylene/polyethylene/polypropylene (PP/PE/PP) composite as separator and LiPF6/ethylene carbonate-dimethyl carbonate-methyl ethyl carbonate (EC-DMC-EMC) as electrolyte. Polypyrrole was prepared by chemical polymerization. Certain fundamental electrochemical performances were investigated. Properties of the batteries were characterized and tested by SEM, galvanostatic charge/discharge tests, cyclic voltammetry (CV), and a.c. impedance spectroscopy. The influences of separator, morphology, and conductivity of PPy anode, cold-molded pressure, and electric current on the performances of the batteries were studied. Using PP/PE/PP membranes as separator, the battery showed good storage stability and cycling property. The conductivity of materials rather than morphology affected the behavior of the battery. The higher the conductivity, the better performances the cells had. Proper cold-molded pressure 20 MPa of the anode pellet would make the properties of the cells good and the fitted charge/discharge current was 0.1 mA. The cells showed excellent performance with 97%-100% coulombic efficiency. The highest discharge capacity of 95.2 mAh/g was obtained.
基金CONICET(PIP-112-201101-00055),ANPCYT(PICT-2012-0141)and Universidad Nacional del Sur(PGI 24/M127),Bahía Blanca,Argentina are acknowledged for financial support
文摘In this work hollow rectangular microtubes of polypyrrole(PPy)films were potentiostatically electrodeposited on magnesium alloy AZ91D in salicylate solution.The substrate was previously anodized under potentiostatic conditions in a molybdate solution in order to improve the adherence of polymer.Finally the duplex film was modified by the incorporation of silver species.The obtained coatings were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD)and X-ray photoelectron spectroscopies(XPS)and the antimicrobial activity against the bacteria Escherichia coli was evaluated.The corrosion protection properties of the coatings were examined in Ringer solution by monitoring the open circuit potential,polarization techniques and electrochemical spectroscopy(EIS).The duplex coating presents an improved anticorrosive performance with respect to the PPy film.The best results concerning corrosion protection and antibacterial activity were obtained for the silver-modified composite coating.
文摘316L stainless steel(SS 316L) is quite attractive as bipolar plates in proton exchange membrane fuel cells(PEMFC).In this study,graphite-polypyrrole was coated on SS 316L by the method of cyclic voltammetry.The surface morphology and chemical composition of the graphite-polypyrrole composite coating were investigated by scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS).A simulated working environment of PEMFC was applied for testing the corrosion properties of graphite-polypyrrole coated SS 316L.The current densities in the simulated PEMFC anode and cathode conditions are around 3×10-9 and 9×10-5 A·cm-2,respectively.In addition,the interfacial contact resistance(ICR) was also investigated.The ICR value of graphite-polypyrrole coated SS 316L is much lower than that of bare SS 316L.Therefore,graphite-polypyrrole coated SS 316L indicates a great potential for the application in PEMFC.
文摘Fe2O3@polypyrrole nanotubes (Fe2O3@PPy nanotubes) have been successfully prepared by in-situ polymerization of the pyrrole on the surface of Fe2O3 nanotubes (Fe2O3-NTs), via using L-Lysine as modified surfactant. Hollow PPy nanotubes were also produced by dissolution of the Fe2O3 core from the core/shell composite nanotubes with 1 mol,L-1 HC1. Scanning electron microscopy(SEM), transmission electron microscope (TEM), selective-area electron diffraction (SAED), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy(FT-IR) confirmed the formation of Fe2O3-NTs and Fe2O3@PPy core/shell nanotubes. Its catalytic properties were investigated under the ultrasound. The results of UV-vis spectroscopy (UV) demonstrated Rhodamine B (RhB) can be efficiently degraded by Fe2O3 @PPy nanotubes.
基金supported by the National Basic Research Program(2011CB933300)of Chinathe National Natural Science Foundation of China(11204093,11374110)‘the Fundamental Research Funds for the Central Universities’,HUST:2012QN114,2013TS033
文摘A solid-state powerful supercapacitor(SC) is fabricated with a substrate of Xerox paper. Its current collector based on a foldable electronic circuit is developed by simply pencil drawing. Thin graphite sheets on paper provide effective channels for electron transmission with a low resistance of 95 X sq-1. The conductive organic material of polypyrrole coated on thin graphite sheets acts as the electrode material of the device. The as-fabricated SC exhibits a high specific capacitance of 52.9 F cm-3at a scan rate of 1 m V s-1. An energy storage unit fabricated by three full-charged series SCs can drive a commercial light-emitting diode robustly. This work demonstrated a simple, versatile and costeffective method for paper-based devices.
基金supported by the National Natural Science Foundation of China(Nos.21603019,201503025)Key Program for International Science and Technology Cooperation Projects of Ministry of Science and Technology of China(No.2016YFE0125900)program for the Hundred Talents Program of Chongqing University。
文摘Lithium metal anode is the most potential anode material for the next generation high-energy rechargeable batteries owing to its highest specific capacity and lowest redox potential.Unfortunately,the uneven deposition of Li during plating/stripping and the formation of uncontrolled Li dendrites,which might cause poor battery performance and serious safety problems,are demonstrating to be a huge challenge for its practical application.Here,we show that a flexible and free-standing film hybriding with polypyrrole(PPy) nanotubes and reduced graphene oxide(rGO) can significantly regulate the Li nucleation and deposition,and further prohibit the formation of Li dendrites,owing to the large specific surface area,rich of nitrogen functional groups and porous structures.Finally,the high Coulombic efficiency and stable Li plating/stripping cycling performance with 98% for 230 cycles at 0.5 mA cm^(-2) and more than 900 hours stable lifespan are achieved.No Li dendrites form even at a Li deposition capacity as high as4.0 mA h cm^(-2).Besides,the designed PPy/rGO hybrid anode scaffold can also drive a superior battery performance in the lithium-metal full cell applications.
基金financial support of Department of Pharmaceutics, Faculty of Pharmacy, Kerman Medical Science University
文摘This paper describes the electrodeposition of polyphosphate-doped polypyrrole/nanosilica nano-composite coating on steel wire for direct solid-phase microextraction of bisphenol A and five phthalates. We optimized influencing parameters on the extraction efficiency and morphology of the nanocomposite such as deposition potential, concentration of pyrrole and polyphosphate, deposition time and the nanosilica amount. Under the optimized conditions, characterization of the nanocomposite was inves-tigated by scanning electron microscopy and Fourier transform infra-red spectroscopy. Also, the factors related to the solid-phase microextraction method including desorption temperature and time, extrac-tion temperature and time, ionic strength and pH were studied in detail. Subsequently, the proposed method was validated by gas chromatography-mass spectrometry by thermal desorption and acceptable figures of merit were obtained. The linearity of the calibration curves was between 0.01 and 50 ng/mL with acceptable correlation coefficients (0.9956-0.9987) and limits of detection were in the range 0.002-0.01 ng/mL. Relative standard deviations in terms of intra-day and inter-day by five replicate analyses from aqueous solutions containing 0.1 ng/mL of target analytes were in the range 3.3%-5.4% and 5%-7.1%, respectively. Fiber-to-fiber reproducibilities were measured for three different fibers prepared in the same conditions and the results were between 7.3% and 9.8%. Also, extraction recoveries at two different concentrations were ≥96%. Finally, the suitability of the proposed method was demonstrated through its application to the analysis of some eye drops and injection solutions.
基金financially supported by Tsinghua University Initiative Scientific Research Program,No.20131089199the National Key Research and Development Program of China,No.2016YFB0700802the National Program on Key Basic Research Project of China(973 Program),No.2012CB518106,2014CB542201
文摘Polypyrrole (PPy) is a biocompatible polymer with good conductivity. Studies combining PPy with electrospinning have been reported; however, the associated decrease in PPy conductivity has not yet been resolved. We embedded PPy into poly(lactic acid) (PLA) nanofibers via electrospinning and fabricated a PLA/PPy nanofibrous scaffold containing 15% PPy with sustained conductivity and aligned topog- raphy, qhere was good biocompatibility between the scaffold and human umbilical cord mesenchymal stem cells as well as Schwann cells. Additionally, the direction of cell elongation on the scaffold was parallel to the direction of fibers. Our findings suggest that the aligned PLA/PPy nanofibrous scaffold is a promising biomaterial for peripheral nerve regeneration.
基金by the Hubei Province Education Department Project(Q20191708)。
文摘Glutaraldehyde(GA)crosslinked chitosan(CHIT)was modified on nylon fibers.Afterwards,pyrrole was in-situ polymerized on the surface of the CHIT/Nylon fiber.The SEM and FT-IR results show that the functional fiber is successfully prepared,and the obtained polypyrrole(PPy)presents nanorods morphology on the fiber surface.The mechanical properties of the fibers were studied by Instron.The organic electrochemical transistors based on PPy/Nylon fiber,PPy/CHIT/Nylon fiber,and PPy/GA-CHIT/Nylon fiber as channels were prepared and their transistors performance was compared.It is found that PPy/GA-CHIT/Nylon fiber-based transistor has great output,transfer,transient curves,and excellent transconductance of 6.8 mS,providing a new platform for the field of wearable devices.Furthermore,the study introduces chitosan material with excellent biocompatibility,which makes prepared transistors also have potential applications in the field of biosensing.
基金the National Nat-ural Science Foundation of China(Nos.21906019,21906018,21561002,21866004,and 21866003)the Sci-ence&Technology Support Program of Jiangxi Province,China(No.2018ACB21007)+1 种基金the Jiangxi Program of Aca-demic and Technical Leaders of Major Disciplines,China(No.20182BCB22011)the Project of the Jiangxi Provincial Department of Education,China(Nos.GJJ160550,GJJ180385,and GJJ180400).
文摘To improve the separation capacity of uranium in aqueous solutions, 3R-MoS2 nanosheets were prepared with molten salt electro- lysis and further modified with polypyrrole (PPy) to synthesize a hybrid nanoadsorbent (PPy/3R-MoS2). The preparation conditions of PPy/3R- MoS2 were investigated and the obtained nanosheets were characterized with scanning electron microscope (SEM), high resolution transmis- sion electron microscope (HRTEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectro- scopy (XPS). The results showed that PPy/3R-MoS2 exhibited enhanced adsorption capacity toward U(VI) compared to pure 3R-MoS2 and PPy;the maximum adsorption was 200.4 mg/g. The adsorption mechanism was elucidated with XPS and FTIR: (1) negatively charged PPy/3R-MoS2 nanosheets attracted by an electrostatic interaction;(2) exposed C, N, Mo, and S atoms complexed with U(VI) through co- ordination;(3) Mo in the complex partly reduced the adsorbed U(VI) to U(IV), which further regenerated the adsorption point and continu- ously adsorbed U(VI). The design of the PPy/3R-MoS2 composite with a high adsorption capacity and chemical stability provides a new direc- tion for the removal of radionuclide.
基金Supported by the National Natural Science Foundation of China
文摘Conducting polymers have been studied extensively. An interesting property of the conducting polymer is that the conductivity of some polymers, such as polypyrrolc, polyaniline, poly(3-methylthiophene) etc. , is affected by the voltage applied to them. For polypyrrole, the oxidized state is an electronic conductor and the reduced state is essentially insulating. Using this property, one can fabricate the polymer-based electronic devices. Experimental results of Pickun
基金supported by the Natural Science Foundation of Shaanxi Province,China(2013JM2009)
文摘In situ chemical oxidation polymerization of pyrrole on the surface of sulfur particles was carried out to synthesize a sulfur/polypyrrole (SIPPy) nanocomposite with core-shell structure. The composite was characterized by elemental analysis, X-ray diffraction, scanning/transmission electron microscopy, and electrochemical measurements. XRD and FTIR results showed that sulfur well dispersed in the core-shell structure and PPy structure was successfully obtained via in situ oxidative polymerization of pyrrole on the surface of sulfur particles. TEM observation revealed that PPy was formed and fixed to the surface of sulfur nanoparticle after polymerization, developing a well-defined core-shell structure and the thickness of PPy coating layer was in the range of 20-30 nm. In the composite, PPy worked as a conducting matrix as well as a coating agent, which confined the active materials within the electrode. Consequently, the as prepared SIPPy composite cathode exhibited good cycling and rate performances for rechargeable lithium/sulfur batteries. The resulting cell containing SIPPy composite cathode yields a discharge capacity of 1039 mAh·g^-1 at the initial cycle and retains 59% of this value over 50 cycles at 0.1 C rate. At 1 C rate, the SIPPy composite showed good cycle stability, and the discharge capacity was 475 mAh·g^-1 after 50 cycles.
文摘Polypyrrole (PPy) was synthesized by chemical oxidative polymerization technique using monomer pyrrole and ammo-nium persulphate as an oxidant in a ratio of 1:1. Thin films of polypyrrole were prepared by dissolving polypyrrole in mcresol and cast using spin coating technique on glass substrates. Thin films of polypyrrole were characterized by X ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infra red spectroscopy (FTIR), UV visible spectroscopy and electrical resistivity by four probe method. The XRD spectra showed that the polypyrrole is amorphous in nature. SEM studies revealed a uniform granular structure of PPy. The FTIR spectra shows that the presence of all characteristics absorption peaks of polypyrrole that is, 890 cm?1 (=C–H out-of-plane vibration), 1040 cm?1 (=C–H in-plane vibration), 1170 cm?1 (N–C stretch bending) and 1410 cm?1 (pyrrole ring vibration). UV visible study shows PPy films exhibit absorption peak at 446 nm (2.77 eV). Room temperature electrical resistivity of PPy is in the critical regime of the metal –to –insulator (M-I) transition.