针对国际疾病分类(ICD)自动编码方法的长文本处理、编码的层次结构以及长尾分布等导致的模型泛化能力弱的问题,提出一种充分利用医学预训练语言模型的基于提示学习和超球原型的小样本ICD自动编码方法(hypersphere prototypical with pro...针对国际疾病分类(ICD)自动编码方法的长文本处理、编码的层次结构以及长尾分布等导致的模型泛化能力弱的问题,提出一种充分利用医学预训练语言模型的基于提示学习和超球原型的小样本ICD自动编码方法(hypersphere prototypical with prompt learning,PromptHP)。首先,将编码描述与临床文本融合进提示学习模型中的提示模板,使得模型能够更加深入地理解临床文本;然后,充分利用预训练语言模型的先验知识进行初始预测;接着,在预训练语言模型输出表示的基础上引入超球原型进行类别建模和度量分类,并在医学数据集上微调网络,充分纳入数据知识,提高模型在小样本ICD编码分配任务上的性能;最后,对以上两部分预测结果集成加权获得最终编码预测结果。在公开医学数据集MIMIC-Ⅲ上的实验结果表明,该模型优于最先进的基线方法,PromptHP将小样本编码的macro-AUC、micro-AUC、macro-F_(1)和micro-F_(1)分别提高了1.77%、1.54%、14.22%、15.01%。实验结果验证了该模型在小样本编码分类任务中的有效性。展开更多
针对关系抽取(RE)任务中实体关系语义挖掘困难和预测关系有偏差等问题,提出一种基于掩码提示与门控记忆网络校准(MGMNC)的RE方法。首先,利用提示中的掩码学习实体之间在预训练语言模型(PLM)语义空间中的潜在语义,通过构造掩码注意力权...针对关系抽取(RE)任务中实体关系语义挖掘困难和预测关系有偏差等问题,提出一种基于掩码提示与门控记忆网络校准(MGMNC)的RE方法。首先,利用提示中的掩码学习实体之间在预训练语言模型(PLM)语义空间中的潜在语义,通过构造掩码注意力权重矩阵,将离散的掩码语义空间相互关联;其次,采用门控校准网络将含有实体和关系语义的掩码表示融入句子的全局语义;再次,将它们作为关系提示校准关系信息,随后将句子表示的最终表示映射至相应的关系类别;最后,通过更好地利用提示中掩码,并结合传统微调方法的学习句子全局语义的优势,充分激发PLM的潜力。实验结果表明,所提方法在SemEval(SemEval-2010 Task 8)数据集的F1值达到91.4%,相较于RELA(Relation Extraction with Label Augmentation)生成式方法提高了1.0个百分点;在SciERC(Entities, Relations, and Coreference for Scientific knowledge graph construction)和CLTC(Chinese Literature Text Corpus)数据集上的F1值分别达到91.0%和82.8%。所提方法在上述3个数据集上均明显优于对比方法,验证了所提方法的有效性。相较于基于生成式的方法,所提方法实现了更优的抽取性能。展开更多
随着大规模预训练语言模型的出现,文本生成技术已取得突破性进展。然而,在开放性文本生成领域,生成的内容缺乏拟人化的情感特征,使生成的文本难以让人产生共鸣和情感上的联系,可控文本生成在弥补当前文本生成技术不足方面具有重要意义...随着大规模预训练语言模型的出现,文本生成技术已取得突破性进展。然而,在开放性文本生成领域,生成的内容缺乏拟人化的情感特征,使生成的文本难以让人产生共鸣和情感上的联系,可控文本生成在弥补当前文本生成技术不足方面具有重要意义。首先,在ChnSentiCorp数据集的基础上完成主题和情感属性的扩展,同时,为构建一个可生成流畅文本且情感丰富的多元可控文本生成模型,提出一种基于扩散序列的可控文本生成模型DiffuSeq-PT。该模型以扩散模型为基础架构,利用主题情感属性和文本数据在无分类器引导条件下对序列执行扩散过程,使用预训练模型ERNIE 3.0(Large-scale Knowledge Enhanced Pre-training for Language Understanding and Generation)的编码解码能力贴合扩散模型的加噪去噪过程,最终生成符合相关主题和多情感粒度的目标文本。与基准模型DiffuSeq相比,所提模型在2个公开的真实数据集(ChnSentiCorp和辩论数据集)上分别取得0.13和0.01的BERTScore值的提升,困惑度分别下降了14.318和9.46。展开更多
交通流量预测是建设智慧城市重要的基础功能,对城市的交通管理和用户出行规划具有重要意义.由于时间维度和空间维度的扩展,交通流量的数据具有规模大、增长快速、实时更新等特征,传统的训练模型通常需要将大量的历史数据进行训练预测,...交通流量预测是建设智慧城市重要的基础功能,对城市的交通管理和用户出行规划具有重要意义.由于时间维度和空间维度的扩展,交通流量的数据具有规模大、增长快速、实时更新等特征,传统的训练模型通常需要将大量的历史数据进行训练预测,导致较长的计算时间和较高的算力成本,因此,如何使用低计算成本的预测模型来满足广泛的流量预测需求是重要的技术挑战.近年来兴起的提示微调范式在自然语言处理的下游任务推广中取得了较好的效果,受其启发,提出利用少量的实时数据来微调优化大规模历史数据预训练的模型,为交通流量模型预测的优化应用提出了一种新的思路.通过引入图提示微调的交通流量预测(traffic flow prediction based on graph prompt-finetuning,TPGPF)模型的泛化能力,在时空多维度下的交通流量图预测模型中,基于历史数据集进行预测模型的预训练,并引入可学习的提示向量,在预训练模型固化的情况下指导预训练的自监督学习模型,以适应新的数据预测任务,提升交通流量预测模型的通用性和有效性.通过在5个公开数据集上进行了大量的实验,证明了TPGPF的有效性.展开更多
文摘针对国际疾病分类(ICD)自动编码方法的长文本处理、编码的层次结构以及长尾分布等导致的模型泛化能力弱的问题,提出一种充分利用医学预训练语言模型的基于提示学习和超球原型的小样本ICD自动编码方法(hypersphere prototypical with prompt learning,PromptHP)。首先,将编码描述与临床文本融合进提示学习模型中的提示模板,使得模型能够更加深入地理解临床文本;然后,充分利用预训练语言模型的先验知识进行初始预测;接着,在预训练语言模型输出表示的基础上引入超球原型进行类别建模和度量分类,并在医学数据集上微调网络,充分纳入数据知识,提高模型在小样本ICD编码分配任务上的性能;最后,对以上两部分预测结果集成加权获得最终编码预测结果。在公开医学数据集MIMIC-Ⅲ上的实验结果表明,该模型优于最先进的基线方法,PromptHP将小样本编码的macro-AUC、micro-AUC、macro-F_(1)和micro-F_(1)分别提高了1.77%、1.54%、14.22%、15.01%。实验结果验证了该模型在小样本编码分类任务中的有效性。
文摘针对关系抽取(RE)任务中实体关系语义挖掘困难和预测关系有偏差等问题,提出一种基于掩码提示与门控记忆网络校准(MGMNC)的RE方法。首先,利用提示中的掩码学习实体之间在预训练语言模型(PLM)语义空间中的潜在语义,通过构造掩码注意力权重矩阵,将离散的掩码语义空间相互关联;其次,采用门控校准网络将含有实体和关系语义的掩码表示融入句子的全局语义;再次,将它们作为关系提示校准关系信息,随后将句子表示的最终表示映射至相应的关系类别;最后,通过更好地利用提示中掩码,并结合传统微调方法的学习句子全局语义的优势,充分激发PLM的潜力。实验结果表明,所提方法在SemEval(SemEval-2010 Task 8)数据集的F1值达到91.4%,相较于RELA(Relation Extraction with Label Augmentation)生成式方法提高了1.0个百分点;在SciERC(Entities, Relations, and Coreference for Scientific knowledge graph construction)和CLTC(Chinese Literature Text Corpus)数据集上的F1值分别达到91.0%和82.8%。所提方法在上述3个数据集上均明显优于对比方法,验证了所提方法的有效性。相较于基于生成式的方法,所提方法实现了更优的抽取性能。
文摘随着大规模预训练语言模型的出现,文本生成技术已取得突破性进展。然而,在开放性文本生成领域,生成的内容缺乏拟人化的情感特征,使生成的文本难以让人产生共鸣和情感上的联系,可控文本生成在弥补当前文本生成技术不足方面具有重要意义。首先,在ChnSentiCorp数据集的基础上完成主题和情感属性的扩展,同时,为构建一个可生成流畅文本且情感丰富的多元可控文本生成模型,提出一种基于扩散序列的可控文本生成模型DiffuSeq-PT。该模型以扩散模型为基础架构,利用主题情感属性和文本数据在无分类器引导条件下对序列执行扩散过程,使用预训练模型ERNIE 3.0(Large-scale Knowledge Enhanced Pre-training for Language Understanding and Generation)的编码解码能力贴合扩散模型的加噪去噪过程,最终生成符合相关主题和多情感粒度的目标文本。与基准模型DiffuSeq相比,所提模型在2个公开的真实数据集(ChnSentiCorp和辩论数据集)上分别取得0.13和0.01的BERTScore值的提升,困惑度分别下降了14.318和9.46。
文摘交通流量预测是建设智慧城市重要的基础功能,对城市的交通管理和用户出行规划具有重要意义.由于时间维度和空间维度的扩展,交通流量的数据具有规模大、增长快速、实时更新等特征,传统的训练模型通常需要将大量的历史数据进行训练预测,导致较长的计算时间和较高的算力成本,因此,如何使用低计算成本的预测模型来满足广泛的流量预测需求是重要的技术挑战.近年来兴起的提示微调范式在自然语言处理的下游任务推广中取得了较好的效果,受其启发,提出利用少量的实时数据来微调优化大规模历史数据预训练的模型,为交通流量模型预测的优化应用提出了一种新的思路.通过引入图提示微调的交通流量预测(traffic flow prediction based on graph prompt-finetuning,TPGPF)模型的泛化能力,在时空多维度下的交通流量图预测模型中,基于历史数据集进行预测模型的预训练,并引入可学习的提示向量,在预训练模型固化的情况下指导预训练的自监督学习模型,以适应新的数据预测任务,提升交通流量预测模型的通用性和有效性.通过在5个公开数据集上进行了大量的实验,证明了TPGPF的有效性.