In this research, the effect of precipitation hardening on the tribological behavior of the ZK60Gd/SiC composite was studied. For this purpose, ZK60Gd alloy containing with 5 and 10 wt% SiC were produced with stir cas...In this research, the effect of precipitation hardening on the tribological behavior of the ZK60Gd/SiC composite was studied. For this purpose, ZK60Gd alloy containing with 5 and 10 wt% SiC were produced with stir casting method. The microstructure characterization of the samples showed the wide distributions of Mg_(7)Zn_(3) and Gd(Mg_(0.5)Zn_(0.5)) precipitates were formed during casting. The results of hardness measurement after precipitation hardening at different temperatures showed that the hardness peck was obtained at 175 ℃. The wear tests with different loads(10, 40, 60, 90, and 120 N) and velocities(0.1, 0.3, 0.6, and 0.9 m/s) were performed on the as-cast and heat treated sample at 125, 175, and 225 for 12 h. Between the different precipitation hardening conditions, the precipitation hardened samples at 175 ℃ had the highest hardness values and least wear rate. The sample containing 10% reinforcement had the least wear rate between the unreinforced alloy and the composites. The results showed that abrasive, adhesive, delamination, MML, and fatigue wear mechanisms were the dominant wear mechanisms for the composite samples. In contrast, the dominant wear mechanism for the unreinforced samples was abrasive, adhesive,delamination, MML, and plastic deformation.展开更多
The aim of the present work is to develop a model for simulating double-peak precipitation hardening kinetics in Al-Zn-Mg alloy with the simultaneous formation of different types of precipitates at elevated temperatur...The aim of the present work is to develop a model for simulating double-peak precipitation hardening kinetics in Al-Zn-Mg alloy with the simultaneous formation of different types of precipitates at elevated temperatures based on the modified Langer-Schwartz approach. The double aging peaks are present in the long time age-hardening curves of Al-Zn-Mg alloys. The physically-based model, while taking explicitly into account nucleation, growth, coarsening of the new phase precipitations and two strengthening mechanisms associated with particle-dislocation interaction (shearing and bypassing), was used for the analysis of precipitates evolution and precipitation hardening during aging of Al-Zn-Mg alloy. Model predictions were compared with the measurements of Al-Zn-Mg alloy. The systematic and quantitative results show that the predicted hardness profiles of double peaks via adding a shape dependent parameter in the growth equation for growth and coarsening generally agree well with the measured ones. Two strengthening mechanisms associated with particle-dislocation interaction (shearing and bypassing) were considered operating simultaneously in view of the particle size-distribution. The transition from shearing to bypassing strengthening mechanism was found to occur at rather early stage of the particle growth. The bypassing was found to be the prevailing strengthening mechanism in the investigated alloys.展开更多
The precipitation hardening behavior in dilute Al-Yb alloys upon annealing at different temperatures was investigated to shed light on the mechanism of micro-alloying element in aluminum alloys. When aging at differen...The precipitation hardening behavior in dilute Al-Yb alloys upon annealing at different temperatures was investigated to shed light on the mechanism of micro-alloying element in aluminum alloys. When aging at different temperatures, the samples showed their corresponding peak hardness in the range of 400-416 MPa due to the precipitation of Al3Yb with L 12 crystal structure. The coarsening kinetics of the Al3Yb precipitates obeyed the LSW theory, which indicated that the coarsening process was controlled by the diffusion of Yb. The coherence between Al3Yb particles and matrix was maintained until the particle size reached 11 nm. When the particle size increased to about 2 nm, the shearing mechanism started to change to Orowan mechanism.展开更多
Effects of solid solution treatment and cooling on the morphology of long period stacking order(LPSO)phase and precipitation hardening behavior of Mg?2Dy?0.5Ni(molar fraction,%)alloy were investigated.Microstructures ...Effects of solid solution treatment and cooling on the morphology of long period stacking order(LPSO)phase and precipitation hardening behavior of Mg?2Dy?0.5Ni(molar fraction,%)alloy were investigated.Microstructures of the as-cast alloy mainly consisted ofα-Mg phase,bamboo-like Mg12DyNi phase with LPSO structure distributed between dendrites and small amounts of cubic Dy phases.During solid solution treatment at565oC for12h and subsequent different cooling conditions,dot-shaped,block,fine lamellar and rod-shaped LPSO phases precipitate in Mg matrix,respectively.For continuous cooling conditions(furnace and air cooling),the fine lamellar LPSO phase generally forms in grain interior and its volume fraction increases and block LPSO phase coarsens with increasing cooling time.For discontinuous cooling conditions(air cooling after furnace cooling to415and265°C),the dot-shaped LPSO grows into the rod-shaped phase,which results in an decrease of cooling hardening behavior of alloy.展开更多
The microstructural evolution and precipitation hardening of an Elinvar alloy doped with Ti and Al during isothermal aging at 700℃ have been investigated by atom probe field ion microscopy and microhardness measureme...The microstructural evolution and precipitation hardening of an Elinvar alloy doped with Ti and Al during isothermal aging at 700℃ have been investigated by atom probe field ion microscopy and microhardness measurements.The γ′ precipiates are spherical and coherent with the matrix.The chemical composition of the precipitates are(Ni_(0.53)Fe_(0.47)_3 (Ti_(0.(?))Al_(0.4)). During aging,a Lifshitz-Wagner type dissolution and coarsening reaction of the precipitates has been observed,The hardness of the material varies with the aging time and reaches maxi- mum when the average diameter of the precipitates was about 11 nm.展开更多
Ti2AlNb-based alloys with 0.0 wt%, 0.6 wt%, and 2.0 wt% carbon nanotube(CNT) addition were fabricated from spherical Ti–22 Al–25 Nb powder by sintering in the B2 single-phase region. Phase identification and micro...Ti2AlNb-based alloys with 0.0 wt%, 0.6 wt%, and 2.0 wt% carbon nanotube(CNT) addition were fabricated from spherical Ti–22 Al–25 Nb powder by sintering in the B2 single-phase region. Phase identification and microstructural examination were performed to evaluate the effect of carbon addition on the hardness of the alloys. Carbon was either in a soluble state or in carbide form depending on its concentration. The acicular carbides formed around 1050℃ were identified as TiC and facilitated the transformation of α2 + B2 → O. The TiC was located within the acicular O phase. The surrounding O phase was distributed in certain orientations with angles of 65° or 90° O phase particles. The obtained alloy was composed of acicular O, Widmanstatten B2 +O, and acicular TiC. As a result of the precipitation of carbides as well as the O phase, the hardness of the alloy with 2.0 wt% CNT addition increased to HV 429 ± 9.展开更多
The microstructure and properties of a combined precipitation hardening ultrahigh strength steel with nano-sized carbides and intermetallics were studied systematically.The results show that after tempering at 300℃lo...The microstructure and properties of a combined precipitation hardening ultrahigh strength steel with nano-sized carbides and intermetallics were studied systematically.The results show that after tempering at 300℃lots ofε-carbides are precipitated in the martensite,the strength rises and the toughness falls slightly.After tempering at 430℃,much coarser cementite lamina are precipitated in martensitic laths,which causes the impact toughness falls to the minimum value.With temperature further increasing the cementites are dissolved and M_2C carbides,β-NiAl intermetallics and reverse austenite begin to precipitate.The tensile strength and yield strength achieve the peak value at 470℃,490℃respectively.The tested steel achieve a tensile strength of 2 120 MPa,a yield strength of 1 950 MPa and impact energy of 54 J/cm^2 after optimum tempering at 510℃.When tempering temperature is above 530℃the M_2C carbides and reverse austenite is coarsening.After tempering at 560℃the reverse austenite reaches the maximum volume fraction in present work.展开更多
High temperature deformation characteristics of a semiaustenitic grade of precipitation-hardening stain- less steels were investigated by conducting hot compression tests at temperatures of 900--1 100 ℃ and strain ra...High temperature deformation characteristics of a semiaustenitic grade of precipitation-hardening stain- less steels were investigated by conducting hot compression tests at temperatures of 900--1 100 ℃ and strain rates of 0. 001--1 s^-1. Flow behavior of this alloy was investigated and it was realized that dynamic recrystallization (DRX) was responsible for flow softening. The correlation between critical strain for initiation of DRX and de- formation parameters including temperature and strain rate, and therefore, Zener-Hollomon parameter (Z) was studied. Metallographic observation was performed to determine the as-deformed microstructure. Microstructural observation shows that recrystallized grain size increases with increasing the temperature and decreasing the strain rate. The activation energy required for DRX of the investigated steel was determined using correlations of flow stress versus temperature and strain rate. The calculated value of activation energy, 460 kJ/mol, is in accordance with other studies on stainless steels. The relationship between peak strain and Z parameter is proposed.展开更多
Precipitation of Ni2Al in supersaturated NiAl containing Ta and corresponding hardening have been investigated by hardness measurements and by transmission electron microscope observations. Selected area electron dif...Precipitation of Ni2Al in supersaturated NiAl containing Ta and corresponding hardening have been investigated by hardness measurements and by transmission electron microscope observations. Selected area electron diffraction, high resolution electron microscopy and energy dispersive X-ray spectrometer analysis have shown that the Ni2Al with a hexagonal structure precipitates coherently in the B2-NiAl matrix. Ni2Al is an ordered phase with a. unit cell parameter, aNi2All=aNiAl and CNi2Al= aNiAl. The orientation relationship between the Ni2Al precipitate and the B2-NiAl matrix is (0001)Ni2Al (111)NiAl and [1120]Ni2Al[110]NiAl. NiAlhardens appreciably by the precipitation of Ni2Al phase.展开更多
High strength IF steel sheets with sufficient formability had been extensively used in automotive industry.In this paper,a new type of high strength cold-rolled IF steel with higher carbon and niobium contents was stu...High strength IF steel sheets with sufficient formability had been extensively used in automotive industry.In this paper,a new type of high strength cold-rolled IF steel with higher carbon and niobium contents was studied.Thermal plastic and continuous annealing were performed on thermo-mechanical simulator.The transformation points were tested by thermal expansion apparatus.Optical microscopy and transmission election microscope (TEM) were used to analyze the microstructure and the secondary precipitates of the steel.The results showed,the ductibility temperature range was from 950℃ to 1250℃ and the transformation points were 887℃ and 913℃ respectively.The grain size of this steel was smaller than that of conventional high strength IF steel.At the mean time,there were many fine Nb(C,N) precipitates distributed in the intra-granular regions and the PFZ (precipitate free zone) were formed in the neighborhood of grain boundaries.Due to the unique micro-structural feature,the yield strength and the yield ratio of the steel were decreased while the tensile strength was increased.With the increasing of the annealing temperature,the strength decreased,the total elongation A50,r-value at 15% strain and n-value were all increased.In order to obtain the favorable mechanical properties,the skin-pass rolling rate should be chosen at 0.6-0.8%.展开更多
Aluminum alloy matrix composites have found a predominant place in research, and their applications are explored in almost all industries. The aerospace industry has been using precipitation-hardenable alloys in struc...Aluminum alloy matrix composites have found a predominant place in research, and their applications are explored in almost all industries. The aerospace industry has been using precipitation-hardenable alloys in structural applications. However, insufficient literature is available on the influence of multiwalled carbon nanotubes (MWCNTs) on precipitation-hardenable alloy composite materials; thus, this work was designed to elucidate the effect on MWCNT reinforcement on AA2219 with and without precipitation hardening. Reinforcement with MWCNTs has been reported to accelerate precipitation and to achieve greater hardness within a much shorter time. The addition of 0.75wt% MWCNTs resulted in maximal hardness at 90 min, which is approximately 27% of improvement over the maximum hardness achieved by the corresponding monolithic alloy after 10 h of aging. The sample reinforced with 0.75wt% MWCNTs showed an improve- ment of 82% in hardness by solutionizing and aging compared to that achieved by sintering.展开更多
The interactions between a plate-like precipitate and two twin boundaries(TBs)({1012},{1121}) in magnesium alloys are studied using molecular dynamics(MD) simulations. The precipitate is not sheared by {1012} TB, but ...The interactions between a plate-like precipitate and two twin boundaries(TBs)({1012},{1121}) in magnesium alloys are studied using molecular dynamics(MD) simulations. The precipitate is not sheared by {1012} TB, but sheared by {1121} TB. Shearing on the(110) plane is the predominant deformation mode in the sheared precipitate. Then, the blocking effects of precipitates with different sizes are studied for {1121} twinning. All the precipitates show a blocking effect on {1121} twinning although they are sheared, while the blocking effects of precipitates with different sizes are different. The blocking effect increases significantly with the increasing precipitate length(in-plane size along TB) and thickness, whereas changes weakly as the precipitate width changes. Based on the revealed interaction mechanisms, a critical twin shear is calculated theoretically by the Eshelby solutions to determine which TB is able to shear the precipitate. In addition, an analytical hardening model of sheared precipitates is proposed by analyzing the force equilibrium during TB-precipitate interactions. This model indicates that the blocking effect depends solely on the area fraction of the precipitate cross-section, and shows good agreement with the current MD simulations. Finally, the blocking effects of plate-like precipitates on the {1012} twinning(non-sheared precipitate), {1121} twinning(sheared precipitate) and basal dislocations(non-sheared precipitate) are compared together. Results show that the blocking effect on {1121} twinning is stronger than that on {1012} twinning, while the effect on basal dislocations is weakest. The precipitate-TB interaction mechanisms and precipitation hardening models revealed in this work are of great significance for improving the mechanical property of magnesium alloys by designing microstructure.展开更多
In this research, the dynamic recrystallization (DRX) behavior of an as-cast precipitation hardenable (PH) stainless steel was investigated by conducting hot compression tests at temperatures between 950-1150℃ an...In this research, the dynamic recrystallization (DRX) behavior of an as-cast precipitation hardenable (PH) stainless steel was investigated by conducting hot compression tests at temperatures between 950-1150℃ and under strain rates of 0.001-1 s^-1. The flow stress curves show that the DRX is responsible for flow softening during hot compression. The effects of temperature and strain rate on the strain and stress corresponding to peak point (εp and σp) of flow curve were analyzed individually. It is realized that, they increase with strain rate and decrease with temperature. The relationship between Zener-Hollomon parameter (Z) and εp was investigated and the equation of εp=4.3×10^-4^0.14 was proposed. The strain for the maximum rate of DRX (εmax) was determined under different deformation conditions. Therefore, it is realized that it increases with Z parameter and vise versa. On the basis of obtained results, the equation of εmax=9.5 × 10^-4Z0.12 was proposed.展开更多
The effects of on-line solution, off-line solution and aging heat treatment on the microstructure and hardness of the die-cast AZ91D alloys were investigated. Brinell hardness of die-cast AZ91D alloy increases through...The effects of on-line solution, off-line solution and aging heat treatment on the microstructure and hardness of the die-cast AZ91D alloys were investigated. Brinell hardness of die-cast AZ91D alloy increases through on-line solution and off-line aging treatment but decreases after off-line solution treatment. By X-ray diffractometry, optical microscopy, differential thermal analysis, scanning electron microscopy and X-ray energy dispersive spectroscopy, it is found that the microstructures of the die-cast AZ91D magnesium alloy before and after on-line solution and off-line aging are similar, consisting of α-Mg and β-Al12Mg17. The precipitation of Al element is prevented by on-line solution so that the effect of solid solution strengthening is enhanced. The β-Al12Mg17 phases precipitate from supersaturated Mg solid solution after off-line aging treatment, and lead to microstructure refinement of AZ91D alloy, so the effect of precipitation hardening is enhanced. The β-Al12Mg17 phases dissolve in the substructure after off-line solution treatment, which leads to that the grain boundary strengthening phase is reduced significantly and the hardness of die cast AZ91D is reduced.展开更多
An as-solution treated Mg-6Gd-1Y-0.4Zr alloy was processed by low temperature thermo-mechanical treatments (LT-TMT), including cold tension with various strains followed by aging at 200 °C to peak hardness. The...An as-solution treated Mg-6Gd-1Y-0.4Zr alloy was processed by low temperature thermo-mechanical treatments (LT-TMT), including cold tension with various strains followed by aging at 200 °C to peak hardness. The results show that the precipitation kinetics of the alloy experienced LT-TMT is greatly accelerated and the aging time to peak hardness is greatly decreased with increasing tensile strain. The tensile yield strength, ultimate tensile strength and elongation at room temperature of the alloy after cold tension with strain of 10% and peak aging at 200 °C are 251 MPa, 296 MPa and 8%, respectively, which are superior to the commercial heat-resistant WE54 alloy, although the latter has a higher rare earth element content.展开更多
Temperature variation and solution treatment of high strength aluminum alloy were investigated with temperature data acquisition system,microstructural observation,mechanical properties test,electrical conductivity me...Temperature variation and solution treatment of high strength aluminum alloy were investigated with temperature data acquisition system,microstructural observation,mechanical properties test,electrical conductivity measurement and differential scanning calorimetry(DSC) analysis.Specimens with two dimensions were employed in the experiment.The results indicate that the specimens with large size undergo low solution temperature and short time,giving rise to the reduction of hardening precipitates.The optimized solution treatments for specimens with dimensions of 25 mm×25 mm×2.5 mm and 70 mm×60 mm×20 mm are(480 ℃,30 min) and(480 ℃,90 min),respectively.The densities of GP zones and η' phases of the small specimen are higher than those of the large specimen,which is consistent with the properties of the alloys.展开更多
Effect of the heat treatment, including solution treatment (ST) and aging treatment (AT), on the prior austenite grain (PAG) size, microstructure and mechanical properties of a precipitation hardening maraging s...Effect of the heat treatment, including solution treatment (ST) and aging treatment (AT), on the prior austenite grain (PAG) size, microstructure and mechanical properties of a precipitation hardening maraging stainless steel was investigated. The results indicate that the relations between PAG size and yield strength (σy) under both ST and AT conditions obey the HalI-Petch relationship. Furthermore, after ST at 1050℃ for 1 h+cryogenic treated (CT) at -70℃ for 8 h+AT at 535℃ for 4 h, the tested steel showed its ultimate tensile strength (σb) and σy over 1900 MPa and 1750 MPa, respectively.展开更多
This paper presents a re-evaluation of the room temperature mechanical properties and high temperature creep resistance of magnesium die-casting alloy AE44(Mg-4Al-4RE)in light of the influence of minor Mn addition.It ...This paper presents a re-evaluation of the room temperature mechanical properties and high temperature creep resistance of magnesium die-casting alloy AE44(Mg-4Al-4RE)in light of the influence of minor Mn addition.It is shown that the Mn-containing AE44 exhibits distinct age hardening response upon direct ageing(T5)due to the precipitation of nanoscale Al-Mn particles,as reported previously in a similar alloy.The T5 ageing leads to a significant improvement in strength with similar ductility.Consequently,the T5-aged AE44 has a remarkably better strength-ductility combination than most Mg die-casting alloys and even the Al die-casting alloy A380.Minor Mn addition is also shown to be critical for the creep resistance of AE44 whereas the influence of the RE constituent is not as significant as previously thought,which reaffirms that precipitation hardening of theα-Mg matrix is more important than grain boundary reinforcement by intermetallic phases for the creep resistance of die-cast Mg alloys.The findings in this work could provide new application perspectives for AE44,particularly in the automotive industry.展开更多
Several kinds of special alloys are produced on the surfaces of iron andsteels by using double glow surface alloying technology. Surface Ni-Cr-Mo-Nb alloy, surfaceprecipitation hardening high speed steel and surface p...Several kinds of special alloys are produced on the surfaces of iron andsteels by using double glow surface alloying technology. Surface Ni-Cr-Mo-Nb alloy, surfaceprecipitation hardening high speed steel and surface precipitation hardening stainless steel areintroduced.展开更多
Mechanical properties of aluminum−silicon−copper alloys are enhanced through precipitation hardening.The response of these alloys to age-hardening is very slow.To overcome this problem,0.2,0.4 and 0.7 wt.%magnesium we...Mechanical properties of aluminum−silicon−copper alloys are enhanced through precipitation hardening.The response of these alloys to age-hardening is very slow.To overcome this problem,0.2,0.4 and 0.7 wt.%magnesium were added to Al−10.5Si−3.4Cu alloy.The new alloys were subjected to two types of precipitation hardening processes different in the solutionizing stage.The results showed that the presence of various amounts of magnesium in the composition of this alloy accelerates the response to ageing treatments,increasing the hardness and strength.Higher mechanical properties can be achieved when the alloys were subjected to a two-stage solution heat treatment.It is found that Al−10.5Si−3.4Cu alloy containing 0.2 wt.%Mg treated through a two-stage solution process,has optimum properties with ultimate tensile strength of 383.9 MPa,yield strength of 289.7 MPa and elongation of 3.97%,and can be used as a substitute for a large number of aluminum castings which need high strength and excellent castability.展开更多
文摘In this research, the effect of precipitation hardening on the tribological behavior of the ZK60Gd/SiC composite was studied. For this purpose, ZK60Gd alloy containing with 5 and 10 wt% SiC were produced with stir casting method. The microstructure characterization of the samples showed the wide distributions of Mg_(7)Zn_(3) and Gd(Mg_(0.5)Zn_(0.5)) precipitates were formed during casting. The results of hardness measurement after precipitation hardening at different temperatures showed that the hardness peck was obtained at 175 ℃. The wear tests with different loads(10, 40, 60, 90, and 120 N) and velocities(0.1, 0.3, 0.6, and 0.9 m/s) were performed on the as-cast and heat treated sample at 125, 175, and 225 for 12 h. Between the different precipitation hardening conditions, the precipitation hardened samples at 175 ℃ had the highest hardness values and least wear rate. The sample containing 10% reinforcement had the least wear rate between the unreinforced alloy and the composites. The results showed that abrasive, adhesive, delamination, MML, and fatigue wear mechanisms were the dominant wear mechanisms for the composite samples. In contrast, the dominant wear mechanism for the unreinforced samples was abrasive, adhesive,delamination, MML, and plastic deformation.
基金Project(51021063)supported by the Creative Research Group of the National Natural Science Foundation of ChinaProject(50831007)supported by the National Natural Science Foundation of China+1 种基金Project(2011CB610401)supported by the National Basic Research Program of ChinaProject(12C1142)supported by the Education Department of Hunan Province,China
文摘The aim of the present work is to develop a model for simulating double-peak precipitation hardening kinetics in Al-Zn-Mg alloy with the simultaneous formation of different types of precipitates at elevated temperatures based on the modified Langer-Schwartz approach. The double aging peaks are present in the long time age-hardening curves of Al-Zn-Mg alloys. The physically-based model, while taking explicitly into account nucleation, growth, coarsening of the new phase precipitations and two strengthening mechanisms associated with particle-dislocation interaction (shearing and bypassing), was used for the analysis of precipitates evolution and precipitation hardening during aging of Al-Zn-Mg alloy. Model predictions were compared with the measurements of Al-Zn-Mg alloy. The systematic and quantitative results show that the predicted hardness profiles of double peaks via adding a shape dependent parameter in the growth equation for growth and coarsening generally agree well with the measured ones. Two strengthening mechanisms associated with particle-dislocation interaction (shearing and bypassing) were considered operating simultaneously in view of the particle size-distribution. The transition from shearing to bypassing strengthening mechanism was found to occur at rather early stage of the particle growth. The bypassing was found to be the prevailing strengthening mechanism in the investigated alloys.
基金Project(2013AA031301)supported by Hi-tech Research and Development Program of ChinaProject(S2013ZR0611)supported by the National International Scientific and Technological Cooperation Program of China
文摘The precipitation hardening behavior in dilute Al-Yb alloys upon annealing at different temperatures was investigated to shed light on the mechanism of micro-alloying element in aluminum alloys. When aging at different temperatures, the samples showed their corresponding peak hardness in the range of 400-416 MPa due to the precipitation of Al3Yb with L 12 crystal structure. The coarsening kinetics of the Al3Yb precipitates obeyed the LSW theory, which indicated that the coarsening process was controlled by the diffusion of Yb. The coherence between Al3Yb particles and matrix was maintained until the particle size reached 11 nm. When the particle size increased to about 2 nm, the shearing mechanism started to change to Orowan mechanism.
基金Projects(51301082,51464031) supported by the National Natural Science Foundation of ChinaProject(2015011038) supported by the Natural Science Foundation of Shanxi Province,China
文摘Effects of solid solution treatment and cooling on the morphology of long period stacking order(LPSO)phase and precipitation hardening behavior of Mg?2Dy?0.5Ni(molar fraction,%)alloy were investigated.Microstructures of the as-cast alloy mainly consisted ofα-Mg phase,bamboo-like Mg12DyNi phase with LPSO structure distributed between dendrites and small amounts of cubic Dy phases.During solid solution treatment at565oC for12h and subsequent different cooling conditions,dot-shaped,block,fine lamellar and rod-shaped LPSO phases precipitate in Mg matrix,respectively.For continuous cooling conditions(furnace and air cooling),the fine lamellar LPSO phase generally forms in grain interior and its volume fraction increases and block LPSO phase coarsens with increasing cooling time.For discontinuous cooling conditions(air cooling after furnace cooling to415and265°C),the dot-shaped LPSO grows into the rod-shaped phase,which results in an decrease of cooling hardening behavior of alloy.
文摘The microstructural evolution and precipitation hardening of an Elinvar alloy doped with Ti and Al during isothermal aging at 700℃ have been investigated by atom probe field ion microscopy and microhardness measurements.The γ′ precipiates are spherical and coherent with the matrix.The chemical composition of the precipitates are(Ni_(0.53)Fe_(0.47)_3 (Ti_(0.(?))Al_(0.4)). During aging,a Lifshitz-Wagner type dissolution and coarsening reaction of the precipitates has been observed,The hardness of the material varies with the aging time and reaches maxi- mum when the average diameter of the precipitates was about 11 nm.
基金the China National Funds for Distinguished Young Scientists (No. 51325401)the National Natural Science Foundation of China (Nos. 51474156 and U1660201)the National Magnetic Confinement Fusion Energy Research Program of China (No. 2014GB125006) for financial support
文摘Ti2AlNb-based alloys with 0.0 wt%, 0.6 wt%, and 2.0 wt% carbon nanotube(CNT) addition were fabricated from spherical Ti–22 Al–25 Nb powder by sintering in the B2 single-phase region. Phase identification and microstructural examination were performed to evaluate the effect of carbon addition on the hardness of the alloys. Carbon was either in a soluble state or in carbide form depending on its concentration. The acicular carbides formed around 1050℃ were identified as TiC and facilitated the transformation of α2 + B2 → O. The TiC was located within the acicular O phase. The surrounding O phase was distributed in certain orientations with angles of 65° or 90° O phase particles. The obtained alloy was composed of acicular O, Widmanstatten B2 +O, and acicular TiC. As a result of the precipitation of carbides as well as the O phase, the hardness of the alloy with 2.0 wt% CNT addition increased to HV 429 ± 9.
文摘The microstructure and properties of a combined precipitation hardening ultrahigh strength steel with nano-sized carbides and intermetallics were studied systematically.The results show that after tempering at 300℃lots ofε-carbides are precipitated in the martensite,the strength rises and the toughness falls slightly.After tempering at 430℃,much coarser cementite lamina are precipitated in martensitic laths,which causes the impact toughness falls to the minimum value.With temperature further increasing the cementites are dissolved and M_2C carbides,β-NiAl intermetallics and reverse austenite begin to precipitate.The tensile strength and yield strength achieve the peak value at 470℃,490℃respectively.The tested steel achieve a tensile strength of 2 120 MPa,a yield strength of 1 950 MPa and impact energy of 54 J/cm^2 after optimum tempering at 510℃.When tempering temperature is above 530℃the M_2C carbides and reverse austenite is coarsening.After tempering at 560℃the reverse austenite reaches the maximum volume fraction in present work.
文摘High temperature deformation characteristics of a semiaustenitic grade of precipitation-hardening stain- less steels were investigated by conducting hot compression tests at temperatures of 900--1 100 ℃ and strain rates of 0. 001--1 s^-1. Flow behavior of this alloy was investigated and it was realized that dynamic recrystallization (DRX) was responsible for flow softening. The correlation between critical strain for initiation of DRX and de- formation parameters including temperature and strain rate, and therefore, Zener-Hollomon parameter (Z) was studied. Metallographic observation was performed to determine the as-deformed microstructure. Microstructural observation shows that recrystallized grain size increases with increasing the temperature and decreasing the strain rate. The activation energy required for DRX of the investigated steel was determined using correlations of flow stress versus temperature and strain rate. The calculated value of activation energy, 460 kJ/mol, is in accordance with other studies on stainless steels. The relationship between peak strain and Z parameter is proposed.
文摘Precipitation of Ni2Al in supersaturated NiAl containing Ta and corresponding hardening have been investigated by hardness measurements and by transmission electron microscope observations. Selected area electron diffraction, high resolution electron microscopy and energy dispersive X-ray spectrometer analysis have shown that the Ni2Al with a hexagonal structure precipitates coherently in the B2-NiAl matrix. Ni2Al is an ordered phase with a. unit cell parameter, aNi2All=aNiAl and CNi2Al= aNiAl. The orientation relationship between the Ni2Al precipitate and the B2-NiAl matrix is (0001)Ni2Al (111)NiAl and [1120]Ni2Al[110]NiAl. NiAlhardens appreciably by the precipitation of Ni2Al phase.
文摘High strength IF steel sheets with sufficient formability had been extensively used in automotive industry.In this paper,a new type of high strength cold-rolled IF steel with higher carbon and niobium contents was studied.Thermal plastic and continuous annealing were performed on thermo-mechanical simulator.The transformation points were tested by thermal expansion apparatus.Optical microscopy and transmission election microscope (TEM) were used to analyze the microstructure and the secondary precipitates of the steel.The results showed,the ductibility temperature range was from 950℃ to 1250℃ and the transformation points were 887℃ and 913℃ respectively.The grain size of this steel was smaller than that of conventional high strength IF steel.At the mean time,there were many fine Nb(C,N) precipitates distributed in the intra-granular regions and the PFZ (precipitate free zone) were formed in the neighborhood of grain boundaries.Due to the unique micro-structural feature,the yield strength and the yield ratio of the steel were decreased while the tensile strength was increased.With the increasing of the annealing temperature,the strength decreased,the total elongation A50,r-value at 15% strain and n-value were all increased.In order to obtain the favorable mechanical properties,the skin-pass rolling rate should be chosen at 0.6-0.8%.
文摘Aluminum alloy matrix composites have found a predominant place in research, and their applications are explored in almost all industries. The aerospace industry has been using precipitation-hardenable alloys in structural applications. However, insufficient literature is available on the influence of multiwalled carbon nanotubes (MWCNTs) on precipitation-hardenable alloy composite materials; thus, this work was designed to elucidate the effect on MWCNT reinforcement on AA2219 with and without precipitation hardening. Reinforcement with MWCNTs has been reported to accelerate precipitation and to achieve greater hardness within a much shorter time. The addition of 0.75wt% MWCNTs resulted in maximal hardness at 90 min, which is approximately 27% of improvement over the maximum hardness achieved by the corresponding monolithic alloy after 10 h of aging. The sample reinforced with 0.75wt% MWCNTs showed an improve- ment of 82% in hardness by solutionizing and aging compared to that achieved by sintering.
基金financial support from National Natural Science Foundation of China (12072211)Sichuan Province Science and Technology Project (2020JDJQ0029)。
文摘The interactions between a plate-like precipitate and two twin boundaries(TBs)({1012},{1121}) in magnesium alloys are studied using molecular dynamics(MD) simulations. The precipitate is not sheared by {1012} TB, but sheared by {1121} TB. Shearing on the(110) plane is the predominant deformation mode in the sheared precipitate. Then, the blocking effects of precipitates with different sizes are studied for {1121} twinning. All the precipitates show a blocking effect on {1121} twinning although they are sheared, while the blocking effects of precipitates with different sizes are different. The blocking effect increases significantly with the increasing precipitate length(in-plane size along TB) and thickness, whereas changes weakly as the precipitate width changes. Based on the revealed interaction mechanisms, a critical twin shear is calculated theoretically by the Eshelby solutions to determine which TB is able to shear the precipitate. In addition, an analytical hardening model of sheared precipitates is proposed by analyzing the force equilibrium during TB-precipitate interactions. This model indicates that the blocking effect depends solely on the area fraction of the precipitate cross-section, and shows good agreement with the current MD simulations. Finally, the blocking effects of plate-like precipitates on the {1012} twinning(non-sheared precipitate), {1121} twinning(sheared precipitate) and basal dislocations(non-sheared precipitate) are compared together. Results show that the blocking effect on {1121} twinning is stronger than that on {1012} twinning, while the effect on basal dislocations is weakest. The precipitate-TB interaction mechanisms and precipitation hardening models revealed in this work are of great significance for improving the mechanical property of magnesium alloys by designing microstructure.
文摘In this research, the dynamic recrystallization (DRX) behavior of an as-cast precipitation hardenable (PH) stainless steel was investigated by conducting hot compression tests at temperatures between 950-1150℃ and under strain rates of 0.001-1 s^-1. The flow stress curves show that the DRX is responsible for flow softening during hot compression. The effects of temperature and strain rate on the strain and stress corresponding to peak point (εp and σp) of flow curve were analyzed individually. It is realized that, they increase with strain rate and decrease with temperature. The relationship between Zener-Hollomon parameter (Z) and εp was investigated and the equation of εp=4.3×10^-4^0.14 was proposed. The strain for the maximum rate of DRX (εmax) was determined under different deformation conditions. Therefore, it is realized that it increases with Z parameter and vise versa. On the basis of obtained results, the equation of εmax=9.5 × 10^-4Z0.12 was proposed.
基金Projects (2011BAE22B01, 2011BAE22B06) supported by the National Key Technologies R&D Program During the 12th Five-Year Plan Period of ChinaProject (2010NC018) supported by the Innovation Fund of Inner Mongolia University of Science and Technology, China
文摘The effects of on-line solution, off-line solution and aging heat treatment on the microstructure and hardness of the die-cast AZ91D alloys were investigated. Brinell hardness of die-cast AZ91D alloy increases through on-line solution and off-line aging treatment but decreases after off-line solution treatment. By X-ray diffractometry, optical microscopy, differential thermal analysis, scanning electron microscopy and X-ray energy dispersive spectroscopy, it is found that the microstructures of the die-cast AZ91D magnesium alloy before and after on-line solution and off-line aging are similar, consisting of α-Mg and β-Al12Mg17. The precipitation of Al element is prevented by on-line solution so that the effect of solid solution strengthening is enhanced. The β-Al12Mg17 phases precipitate from supersaturated Mg solid solution after off-line aging treatment, and lead to microstructure refinement of AZ91D alloy, so the effect of precipitation hardening is enhanced. The β-Al12Mg17 phases dissolve in the substructure after off-line solution treatment, which leads to that the grain boundary strengthening phase is reduced significantly and the hardness of die cast AZ91D is reduced.
基金Projects(50971089,51171113,51001072)supported by the National Natural Science Foundation of ChinaProjects(2012M511089,20090460615,201003267)supported by the Postdoctoral Science Foundation of China
文摘An as-solution treated Mg-6Gd-1Y-0.4Zr alloy was processed by low temperature thermo-mechanical treatments (LT-TMT), including cold tension with various strains followed by aging at 200 °C to peak hardness. The results show that the precipitation kinetics of the alloy experienced LT-TMT is greatly accelerated and the aging time to peak hardness is greatly decreased with increasing tensile strain. The tensile yield strength, ultimate tensile strength and elongation at room temperature of the alloy after cold tension with strain of 10% and peak aging at 200 °C are 251 MPa, 296 MPa and 8%, respectively, which are superior to the commercial heat-resistant WE54 alloy, although the latter has a higher rare earth element content.
基金Project(2010DFB50340) supported by the International Technical Cooperation ProjectProject(50904010) supported by the National Natural Science Foundation of China
文摘Temperature variation and solution treatment of high strength aluminum alloy were investigated with temperature data acquisition system,microstructural observation,mechanical properties test,electrical conductivity measurement and differential scanning calorimetry(DSC) analysis.Specimens with two dimensions were employed in the experiment.The results indicate that the specimens with large size undergo low solution temperature and short time,giving rise to the reduction of hardening precipitates.The optimized solution treatments for specimens with dimensions of 25 mm×25 mm×2.5 mm and 70 mm×60 mm×20 mm are(480 ℃,30 min) and(480 ℃,90 min),respectively.The densities of GP zones and η' phases of the small specimen are higher than those of the large specimen,which is consistent with the properties of the alloys.
文摘Effect of the heat treatment, including solution treatment (ST) and aging treatment (AT), on the prior austenite grain (PAG) size, microstructure and mechanical properties of a precipitation hardening maraging stainless steel was investigated. The results indicate that the relations between PAG size and yield strength (σy) under both ST and AT conditions obey the HalI-Petch relationship. Furthermore, after ST at 1050℃ for 1 h+cryogenic treated (CT) at -70℃ for 8 h+AT at 535℃ for 4 h, the tested steel showed its ultimate tensile strength (σb) and σy over 1900 MPa and 1750 MPa, respectively.
基金supported by Australian Research Council(LP160100690)Magontec Ltd.Monash Centre for Electron Microscopy(MCEM)。
文摘This paper presents a re-evaluation of the room temperature mechanical properties and high temperature creep resistance of magnesium die-casting alloy AE44(Mg-4Al-4RE)in light of the influence of minor Mn addition.It is shown that the Mn-containing AE44 exhibits distinct age hardening response upon direct ageing(T5)due to the precipitation of nanoscale Al-Mn particles,as reported previously in a similar alloy.The T5 ageing leads to a significant improvement in strength with similar ductility.Consequently,the T5-aged AE44 has a remarkably better strength-ductility combination than most Mg die-casting alloys and even the Al die-casting alloy A380.Minor Mn addition is also shown to be critical for the creep resistance of AE44 whereas the influence of the RE constituent is not as significant as previously thought,which reaffirms that precipitation hardening of theα-Mg matrix is more important than grain boundary reinforcement by intermetallic phases for the creep resistance of die-cast Mg alloys.The findings in this work could provide new application perspectives for AE44,particularly in the automotive industry.
文摘Several kinds of special alloys are produced on the surfaces of iron andsteels by using double glow surface alloying technology. Surface Ni-Cr-Mo-Nb alloy, surfaceprecipitation hardening high speed steel and surface precipitation hardening stainless steel areintroduced.
文摘Mechanical properties of aluminum−silicon−copper alloys are enhanced through precipitation hardening.The response of these alloys to age-hardening is very slow.To overcome this problem,0.2,0.4 and 0.7 wt.%magnesium were added to Al−10.5Si−3.4Cu alloy.The new alloys were subjected to two types of precipitation hardening processes different in the solutionizing stage.The results showed that the presence of various amounts of magnesium in the composition of this alloy accelerates the response to ageing treatments,increasing the hardness and strength.Higher mechanical properties can be achieved when the alloys were subjected to a two-stage solution heat treatment.It is found that Al−10.5Si−3.4Cu alloy containing 0.2 wt.%Mg treated through a two-stage solution process,has optimum properties with ultimate tensile strength of 383.9 MPa,yield strength of 289.7 MPa and elongation of 3.97%,and can be used as a substitute for a large number of aluminum castings which need high strength and excellent castability.