期刊文献+
共找到138,970篇文章
< 1 2 250 >
每页显示 20 50 100
Predicting full-thickness necrosis in adult acute corrosive ingestion injuries in a sub-Saharan African setting
1
作者 Matthias Frank Scriba Eduard Jonas Galya Eileen Chinnery 《World Journal of Gastrointestinal Pharmacology and Therapeutics》 2024年第6期39-50,共12页
BACKGROUND Corrosive ingestion remains an important global pathology with high morbidity and mortality.Data on the acute management of adult corrosive injuries from sub-Saharan Africa is scarce,with international inve... BACKGROUND Corrosive ingestion remains an important global pathology with high morbidity and mortality.Data on the acute management of adult corrosive injuries from sub-Saharan Africa is scarce,with international investigative algorithms,relying heavily on computed tomography(CT),having limited availability in this setting.AIM To investigate the corrosive injury spectrum in a low-resource setting and the applicability of parameters for predicting full-thickness(FT)necrosis and mortality.METHODS A retrospective analysis of a prospective corrosive injury registry(March 1,2017–October 31,2023)was performed to include all adult patients with acute corrosive ingestion managed at a single,academic referral centre in Cape Town,South Africa.Patient demographics,corrosive ingestion details,initial investigations,management,and short-term outcomes were described using descriptive statistics while multivariate analysis with receiver operator characteristic area under the curve graphs(ROC AUC)were used to identify factors predictive of FT necrosis and 30-day mortality.RESULTS One-hundred patients were included,with a mean age of 32 years(SD:11.2 years)and a male predominance(65.0%).The majority(73.0%)were intentional suicide attempts.Endoscopy on admission was the most frequent initial investigation performed(95 patients),while only 17 were assessed with CT.Seventeen patients had full thickness necrosis at surgery,of which eleven underwent emergency resection and six were palliated.Thirty-day morbidity and mortality were 27.0%and 14.0%,respectively.Patients with full thickness necrosis and those with an established perforation had a 30-day mortality of 58.8%and 91.0%,respectively.Full thickness necrosis was associated with a cumulative 2-year survival of only 17.6%.Multivariate analyses with ROC AUC showed admission endoscopy findings,CT findings,and blood gas findings(pH,base excess,lactate),to all have significant predictive value for full thickness necrosis,with endoscopy proving to have the best predictive value(AUC 0.850).CT and endoscopy findings were the only factors predictive of early mortality,with CT performing better than endoscopy(AUC 0.798 vs 0.759).CONCLUSION Intentional corrosive injuries result in devastating morbidity and mortality.Locally,early endoscopy remains the mainstay of severity assessment,but referral for CT imaging should be considered especially when blood gas findings are abnormal. 展开更多
关键词 Corrosive injuries Caustic injuries ADULT predicting necrosis Endoscopy predictive performance CT predictive performance Short-term survival
下载PDF
An enhanced method for predicting and analysing forest fires using an attention-based CNN model
2
作者 Shaifali Bhatt Usha Chouhan 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第4期115-127,共13页
Prediction,prevention,and control of forest fires are crucial on at all scales.Developing effective fire detection systems can aid in their control.This study proposes a novel CNN(convolutional neural network)using an... Prediction,prevention,and control of forest fires are crucial on at all scales.Developing effective fire detection systems can aid in their control.This study proposes a novel CNN(convolutional neural network)using an attention blocks module which combines an attention module with numerous input layers to enhance the performance of neural networks.The suggested model focuses on predicting the damage affected/burned areas due to possible wildfires and evaluating the multilateral interactions between the pertinent factors.The results show the impacts of CNN using attention blocks for feature extraction and to better understand how ecosystems are affected by meteorological factors.For selected meteorological data,RMSE 12.08 and MAE 7.45 values provide higher predictive power for selecting relevant and necessary features to provide optimal performance with less operational and computational costs.These findings show that the suggested strategy is reliable and effective for planning and managing fire-prone regions as well as for predicting forest fire damage. 展开更多
关键词 CNN Attention module Fire prediction ECOSYSTEM Damage prediction
下载PDF
An attention-based teacher-student model for multivariate short-term landslide displacement prediction incorporating weather forecast data
3
作者 CHEN Jun HU Wang +2 位作者 ZHANG Yu QIU Hongzhi WANG Renchao 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2739-2753,共15页
Predicting the displacement of landslide is of utmost practical importance as the landslide can pose serious threats to both human life and property.However,traditional methods have the limitation of random selection ... Predicting the displacement of landslide is of utmost practical importance as the landslide can pose serious threats to both human life and property.However,traditional methods have the limitation of random selection in sliding window selection and seldom incorporate weather forecast data for displacement prediction,while a single structural model cannot handle input sequences of different lengths at the same time.In order to solve these limitations,in this study,a new approach is proposed that utilizes weather forecast data and incorporates the maximum information coefficient(MIC),long short-term memory network(LSTM),and attention mechanism to establish a teacher-student coupling model with parallel structure for short-term landslide displacement prediction.Through MIC,a suitable input sequence length is selected for the LSTM model.To investigate the influence of rainfall on landslides during different seasons,a parallel teacher-student coupling model is developed that is able to learn sequential information from various time series of different lengths.The teacher model learns sequence information from rainfall intensity time series while incorporating reliable short-term weather forecast data from platforms such as China Meteorological Administration(CMA)and Reliable Prognosis(https://rp5.ru)to improve the model’s expression capability,and the student model learns sequence information from other time series.An attention module is then designed to integrate different sequence information to derive a context vector,representing seasonal temporal attention mode.Finally,the predicted displacement is obtained through a linear layer.The proposed method demonstrates superior prediction accuracies,surpassing those of the support vector machine(SVM),LSTM,recurrent neural network(RNN),temporal convolutional network(TCN),and LSTM-Attention models.It achieves a mean absolute error(MAE)of 0.072 mm,root mean square error(RMSE)of 0.096 mm,and pearson correlation coefficients(PCCS)of 0.85.Additionally,it exhibits enhanced prediction stability and interpretability,rendering it an indispensable tool for landslide disaster prevention and mitigation. 展开更多
关键词 Landslide prediction MIC LSTM Attention mechanism Teacher Student model prediction stability and interpretability
下载PDF
Real-Time Co-optimization of Gear Shifting and Engine Torque for Predictive Cruise Control of Heavy-Duty Trucks
4
作者 Hongqing Chu Xiaoxiang Na +4 位作者 Huan Liu Yuhai Wang Zhuo Yang Lin Zhang Hong Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期294-317,共24页
Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a rea... Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a real-time implementable PCC,which simultaneously optimizes engine torque and gear shifting,is proposed for heavy-duty trucks.To minimize fuel consumption,the problem of the PCC is formulated as a nonlinear model predictive control(MPC),in which the upcoming road elevation information is used.Finding the solution of the nonlinear MPC is time consuming;thus,a real-time implementable solver is developed based on Pontryagin’s maximum principle and indirect shooting method.Dynamic programming(DP)algorithm,as a global optimization algorithm,is used as a performance benchmark for the proposed solver.Simulation,hardware-in-the-loop and real-truck experiments are conducted to verify the performance of the proposed controller.The results demonstrate that the MPC-based solution performs nearly as well as the DP-based solution,with less than 1%deviation for testing roads.Moreover,the proposed co-optimization controller is implementable in a real-truck,and the proposed MPC-based PCC algorithm achieves a fuel-saving rate of 7.9%without compromising the truck’s travel time. 展开更多
关键词 Heavy-duty truck predictive cruise control Model predictive control Pontryagin’s maximum principle Real-truck implementation
下载PDF
Validation of prognostic scores for predicting acute liver failure and in-hospital death in patients with dengue-induced severe hepatitis
5
作者 Tongluk Teerasarntipan Kessarin Thanapirom +2 位作者 Roongruedee Chaiteerakij Piyawat Komolmit Sombat Treeprasertsuk 《World Journal of Gastroenterology》 SCIE CAS 2024年第45期4781-4790,共10页
BACKGROUND Acute liver failure(ALF)in dengue is rare but fatal.Early identification of patients who are at risk of ALF is the key strategy to improve survival.AIM To validate prognostic scores for predicting ALF and i... BACKGROUND Acute liver failure(ALF)in dengue is rare but fatal.Early identification of patients who are at risk of ALF is the key strategy to improve survival.AIM To validate prognostic scores for predicting ALF and in-hospital mortality in dengue-induced severe hepatitis(DISH).METHODS We retrospectively reviewed 2532 dengue patients over a period of 16 years(2007-2022).Patients with DISH,defined as transaminases>10 times the normal reference level and DISH with subsequent ALF,were included.Univariate regre-ssion analysis was used to identify factors associated with outcomes.Youden’s index in conjunction with receiver operating characteristic(ROC)analysis was used to determine optimal cut-off values for prognostic scores in predicting ALF and in-hospital death.Area under the ROC(AUROC)curve values were compared using paired data nonparametric ROC curve estimation.RESULTS Of 193 DISH patients,20 developed ALF(0.79%),with a mortality rate of 60.0%.International normalized ratio,bilirubin,albumin,and creatinine were indepen-dent predictors associated with ALF and death.Prognostic scores showed excel-lent performance:Model for end-stage liver disease(MELD)score≥15 predicted ALF(AUROC 0.917,sensitivity 90.0%,specificity 88.4%)and≥18 predicted death(AUROC 0.823,sensitivity 86.9%,specificity 89.1%);easy albumin-bilirubin(ALBI)score≥-30 predicted ALF and death(ALF:AUROC 0.835,sensitivity80.0%,specificity 72.2%;death:AUROC 0.808,sensitivity 76.9%,specificity 69.3%);ALBI score≥-2 predicted ALF and death(ALF:AUROC 0.806,sensitivity 80.0%,specificity 77.4%;death:AUROC 0.799,sensitivity 76.9%,specificity 74.3%).Platelet-ALBI score also showed good performance in predicting ALF and death(AUROC=0.786 and 0.699,respectively).MELD and EZ-ALBI scores had similar performance in predicting ALF(Z=1.688,P=0.091)and death(Z=0.322,P=0.747).CONCLUSION MELD score is the best predictor of ALF and death in DISH patients.EZ-ALBI score,a simpler yet effective score,shows promise as an alternative prognostic tool in dengue patients. 展开更多
关键词 FULMINANT Clinical outcomes Liver injury Prognostic assessment predictive models Mortality prediction
下载PDF
A deep multimodal fusion and multitasking trajectory prediction model for typhoon trajectory prediction to reduce flight scheduling cancellation
6
作者 TANG Jun QIN Wanting +1 位作者 PAN Qingtao LAO Songyang 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期666-678,共13页
Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon... Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon seasons appears and continues,airlines operating in threatened areas and passengers having travel plans during this time period will pay close attention to the development of tropical storms.This paper proposes a deep multimodal fusion and multitasking trajectory prediction model that can improve the reliability of typhoon trajectory prediction and reduce the quantity of flight scheduling cancellation.The deep multimodal fusion module is formed by deep fusion of the feature output by multiple submodal fusion modules,and the multitask generation module uses longitude and latitude as two related tasks for simultaneous prediction.With more dependable data accuracy,problems can be analysed rapidly and more efficiently,enabling better decision-making with a proactive versus reactive posture.When multiple modalities coexist,features can be extracted from them simultaneously to supplement each other’s information.An actual case study,the typhoon Lichma that swept China in 2019,has demonstrated that the algorithm can effectively reduce the number of unnecessary flight cancellations compared to existing flight scheduling and assist the new generation of flight scheduling systems under extreme weather. 展开更多
关键词 flight scheduling optimization deep multimodal fusion multitasking trajectory prediction typhoon weather flight cancellation prediction reliability
下载PDF
A HEVC Video Steganalysis Method Using the Optimality of Motion Vector Prediction
7
作者 Jun Li Minqing Zhang +2 位作者 Ke Niu Yingnan Zhang Xiaoyuan Yang 《Computers, Materials & Continua》 SCIE EI 2024年第5期2085-2103,共19页
Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detectio... Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detection performance,this paper proposes a steganalysis method that can perfectly detectMV-based steganography in HEVC.Firstly,we define the local optimality of MVP(Motion Vector Prediction)based on the technology of AMVP(Advanced Motion Vector Prediction).Secondly,we analyze that in HEVC video,message embedding either usingMVP index orMVD(Motion Vector Difference)may destroy the above optimality of MVP.And then,we define the optimal rate of MVP as a steganalysis feature.Finally,we conduct steganalysis detection experiments on two general datasets for three popular steganographymethods and compare the performance with four state-ofthe-art steganalysis methods.The experimental results demonstrate the effectiveness of the proposed feature set.Furthermore,our method stands out for its practical applicability,requiring no model training and exhibiting low computational complexity,making it a viable solution for real-world scenarios. 展开更多
关键词 Video steganography video steganalysis motion vector prediction motion vector difference advanced motion vector prediction local optimality
下载PDF
An Integrated Analysis of Yield Prediction Models:A Comprehensive Review of Advancements and Challenges
8
作者 Nidhi Parashar Prashant Johri +2 位作者 Arfat Ahmad Khan Nitin Gaur Seifedine Kadry 《Computers, Materials & Continua》 SCIE EI 2024年第7期389-425,共37页
The growing global requirement for food and the need for sustainable farming in an era of a changing climate and scarce resources have inspired substantial crop yield prediction research.Deep learning(DL)and machine l... The growing global requirement for food and the need for sustainable farming in an era of a changing climate and scarce resources have inspired substantial crop yield prediction research.Deep learning(DL)and machine learning(ML)models effectively deal with such challenges.This research paper comprehensively analyses recent advancements in crop yield prediction from January 2016 to March 2024.In addition,it analyses the effectiveness of various input parameters considered in crop yield prediction models.We conducted an in-depth search and gathered studies that employed crop modeling and AI-based methods to predict crop yield.The total number of articles reviewed for crop yield prediction using ML,meta-modeling(Crop models coupled with ML/DL),and DL-based prediction models and input parameter selection is 125.We conduct the research by setting up five objectives for this research and discussing them after analyzing the selected research papers.Each study is assessed based on the crop type,input parameters employed for prediction,the modeling techniques adopted,and the evaluation metrics used for estimatingmodel performance.We also discuss the ethical and social impacts of AI on agriculture.However,various approaches presented in the scientific literature have delivered impressive predictions,they are complicateddue to intricate,multifactorial influences oncropgrowthand theneed for accuratedata-driven models.Therefore,thorough research is required to deal with challenges in predicting agricultural output. 展开更多
关键词 Machine learning crop yield prediction deep learning remote sensing long short-term memory time series prediction systematic literature review
下载PDF
Comparing gastrointestinal dysfunction score and acute gastrointestinal injury grade for predicting short-term mortality in critically ill patients
9
作者 Chao Shen Xi Wang +3 位作者 Yi-Ying Xiao Jia-Ying Zhang Guo-Lian Xia Rong-Lin Jiang 《World Journal of Gastroenterology》 SCIE CAS 2024年第42期4523-4531,共9页
BACKGROUND The prognosis of critically ill patients is closely linked to their gastrointestinal(GI)function.The acute GI injury(AGI)grading system,established in 2012,is extensively utilized to evaluate GI dysfunction... BACKGROUND The prognosis of critically ill patients is closely linked to their gastrointestinal(GI)function.The acute GI injury(AGI)grading system,established in 2012,is extensively utilized to evaluate GI dysfunction and forecast outcomes in clinical settings.In 2021,the GI dysfunction score(GIDS)was developed,building on the AGI grading system,to enhance the accuracy of GI dysfunction severity assessment,improve prognostic predictions,reduce subjectivity,and increase reproducibility.AIM To compare the predictive capabilities of GIDS and the AGI grading system for 28-day mortality in critically ill patients.METHODS A retrospective study was conducted at the general intensive care unit(ICU)of a regional university hospital.All data were collected during the first week of ICU admission.The primary outcome was 28-day mortality.Multivariable logistic regression analyzed whether GIDS and AGI grade were independent risk factors for 28-day mortality.The predictive abilities of GIDS and AGI grade were compared using the receiver operating characteristic curve,with DeLong’s test assessing differences between the curves’areas.RESULTS The incidence of AGI in the first week of ICU admission was 92.13%.There were 85 deaths(47.75%)within 28 days of ICU admission.There was no initial 24-hour difference in GIDS between the non-survival and survival groups.Both GIDS(OR 2.01,95%CI:1.25-3.24;P=0.004)and AGI grade(OR 1.94,95%CI:1.12-3.38;P=0.019)were independent predictors of 28-day mortality.No significant difference was found between the predictive accuracy of GIDS and AGI grade for 28-day mortality during the first week of ICU admission(Z=-0.26,P=0.794).CONCLUSION GIDS within the first 24 hours was an unreliable predictor of 28-day mortality.The predictive accuracy for 28-day mortality from both systems during the first week was comparable. 展开更多
关键词 Critical illness Gastrointestinal dysfunction Acute gastrointestinal injury Prognostic indicators Intensive care unit outcomes Mortality prediction Risk stratification predictive modeling
下载PDF
Carbon Emission Factors Prediction of Power Grid by Using Graph Attention Network
10
作者 Xin Shen Jiahao Li +3 位作者 YujunYin Jianlin Tang Weibin Lin Mi Zhou 《Energy Engineering》 EI 2024年第7期1945-1961,共17页
Advanced carbon emission factors of a power grid can provide users with effective carbon reduction advice,which is of immense importance in mobilizing the entire society to reduce carbon emissions.The method of calcul... Advanced carbon emission factors of a power grid can provide users with effective carbon reduction advice,which is of immense importance in mobilizing the entire society to reduce carbon emissions.The method of calculating node carbon emission factors based on the carbon emissions flow theory requires real-time parameters of a power grid.Therefore,it cannot provide carbon factor information beforehand.To address this issue,a prediction model based on the graph attention network is proposed.The model uses a graph structure that is suitable for the topology of the power grid and designs a supervised network using the loads of the grid nodes and the corresponding carbon factor data.The network extracts features and transmits information more suitable for the power system and can flexibly adjust the equivalent topology,thereby increasing the diversity of the structure.Its input and output data are simple,without the power grid parameters.We demonstrated its effect by testing IEEE-39 bus and IEEE-118 bus systems with average error rates of 2.46%and 2.51%. 展开更多
关键词 predict carbon factors graph attention network prediction algorithm power grid operating parameters
下载PDF
Research on the Control Strategy of Micro Wind-Hydrogen Coupled System Based on Wind Power Prediction and Hydrogen Storage System Charging/Discharging Regulation
11
作者 Yuanjun Dai Haonan Li Baohua Li 《Energy Engineering》 EI 2024年第6期1607-1636,共30页
This paper addresses the micro wind-hydrogen coupled system,aiming to improve the power tracking capability of micro wind farms,the regulation capability of hydrogen storage systems,and to mitigate the volatility of w... This paper addresses the micro wind-hydrogen coupled system,aiming to improve the power tracking capability of micro wind farms,the regulation capability of hydrogen storage systems,and to mitigate the volatility of wind power generation.A predictive control strategy for the micro wind-hydrogen coupled system is proposed based on the ultra-short-term wind power prediction,the hydrogen storage state division interval,and the daily scheduled output of wind power generation.The control strategy maximizes the power tracking capability,the regulation capability of the hydrogen storage system,and the fluctuation of the joint output of the wind-hydrogen coupled system as the objective functions,and adaptively optimizes the control coefficients of the hydrogen storage interval and the output parameters of the system by the combined sigmoid function and particle swarm algorithm(sigmoid-PSO).Compared with the real-time control strategy,the proposed predictive control strategy can significantly improve the output tracking capability of the wind-hydrogen coupling system,minimize the gap between the actual output and the predicted output,significantly enhance the regulation capability of the hydrogen storage system,and mitigate the power output fluctuation of the wind-hydrogen integrated system,which has a broad practical application prospect. 展开更多
关键词 Micro wind-hydrogen coupling system ultra-short-term wind power prediction sigmoid-PSO algorithm adaptive roll optimization predictive control strategy
下载PDF
Photovoltaic Power Generation Power Prediction under Major Extreme Weather Based on VMD-KELM
12
作者 Yuxuan Zhao Bo Wang +2 位作者 Shu Wang Wenjun Xu Gang Ma 《Energy Engineering》 EI 2024年第12期3711-3733,共23页
The output of photovoltaic power stations is significantly affected by environmental factors,leading to intermittent and fluctuating power generation.With the increasing frequency of extreme weather events due to glob... The output of photovoltaic power stations is significantly affected by environmental factors,leading to intermittent and fluctuating power generation.With the increasing frequency of extreme weather events due to global warming,photovoltaic power stations may experience drastic reductions in power generation or even complete shutdowns during such conditions.The integration of these stations on a large scale into the power grid could potentially pose challenges to systemstability.To address this issue,in this study,we propose a network architecture based on VMDKELMfor predicting the power output of photovoltaic power plants during severe weather events.Initially,a grey relational analysis is conducted to identify key environmental factors influencing photovoltaic power generation.Subsequently,GMM clustering is utilized to classify meteorological data points based on their probabilities within different Gaussian distributions,enabling comprehensive meteorological clustering and extraction of significant extreme weather data.The data are decomposed using VMD to Fourier transform,followed by smoothing processing and signal reconstruction using KELM to forecast photovoltaic power output under major extreme weather conditions.The proposed prediction scheme is validated by establishing three prediction models,and the predicted photovoltaic output under four major extreme weather conditions is analyzed to assess the impact of severe weather on photovoltaic power station output.The experimental results show that the photovoltaic power output under conditions of dust storms,thunderstorms,solid hail precipitation,and snowstorms is reduced by 68.84%,42.70%,61.86%,and 49.92%,respectively,compared to that under clear day conditions.The photovoltaic power prediction accuracies,in descending order,are dust storms,solid hail precipitation,thunderstorms,and snowstorms. 展开更多
关键词 Major extreme weather photovoltaic power prediction weather clustering VMD-KELM network prediction model
下载PDF
Expression level of myocardial enzymes in patients with schizophrenia: Predictive value in the occurrence of violence
13
作者 Wei-Min He Xin-Yuan Zhang +2 位作者 Wei-Gen Xie Dan-Ping Lv Qun-Di Shen 《World Journal of Psychiatry》 SCIE 2024年第9期1346-1353,共8页
BACKGROUND Schizophrenic patients are prone to violence,frequent recurrence,and difficult to predict.Emotional and behavioral abnormalities during the onset of the disease,resulting in active myocardial enzyme spectru... BACKGROUND Schizophrenic patients are prone to violence,frequent recurrence,and difficult to predict.Emotional and behavioral abnormalities during the onset of the disease,resulting in active myocardial enzyme spectrum.AIM To explored the expression level of myocardial enzymes in patients with schizo-phrenia and its predictive value in the occurrence of violence.METHODS A total of 288 patients with schizophrenia in our hospital from February 2023 to January 2024 were selected as the research object,and 100 healthy people were selected as the control group.Participants’information,clinical data,and labo-ratory examination data were collected.According to Modified Overt Aggression Scale score,patients were further divided into the violent(123 cases)and non-violent group(165 cases).RESULTS The comparative analysis revealed significant differences in serum myocardial enzyme levels between patients with schizophrenia and healthy individuals.In the schizophrenia group,the violent and non-violent groups also exhibited different levels of serum myocardial enzymes.The levels of myocardial enzymes in the non-violent group were lower than those in the violent group,and the patients in the latter also displayed aggressive behavior in the past.CONCLUSION Previous aggressive behavior and the level of myocardial enzymes are of great significance for the diagnosis and prognosis analysis of violent behavior in patients with schizophrenia.By detecting changes in these indicators,we can gain a more comprehensive understanding of a patient’s condition and treatment. 展开更多
关键词 SCHIZOPHRENIA Myocardial enzyme index Act of violence predict Violence prediction Aggressive behavior Clinical data analysis Biochemical markers
下载PDF
Stock Price Prediction and Traditional Models: An Approach to Achieve Short-, Medium- and Long-Term Goals
14
作者 Opeyemi Sheu Alamu Md Kamrul Siam 《Journal of Intelligent Learning Systems and Applications》 2024年第4期363-383,共21页
A comparative analysis of deep learning models and traditional statistical methods for stock price prediction uses data from the Nigerian stock exchange. Historical data, including daily prices and trading volumes, ar... A comparative analysis of deep learning models and traditional statistical methods for stock price prediction uses data from the Nigerian stock exchange. Historical data, including daily prices and trading volumes, are employed to implement models such as Long Short Term Memory (LSTM) networks, Gated Recurrent Units (GRUs), Autoregressive Integrated Moving Average (ARIMA), and Autoregressive Moving Average (ARMA). These models are assessed over three-time horizons: short-term (1 year), medium-term (2.5 years), and long-term (5 years), with performance measured by Mean Squared Error (MSE) and Mean Absolute Error (MAE). The stability of the time series is tested using the Augmented Dickey-Fuller (ADF) test. Results reveal that deep learning models, particularly LSTM, outperform traditional methods by capturing complex, nonlinear patterns in the data, resulting in more accurate predictions. However, these models require greater computational resources and offer less interpretability than traditional approaches. The findings highlight the potential of deep learning for improving financial forecasting and investment strategies. Future research could incorporate external factors such as social media sentiment and economic indicators, refine model architectures, and explore real-time applications to enhance prediction accuracy and scalability. 展开更多
关键词 Stock Price prediction Deep Learning Traditional Model Evaluation Metrics Comparative Analysis predictive Modeling LSTM ARIMA ARMA GRU
下载PDF
Predictive Analytics for Project Risk Management Using Machine Learning
15
作者 Sanjay Ramdas Bauskar Chandrakanth Rao Madhavaram +3 位作者 Eswar Prasad Galla Janardhana Rao Sunkara Hemanth Kumar Gollangi Shravan Kumar Rajaram 《Journal of Data Analysis and Information Processing》 2024年第4期566-580,共15页
Risk management is relevant for every project that which seeks to avoid and suppress unanticipated costs, basically calling for pre-emptive action. The current work proposes a new approach for handling risks based on ... Risk management is relevant for every project that which seeks to avoid and suppress unanticipated costs, basically calling for pre-emptive action. The current work proposes a new approach for handling risks based on predictive analytics and machine learning (ML) that can work in real-time to help avoid risks and increase project adaptability. The main research aim of the study is to ascertain risk presence in projects by using historical data from previous projects, focusing on important aspects such as time, task time, resources and project results. t-SNE technique applies feature engineering in the reduction of the dimensionality while preserving important structural properties. This process is analysed using measures including recall, F1-score, accuracy and precision measurements. The results demonstrate that the Gradient Boosting Machine (GBM) achieves an impressive 85% accuracy, 82% precision, 85% recall, and 80% F1-score, surpassing previous models. Additionally, predictive analytics achieves a resource utilisation efficiency of 85%, compared to 70% for traditional allocation methods, and a project cost reduction of 10%, double the 5% achieved by traditional approaches. Furthermore, the study indicates that while GBM excels in overall accuracy, Logistic Regression (LR) offers more favourable precision-recall trade-offs, highlighting the importance of model selection in project risk management. 展开更多
关键词 predictive Analytics Project Risk Management DECISION-MAKING Data-Driven Strategies Risk prediction Machine Learning Historical Data
下载PDF
Predictive Healthcare: An IoT-Based ANFIS Framework for Diabetes Diagnosis
16
作者 Md Nagib Mahfuz Sunny Mohammad Balayet Hossain Sakil +3 位作者 Jennet Atayeva Zakia Sultana Munmun Md Sohel Mollick Md Omar Faruq 《Engineering(科研)》 2024年第10期325-336,共12页
The increasing integration of the Internet of Things (IoT) in healthcare is revolutionizing patient monitoring and disease prediction. This paper presents a machine learning (ML)-based framework using Adaptive Neuro-F... The increasing integration of the Internet of Things (IoT) in healthcare is revolutionizing patient monitoring and disease prediction. This paper presents a machine learning (ML)-based framework using Adaptive Neuro-Fuzzy Inference System (ANFIS) to predict diabetes. The proposed system leverages IoT data to monitor key health parameters, including glucose levels, blood pressure, and age, offering real-time diagnostics for diabetes patients. The dataset used in this study was obtained from the UCI repository and underwent preprocessing, feature selection, and classification using the ANFIS model. Comparative analysis with other machine learning algorithms, such as Support Vector Machines (SVM), Naïve Bayes, and K-Nearest Neighbors (KNN), demonstrates that the proposed method achieves superior predictive performance. The experimental results show that the ANFIS model achieved an accuracy of 95.5%, outperforming conventional models, and providing more reliable decision-making in clinical settings. This study highlights the potential of combining IoT with machine learning to improve predictive healthcare applications, emphasizing the need for real-time patient monitoring systems. 展开更多
关键词 Internet of Things (IoT) Machine Learning (ML) Diabetes prediction Real-Time Diagnostics predictive Healthcare
下载PDF
Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms 被引量:3
17
作者 Jingou Kuang Zhilin Long 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期337-350,共14页
This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while ... This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models. 展开更多
关键词 machine learning low-alloy steel atmospheric corrosion prediction corrosion rate feature fusion
下载PDF
Classifying rockburst with confidence:A novel conformal prediction approach 被引量:2
18
作者 Bemah Ibrahim Isaac Ahenkorah 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期51-64,共14页
The scientific community recognizes the seriousness of rockbursts and the need for effective mitigation measures.The literature reports various successful applications of machine learning(ML)models for rockburst asses... The scientific community recognizes the seriousness of rockbursts and the need for effective mitigation measures.The literature reports various successful applications of machine learning(ML)models for rockburst assessment;however,a significant question remains unanswered:How reliable are these models,and at what confidence level are classifications made?Typically,ML models output single rockburst grade even in the face of intricate and out-of-distribution samples,without any associated confidence value.Given the susceptibility of ML models to errors,it becomes imperative to quantify their uncertainty to prevent consequential failures.To address this issue,we propose a conformal prediction(CP)framework built on traditional ML models(extreme gradient boosting and random forest)to generate valid classifications of rockburst while producing a measure of confidence for its output.The proposed framework guarantees marginal coverage and,in most cases,conditional coverage on the test dataset.The CP was evaluated on a rockburst case in the Sanshandao Gold Mine in China,where it achieved high coverage and efficiency at applicable confidence levels.Significantly,the CP identified several“confident”classifications from the traditional ML model as unreliable,necessitating expert verification for informed decision-making.The proposed framework improves the reliability and accuracy of rockburst assessments,with the potential to bolster user confidence. 展开更多
关键词 ROCKBURST Machine learning Uncertainty quantification Conformal prediction
下载PDF
Superiority of a Convolutional Neural Network Model over Dynamical Models in Predicting Central Pacific ENSO 被引量:2
19
作者 Tingyu WANG Ping HUANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第1期141-154,共14页
The application of deep learning is fast developing in climate prediction,in which El Ni?o–Southern Oscillation(ENSO),as the most dominant disaster-causing climate event,is a key target.Previous studies have shown th... The application of deep learning is fast developing in climate prediction,in which El Ni?o–Southern Oscillation(ENSO),as the most dominant disaster-causing climate event,is a key target.Previous studies have shown that deep learning methods possess a certain level of superiority in predicting ENSO indices.The present study develops a deep learning model for predicting the spatial pattern of sea surface temperature anomalies(SSTAs)in the equatorial Pacific by training a convolutional neural network(CNN)model with historical simulations from CMIP6 models.Compared with dynamical models,the CNN model has higher skill in predicting the SSTAs in the equatorial western-central Pacific,but not in the eastern Pacific.The CNN model can successfully capture the small-scale precursors in the initial SSTAs for the development of central Pacific ENSO to distinguish the spatial mode up to a lead time of seven months.A fusion model combining the predictions of the CNN model and the dynamical models achieves higher skill than each of them for both central and eastern Pacific ENSO. 展开更多
关键词 ENSO diversity deep learning ENSO prediction dynamical forecast system
下载PDF
Predictive modeling for postoperative delirium in elderly patients with abdominal malignancies using synthetic minority oversampling technique 被引量:3
20
作者 Wen-Jing Hu Gang Bai +6 位作者 Yan Wang Dong-Mei Hong Jin-Hua Jiang Jia-Xun Li Yin Hua Xin-Yu Wang Ying Chen 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第4期1227-1235,共9页
BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling techn... BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling technique(SMOTE)-based model for predicting postoperative delirium in elderly abdominal cancer patients.METHODS In this retrospective cohort study,we analyzed data from 611 elderly patients who underwent abdominal malignant tumor surgery at our hospital between September 2020 and October 2022.The incidence of postoperative delirium was recorded for 7 d post-surgery.Patients were divided into delirium and non-delirium groups based on the occurrence of postoperative delirium or not.A multivariate logistic regression model was used to identify risk factors and develop a predictive model for postoperative delirium.The SMOTE technique was applied to enhance the model by oversampling the delirium cases.The model’s predictive accuracy was then validated.RESULTS In our study involving 611 elderly patients with abdominal malignant tumors,multivariate logistic regression analysis identified significant risk factors for postoperative delirium.These included the Charlson comorbidity index,American Society of Anesthesiologists classification,history of cerebrovascular disease,surgical duration,perioperative blood transfusion,and postoperative pain score.The incidence rate of postoperative delirium in our study was 22.91%.The original predictive model(P1)exhibited an area under the receiver operating characteristic curve of 0.862.In comparison,the SMOTE-based logistic early warning model(P2),which utilized the SMOTE oversampling algorithm,showed a slightly lower but comparable area under the curve of 0.856,suggesting no significant difference in performance between the two predictive approaches.CONCLUSION This study confirms that the SMOTE-enhanced predictive model for postoperative delirium in elderly abdominal tumor patients shows performance equivalent to that of traditional methods,effectively addressing data imbalance. 展开更多
关键词 Elderly patients Abdominal cancer Postoperative delirium Synthetic minority oversampling technique predictive modeling Surgical outcomes
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部