CeO_2-ZrO_2 mixed oxides are widely used in the three-way catalysts due to their unique reversible oxygen storage and release capacity. Large surface area, high oxygen storage capacity and good thermal stability of ce...CeO_2-ZrO_2 mixed oxides are widely used in the three-way catalysts due to their unique reversible oxygen storage and release capacity. Large surface area, high oxygen storage capacity and good thermal stability of cerium zirconium mixed oxides are the key properties for the automotive catalysts so as to meet the strict emission regulations. In this work, alumina modified CeZrLaNd mixed oxides were prepared by a co-precipitation method. The effects of moisture in precursor and inert N2 atmosphere during calcinations on the structure and properties were investigated by Brunauer-Emmett-Teller(BET) surface area measurements, X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), hydrogen temperature-programmed reduction(H_2-TPR), oxygen storage capacity(OSC), Raman spectroscopy, and X-ray photoelectron spectroscopy(XPS). The results show that the moisture in precursor during calcinations increases the crystal grain size of the cerium zirconium mixed oxides, improving the thermal stability. And the aged surface area of sample after being calcined at1000 ℃ for 4 h reaches 68.8 m^2/g(5.7% increase compared with the common sample). The inert N2 atmosphere endows a great pore-enlarging effect, which leads to high fresh surface area of 148.9 m2/g(13.5% increase compared with the common sample) and big pore volume of 0.5705 mL/g. The redox and oxygen storage capacity are also improved by inert N2 atmosphere with high OSC value of 241.06μmolO_2/g(41.3% increase compared with the common calcination), due to the abundant formation of the crystal defects and oxygen vacancies.展开更多
This paper establishes the kinetic equations in atmospheric chemistry that describe the macroscopic mechanisms of secondary fine particle pollution generated by precursors during atmospheric self-purification.The dyna...This paper establishes the kinetic equations in atmospheric chemistry that describe the macroscopic mechanisms of secondary fine particle pollution generated by precursors during atmospheric self-purification.The dynamic and static solutions of these equations can be applied to calculate quantitative relationships between the concentration ratio of precursors and secondary fine particles as well as the physical clearance power of the atmosphere,chemical reaction rate,and the scale of a contaminated area.The dynamic solution presented here therefore corresponds with a theoretical formula for calculating the overall rate constant for the oxidation reaction of reducing pollutants in the actual atmosphere based on their local concentrations and meteorological monitoring data.In addition,the static solution presented in this paper reveals the functional relationship between the concentration of secondary fine particles and precursor emission rate as well as atmospheric self-purification capacity.This result can be applied to determine the atmospheric environmental capacity of a precursor.Hourly records collected over the last 40 years from 378 weather stations in China's Mainland as well as the spatiotemporal distribution sequence of overall oxidation reaction rates from precursors show that when the reference concentration limit of secondary fine particles is100μmol m-3,the atmospheric environmental capacity of total precursors canbe calculated as 24890×1010 mol yr-1.Thus,when the annual average concentration limit of given fine particles is 35μg m-3 and the ratio of sulfate and nitrate to 30%and 20%of the total amount of fine particles,the capacities of SO2,NOx and NH3 are 1255,1344,and 832(1010g yr-1),respectively.The clearance density of precursors for different return periods across China's Mainland under above conditions are also provided in this study.展开更多
基金Project supported by the China National Key Research and Development Program(2017YFC0211002)
文摘CeO_2-ZrO_2 mixed oxides are widely used in the three-way catalysts due to their unique reversible oxygen storage and release capacity. Large surface area, high oxygen storage capacity and good thermal stability of cerium zirconium mixed oxides are the key properties for the automotive catalysts so as to meet the strict emission regulations. In this work, alumina modified CeZrLaNd mixed oxides were prepared by a co-precipitation method. The effects of moisture in precursor and inert N2 atmosphere during calcinations on the structure and properties were investigated by Brunauer-Emmett-Teller(BET) surface area measurements, X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), hydrogen temperature-programmed reduction(H_2-TPR), oxygen storage capacity(OSC), Raman spectroscopy, and X-ray photoelectron spectroscopy(XPS). The results show that the moisture in precursor during calcinations increases the crystal grain size of the cerium zirconium mixed oxides, improving the thermal stability. And the aged surface area of sample after being calcined at1000 ℃ for 4 h reaches 68.8 m^2/g(5.7% increase compared with the common sample). The inert N2 atmosphere endows a great pore-enlarging effect, which leads to high fresh surface area of 148.9 m2/g(13.5% increase compared with the common sample) and big pore volume of 0.5705 mL/g. The redox and oxygen storage capacity are also improved by inert N2 atmosphere with high OSC value of 241.06μmolO_2/g(41.3% increase compared with the common calcination), due to the abundant formation of the crystal defects and oxygen vacancies.
基金supported by S & T Development Program (Grant No. CAMS 2018KJ026)
文摘This paper establishes the kinetic equations in atmospheric chemistry that describe the macroscopic mechanisms of secondary fine particle pollution generated by precursors during atmospheric self-purification.The dynamic and static solutions of these equations can be applied to calculate quantitative relationships between the concentration ratio of precursors and secondary fine particles as well as the physical clearance power of the atmosphere,chemical reaction rate,and the scale of a contaminated area.The dynamic solution presented here therefore corresponds with a theoretical formula for calculating the overall rate constant for the oxidation reaction of reducing pollutants in the actual atmosphere based on their local concentrations and meteorological monitoring data.In addition,the static solution presented in this paper reveals the functional relationship between the concentration of secondary fine particles and precursor emission rate as well as atmospheric self-purification capacity.This result can be applied to determine the atmospheric environmental capacity of a precursor.Hourly records collected over the last 40 years from 378 weather stations in China's Mainland as well as the spatiotemporal distribution sequence of overall oxidation reaction rates from precursors show that when the reference concentration limit of secondary fine particles is100μmol m-3,the atmospheric environmental capacity of total precursors canbe calculated as 24890×1010 mol yr-1.Thus,when the annual average concentration limit of given fine particles is 35μg m-3 and the ratio of sulfate and nitrate to 30%and 20%of the total amount of fine particles,the capacities of SO2,NOx and NH3 are 1255,1344,and 832(1010g yr-1),respectively.The clearance density of precursors for different return periods across China's Mainland under above conditions are also provided in this study.