In this paper,a method combining perspective-n-point(PnP) and novel iteration algorithm is developed to measure the pose of a target in high precision for Tele-LightSaber game.The PnP algorithm is used to obtain a rou...In this paper,a method combining perspective-n-point(PnP) and novel iteration algorithm is developed to measure the pose of a target in high precision for Tele-LightSaber game.The PnP algorithm is used to obtain a rough pose,which is taken as the initial value of the iteration algorithm.The iteration algorithm utilizes the unit quaternions to represent the rotations.Then the result is optimized with Kalman filter.Considering the real-time and accuracy of the pose measurement,a fast feature extraction algorithm including object location,edge detection and corner detection is adopted to get the corners in high precision.The experiments and results verify the effectiveness of the proposed method.展开更多
Antenna mechanical pose measurement has always been a crucial issue for radio frequency(RF)engineers,owning to the need for mechanical pose adjustment to satisfy the changing surroundings.Traditionally,the pose is est...Antenna mechanical pose measurement has always been a crucial issue for radio frequency(RF)engineers,owning to the need for mechanical pose adjustment to satisfy the changing surroundings.Traditionally,the pose is estimated in the contact way with the help of many kinds of measuring equipment,but the measurement accuracy cannot be well assured in this way.We propose a non-contact measuring system based on Structure from Motion(SfM)in the field of photogrammetry.The accurate pose would be estimated by only taking several images of the antenna and after some easy interaction on the smartphone.Extensive experiments show that the error ranges of antenna’s downtilt and heading are within 2degrees and 5 degrees respectively,with the shooting distance in 25 m.The GPS error is also under 5 meters with this shooting distance.We develop the measuring applications both in PC and android smartphones and the results can be computed within 3 minutes on both platforms.The proposed system is quite safe,convenient and efficient for engineers to use in their daily work.To the best of our knowledge,this is the first pipeline that solves the antenna pose measuring problem by the photogrammetry method on the mobile platform.展开更多
Due to the portability and anti-interference ability,vision-based shipborne aircraft automatic landing systems have attracted the attention of researchers.In this paper,a Monocular Camera and Laser Range Finder(MC-LRF...Due to the portability and anti-interference ability,vision-based shipborne aircraft automatic landing systems have attracted the attention of researchers.In this paper,a Monocular Camera and Laser Range Finder(MC-LRF)-based pose measurement system is designed for shipborne aircraft automatic landing.First,the system represents the target ship using a set of sparse landmarks,and a two-stage model is adopted to detect landmarks on the target ship.The rough 6D pose is measured by solving a Perspective-n-Point problem.Then,once the rough pose is measured,a region-based pose refinement is used to continuously track the 6D pose in the subsequent image sequences.To address the low accuracy of monocular pose measurement in the depth direction,the designed system adopts a laser range finder to obtain an accurate range value.The measured rough pose is iteratively optimized using the accurate range measurement.Experimental results on synthetic and real images show that the system achieves robust and precise pose measurement of the target ship during automatic landing.The measurement means error is within 0.4in rotation,and 0.2%in translation,meeting the requirements for automatic fixed-wing aircraft landing.展开更多
The measurement of position and attitude parameters for the isolated target from a highspeed aircraft is a great challenge in the field of wind tunnel simulation technology.In this paper,firstly, an image acquisition ...The measurement of position and attitude parameters for the isolated target from a highspeed aircraft is a great challenge in the field of wind tunnel simulation technology.In this paper,firstly, an image acquisition method for small high-speed targets with multi-dimensional movement in wind tunnel environment is proposed based on laser-aided vision technology.Combining with the trajectory simulation of the isolated model, the reasonably distributed laser stripes and selfluminous markers are utilized to capture clear images of the object.Then, after image processing,feature extraction, stereo correspondence and reconstruction, three-dimensional information of laser stripes and self-luminous markers are calculated.Besides, a pose solution method based on projected laser stripes and self-luminous markers is proposed.Finally, simulation experiments on measuring the position and attitude of high-speed rolling targets are conducted, as well as accuracy verification experiments.Experimental results indicate that the proposed method is feasible and efficient for measuring the pose parameters of rolling targets in wind tunnels.展开更多
The measurement of position and attitude parameters for the isolated target from a highspeed aircraft is a great challenge in the field of wind tunnel simulation technology. This paper proposes a remote-controlled fle...The measurement of position and attitude parameters for the isolated target from a highspeed aircraft is a great challenge in the field of wind tunnel simulation technology. This paper proposes a remote-controlled flexible pose measurement system in wind tunnel conditions for the separation of a target from an aircraft. The position and attitude parameters of a moving object are obtained by utilizing a single camera with a focal length and camera orientation that can be changed based on different measurement conditions. Using this proposed system and method, both the flexibility and efficiency of the pose measurement system can be enhanced in wind tunnel conditions to meet the measurement requirements of different objects and experiments, which is also useful for the development of an intelligent position and attitude measurement system. The position and the focal length of the camera also can be controlled remotely during measurements to enlarge both the vertical and horizontal measurement range of this system. Experiments are conducted in the laboratory to measure the position and attitude of moving objects with high flexibility and efficiency, and the measurement precision of the measurement system is also verified through experiments.展开更多
This paper presents an efficient robot calibration method with non-contact vision metrology. Using the coplanar pattern to calibrate camera made the active-vision-based end-effector pose measurement be a feasible and ...This paper presents an efficient robot calibration method with non-contact vision metrology. Using the coplanar pattern to calibrate camera made the active-vision-based end-effector pose measurement be a feasible and costeffective way. Kinematic parameter errors were linearized and identified through two-step procedure, thus the singular and non-linear condition was overcome. These errors were then compensated using inverse model method. The whole calibration process is flexible, easy to implement and prevents the error propagation from the earlier stages to the later ones. Calibration was performed on MOTOMAN SV3industrial robot. Experiment results show that the proposed method is easy to setup and with satisfactory accuracy.展开更多
In this paper,we present a robot vision based system for coordinate measurement of feature points on large scale automobile parts.Our system consists of an industrial 6-DOF robot mounted with a CCD camera and a PC.The...In this paper,we present a robot vision based system for coordinate measurement of feature points on large scale automobile parts.Our system consists of an industrial 6-DOF robot mounted with a CCD camera and a PC.The system controls the robot into the area of feature points.The images of measuring feature points are acquired by the camera mounted on the robot.3D positions of the feature points are obtained from a model based pose estimation that applies to the images.The measured positions of all feature points are then transformed to the reference coordinate of feature points whose positions are obtained from the coordinate measuring machine(CMM).Finally,the point-to-point distances between the measured feature points and the reference feature points are calculated and reported.The results show that the root mean square error(RMSE) of measure values obtained by our system is less than 0.5 mm.Our system is adequate for automobile assembly and can perform faster than conventional methods.展开更多
A binocular stereo vision positioning method based on the scale-invariant feature trans- form (SIFT) algorithm is proposed. The SIFT algorithm is for extracting distinctive invariant features from images. First, ima...A binocular stereo vision positioning method based on the scale-invariant feature trans- form (SIFT) algorithm is proposed. The SIFT algorithm is for extracting distinctive invariant features from images. First, image median filtering is used to eliminate image noise. Then, according to the characteristics of the target satellite, image map is used to extract the middle part of the target satel- lite. At last, the feature match point under the SIFT algorithm is extracted, and the three-dimension- al position and orientation are calculated. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The experimental result shows that the al- gorithm works well and the maximum relative error is within 0. 02 m and 2.5 o展开更多
A monocular vision-based pose measurement system is provided for real-time measurement of a three-degree-of-freedom (3-DOF) air-bearing test-bed. Firstly, a circular plane cooperative target is designed. An image of...A monocular vision-based pose measurement system is provided for real-time measurement of a three-degree-of-freedom (3-DOF) air-bearing test-bed. Firstly, a circular plane cooperative target is designed. An image of a target fixed on the test-bed is then acquired. Blob analysis-based image processing is used to detect the object circles on the target. A fast algorithm (FCCSP) based on pixel statistics is proposed to extract the centers of object circles. Finally, pose measurements can be obtained when combined with the centers and the coordinate transformation relation. Experiments show that the proposed method is fast, accurate, and robust enough to satisfy the requirement of the pose measurement.展开更多
The key technology of the measuring method of pose shaking of unstable platform based on CCD lies in the camera pose estimation. A new method for camera pose estimation based on line correspondence is put forward in t...The key technology of the measuring method of pose shaking of unstable platform based on CCD lies in the camera pose estimation. A new method for camera pose estimation based on line correspondence is put forward in this paper. First, two appro- priate lines are selected in the space to establish a local coordinate system, the remaining lines form three-line sets with these two lines respectively and then the angle depth of the lines of the local coordinate system can be obtained by using the linearity of interpretation plane; then the invariance of included angle between spatial coordinate system and camera coordinate system during rigid transformation is used to establish a constraint equation set of angle depth of three lines similar to traditional P3P, and the corresponding angle depth of the third line in the set can be obtained linearly by variable substitution; finally, the rota- tion matrix can be expressed with quaternion and the pose parameters of camera in the space can be calculated by singular value decomposition (SVD). The static experiment and dynamic experiment verify the accuracy and stability of the algorithm and that the camera pose shocking is within 1~ and the 3a error is superior to 0.3'. The method in this paper can be directly used in the micro-vibration measurement of experimental platform and robot navigation and other fields and is of important theoretical significance and engineering application prospect.展开更多
Adapter ring is a commonly used component in non-cooperative satellites,which has high strength and is suitable to be recognized and grasped by the space manipulator.During proximity operations,this circle feature may...Adapter ring is a commonly used component in non-cooperative satellites,which has high strength and is suitable to be recognized and grasped by the space manipulator.During proximity operations,this circle feature may be occluded by the robot arm or limited field of view.Moreover,the captured images may be underexposed when there is not enough illumination.To address these problems,this paper presents a structured light vision system with three line lasers and a monocular camera.The lasers project lines onto the surface of the satellite,and six break points are formed along both sides of the adapter ring.A closed-form solution for real-time pose estimation is given using these break points.Then,a virtual structured light platform is constructed to simulate synthetic images of the target satellite.Compared with the predefined camera parameters and relative positions,the proposed method is demonstrated to be more effective,especially at a close distance.Besides,a physical space verification system is set up to prove the effectiveness and robustness of our method under different light conditions.Experimental results indicate that it is a practical and effective method for the pose measurement of on-orbit tasks.展开更多
Aerodynamic parameters obtained from separation experiments of internal stores in a wind tunnel are significant in aircraft designs. Accurate wind tunnel tests can help to improve the release stability of the stores a...Aerodynamic parameters obtained from separation experiments of internal stores in a wind tunnel are significant in aircraft designs. Accurate wind tunnel tests can help to improve the release stability of the stores and in-flight safety of the aircrafts in supersonic environments.A simulative system for free drop experiments of internal stores based on a practical project is provided in this paper. The system contains a store release mechanism, a control system and an attitude measurement system. The release mechanism adopts a six-bar linkage driven by a cylinder, which ensures the release stability. The structure and initial aerodynamic parameters of the stores are also designed and adjusted. A high speed vision measurement system for high speed rolling targets is utilized to measure the pose parameters of the internal store models and an optimizing method for the coordinates of markers is presented based on a priori model. The experimental results show excellent repeatability of the system, and indicate that the position measurement precision is less than0.13 mm, and the attitude measurement precision for pitch and yaw angles is less than 0.126°, satisfying the requirements of practical wind tunnel tests. A separation experiment for the internal stores is also conducted in the FL-3 wind tunnel of China Aerodynamics Research Institute.展开更多
基金Supported by the National High Technology Research and Development Programme of China(No.2012AA041403)the National Natural Science Foundation of China(No.60905061)the National Natural Science Foundation of Tianjin(No.08JCYBJC12700)
文摘In this paper,a method combining perspective-n-point(PnP) and novel iteration algorithm is developed to measure the pose of a target in high precision for Tele-LightSaber game.The PnP algorithm is used to obtain a rough pose,which is taken as the initial value of the iteration algorithm.The iteration algorithm utilizes the unit quaternions to represent the rotations.Then the result is optimized with Kalman filter.Considering the real-time and accuracy of the pose measurement,a fast feature extraction algorithm including object location,edge detection and corner detection is adopted to get the corners in high precision.The experiments and results verify the effectiveness of the proposed method.
基金supported by ZTE Industry-Academia-Research Cooperation Funds
文摘Antenna mechanical pose measurement has always been a crucial issue for radio frequency(RF)engineers,owning to the need for mechanical pose adjustment to satisfy the changing surroundings.Traditionally,the pose is estimated in the contact way with the help of many kinds of measuring equipment,but the measurement accuracy cannot be well assured in this way.We propose a non-contact measuring system based on Structure from Motion(SfM)in the field of photogrammetry.The accurate pose would be estimated by only taking several images of the antenna and after some easy interaction on the smartphone.Extensive experiments show that the error ranges of antenna’s downtilt and heading are within 2degrees and 5 degrees respectively,with the shooting distance in 25 m.The GPS error is also under 5 meters with this shooting distance.We develop the measuring applications both in PC and android smartphones and the results can be computed within 3 minutes on both platforms.The proposed system is quite safe,convenient and efficient for engineers to use in their daily work.To the best of our knowledge,this is the first pipeline that solves the antenna pose measuring problem by the photogrammetry method on the mobile platform.
基金co-supported by the National Natural Science Foundation of China,China(No.12272404)the Postgraduate Research Innovation Project of Hunan Province of China,China(No.CX20210016).
文摘Due to the portability and anti-interference ability,vision-based shipborne aircraft automatic landing systems have attracted the attention of researchers.In this paper,a Monocular Camera and Laser Range Finder(MC-LRF)-based pose measurement system is designed for shipborne aircraft automatic landing.First,the system represents the target ship using a set of sparse landmarks,and a two-stage model is adopted to detect landmarks on the target ship.The rough 6D pose is measured by solving a Perspective-n-Point problem.Then,once the rough pose is measured,a region-based pose refinement is used to continuously track the 6D pose in the subsequent image sequences.To address the low accuracy of monocular pose measurement in the depth direction,the designed system adopts a laser range finder to obtain an accurate range value.The measured rough pose is iteratively optimized using the accurate range measurement.Experimental results on synthetic and real images show that the system achieves robust and precise pose measurement of the target ship during automatic landing.The measurement means error is within 0.4in rotation,and 0.2%in translation,meeting the requirements for automatic fixed-wing aircraft landing.
基金supported by the National Natural Science Foundation of China (Nos.51375075, 51227004)the Scientific Research Fund of Liaoning Provincial Education Department of China (No.L2013035)the Science Fund for Creative Research Groups of China (No.51321004)
文摘The measurement of position and attitude parameters for the isolated target from a highspeed aircraft is a great challenge in the field of wind tunnel simulation technology.In this paper,firstly, an image acquisition method for small high-speed targets with multi-dimensional movement in wind tunnel environment is proposed based on laser-aided vision technology.Combining with the trajectory simulation of the isolated model, the reasonably distributed laser stripes and selfluminous markers are utilized to capture clear images of the object.Then, after image processing,feature extraction, stereo correspondence and reconstruction, three-dimensional information of laser stripes and self-luminous markers are calculated.Besides, a pose solution method based on projected laser stripes and self-luminous markers is proposed.Finally, simulation experiments on measuring the position and attitude of high-speed rolling targets are conducted, as well as accuracy verification experiments.Experimental results indicate that the proposed method is feasible and efficient for measuring the pose parameters of rolling targets in wind tunnels.
基金co-supported by the National Natural Science Foundation-Outstanding Youth Foundation of China (No. 51622501)the National Natural Science Foundation of China (Nos. 51375075 and 51227004)+1 种基金the Fundamental Research Funds for the Central Universities of Chinathe Science Fund for Creative Research Groups of China (No. 51321004)
文摘The measurement of position and attitude parameters for the isolated target from a highspeed aircraft is a great challenge in the field of wind tunnel simulation technology. This paper proposes a remote-controlled flexible pose measurement system in wind tunnel conditions for the separation of a target from an aircraft. The position and attitude parameters of a moving object are obtained by utilizing a single camera with a focal length and camera orientation that can be changed based on different measurement conditions. Using this proposed system and method, both the flexibility and efficiency of the pose measurement system can be enhanced in wind tunnel conditions to meet the measurement requirements of different objects and experiments, which is also useful for the development of an intelligent position and attitude measurement system. The position and the focal length of the camera also can be controlled remotely during measurements to enlarge both the vertical and horizontal measurement range of this system. Experiments are conducted in the laboratory to measure the position and attitude of moving objects with high flexibility and efficiency, and the measurement precision of the measurement system is also verified through experiments.
文摘This paper presents an efficient robot calibration method with non-contact vision metrology. Using the coplanar pattern to calibrate camera made the active-vision-based end-effector pose measurement be a feasible and costeffective way. Kinematic parameter errors were linearized and identified through two-step procedure, thus the singular and non-linear condition was overcome. These errors were then compensated using inverse model method. The whole calibration process is flexible, easy to implement and prevents the error propagation from the earlier stages to the later ones. Calibration was performed on MOTOMAN SV3industrial robot. Experiment results show that the proposed method is easy to setup and with satisfactory accuracy.
基金wsupported by the Thailand Research Fund and Solimac Automation Co.,Ltd.under the Research and Researchers for Industry Program(RRI)under Grant No.MSD56I0098Office of the Higher Education Commission under the National Research University Project of Thailand
文摘In this paper,we present a robot vision based system for coordinate measurement of feature points on large scale automobile parts.Our system consists of an industrial 6-DOF robot mounted with a CCD camera and a PC.The system controls the robot into the area of feature points.The images of measuring feature points are acquired by the camera mounted on the robot.3D positions of the feature points are obtained from a model based pose estimation that applies to the images.The measured positions of all feature points are then transformed to the reference coordinate of feature points whose positions are obtained from the coordinate measuring machine(CMM).Finally,the point-to-point distances between the measured feature points and the reference feature points are calculated and reported.The results show that the root mean square error(RMSE) of measure values obtained by our system is less than 0.5 mm.Our system is adequate for automobile assembly and can perform faster than conventional methods.
文摘A binocular stereo vision positioning method based on the scale-invariant feature trans- form (SIFT) algorithm is proposed. The SIFT algorithm is for extracting distinctive invariant features from images. First, image median filtering is used to eliminate image noise. Then, according to the characteristics of the target satellite, image map is used to extract the middle part of the target satel- lite. At last, the feature match point under the SIFT algorithm is extracted, and the three-dimension- al position and orientation are calculated. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The experimental result shows that the al- gorithm works well and the maximum relative error is within 0. 02 m and 2.5 o
基金This work is partially supported by the National Natural Science Foundation of China under Grant No. 11672290. The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.
文摘A monocular vision-based pose measurement system is provided for real-time measurement of a three-degree-of-freedom (3-DOF) air-bearing test-bed. Firstly, a circular plane cooperative target is designed. An image of a target fixed on the test-bed is then acquired. Blob analysis-based image processing is used to detect the object circles on the target. A fast algorithm (FCCSP) based on pixel statistics is proposed to extract the centers of object circles. Finally, pose measurements can be obtained when combined with the centers and the coordinate transformation relation. Experiments show that the proposed method is fast, accurate, and robust enough to satisfy the requirement of the pose measurement.
基金supported by the National Natural Science Foundation of China(Grant Nos.11072263,11272347)the Program for New Century Excellent Talents in University
文摘The key technology of the measuring method of pose shaking of unstable platform based on CCD lies in the camera pose estimation. A new method for camera pose estimation based on line correspondence is put forward in this paper. First, two appro- priate lines are selected in the space to establish a local coordinate system, the remaining lines form three-line sets with these two lines respectively and then the angle depth of the lines of the local coordinate system can be obtained by using the linearity of interpretation plane; then the invariance of included angle between spatial coordinate system and camera coordinate system during rigid transformation is used to establish a constraint equation set of angle depth of three lines similar to traditional P3P, and the corresponding angle depth of the third line in the set can be obtained linearly by variable substitution; finally, the rota- tion matrix can be expressed with quaternion and the pose parameters of camera in the space can be calculated by singular value decomposition (SVD). The static experiment and dynamic experiment verify the accuracy and stability of the algorithm and that the camera pose shocking is within 1~ and the 3a error is superior to 0.3'. The method in this paper can be directly used in the micro-vibration measurement of experimental platform and robot navigation and other fields and is of important theoretical significance and engineering application prospect.
基金financial support provided by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Nos. 51521003 and 61690210)
文摘Adapter ring is a commonly used component in non-cooperative satellites,which has high strength and is suitable to be recognized and grasped by the space manipulator.During proximity operations,this circle feature may be occluded by the robot arm or limited field of view.Moreover,the captured images may be underexposed when there is not enough illumination.To address these problems,this paper presents a structured light vision system with three line lasers and a monocular camera.The lasers project lines onto the surface of the satellite,and six break points are formed along both sides of the adapter ring.A closed-form solution for real-time pose estimation is given using these break points.Then,a virtual structured light platform is constructed to simulate synthetic images of the target satellite.Compared with the predefined camera parameters and relative positions,the proposed method is demonstrated to be more effective,especially at a close distance.Besides,a physical space verification system is set up to prove the effectiveness and robustness of our method under different light conditions.Experimental results indicate that it is a practical and effective method for the pose measurement of on-orbit tasks.
基金supported by the National Natural Science Foundation of China (Nos. 51375075 and 51227004)the Scientific Research Fund of Liaoning Provincial Education Department of China (No. L2013035)the Science Fund for Creative Research Groups of China (No. 51321004)
文摘Aerodynamic parameters obtained from separation experiments of internal stores in a wind tunnel are significant in aircraft designs. Accurate wind tunnel tests can help to improve the release stability of the stores and in-flight safety of the aircrafts in supersonic environments.A simulative system for free drop experiments of internal stores based on a practical project is provided in this paper. The system contains a store release mechanism, a control system and an attitude measurement system. The release mechanism adopts a six-bar linkage driven by a cylinder, which ensures the release stability. The structure and initial aerodynamic parameters of the stores are also designed and adjusted. A high speed vision measurement system for high speed rolling targets is utilized to measure the pose parameters of the internal store models and an optimizing method for the coordinates of markers is presented based on a priori model. The experimental results show excellent repeatability of the system, and indicate that the position measurement precision is less than0.13 mm, and the attitude measurement precision for pitch and yaw angles is less than 0.126°, satisfying the requirements of practical wind tunnel tests. A separation experiment for the internal stores is also conducted in the FL-3 wind tunnel of China Aerodynamics Research Institute.