With the recent technological developments,massive vehicular ad hoc networks(VANETs)have been established,enabling numerous vehicles and their respective Road Side Unit(RSU)components to communicate with oneanother.Th...With the recent technological developments,massive vehicular ad hoc networks(VANETs)have been established,enabling numerous vehicles and their respective Road Side Unit(RSU)components to communicate with oneanother.The best way to enhance traffic flow for vehicles and traffic management departments is to share thedata they receive.There needs to be more protection for the VANET systems.An effective and safe methodof outsourcing is suggested,which reduces computation costs by achieving data security using a homomorphicmapping based on the conjugate operation of matrices.This research proposes a VANET-based data outsourcingsystem to fix the issues.To keep data outsourcing secure,the suggested model takes cryptography models intoaccount.Fog will keep the generated keys for the purpose of vehicle authentication.For controlling and overseeingthe outsourced data while preserving privacy,the suggested approach considers the Trusted Certified Auditor(TCA).Using the secret key,TCA can identify the genuine identity of VANETs when harmful messages aredetected.The proposed model develops a TCA-based unique static vehicle labeling system using cryptography(TCA-USVLC)for secure data outsourcing and privacy preservation in VANETs.The proposed model calculatesthe trust of vehicles in 16 ms for an average of 180 vehicles and achieves 98.6%accuracy for data encryption toprovide security.The proposedmodel achieved 98.5%accuracy in data outsourcing and 98.6%accuracy in privacypreservation in fog-enabled VANETs.Elliptical curve cryptography models can be applied in the future for betterencryption and decryption rates with lightweight cryptography operations.展开更多
Online Social Networks (OSN) sites allow end-users to share agreat deal of information, which may also contain sensitive information,that may be subject to commercial or non-commercial privacy attacks. Asa result, gua...Online Social Networks (OSN) sites allow end-users to share agreat deal of information, which may also contain sensitive information,that may be subject to commercial or non-commercial privacy attacks. Asa result, guaranteeing various levels of privacy is critical while publishingdata by OSNs. The clustering-based solutions proved an effective mechanismto achieve the privacy notions in OSNs. But fixed clustering limits theperformance and scalability. Data utility degrades with increased privacy,so balancing the privacy utility trade-off is an open research issue. Theresearch has proposed a novel privacy preservation model using the enhancedclustering mechanism to overcome this issue. The proposed model includesphases like pre-processing, enhanced clustering, and ensuring privacy preservation.The enhanced clustering algorithm is the second phase where authorsmodified the existing fixed k-means clustering using the threshold approach.The threshold value is determined based on the supplied OSN data of edges,nodes, and user attributes. Clusters are k-anonymized with multiple graphproperties by a novel one-pass algorithm. After achieving the k-anonymityof clusters, optimization was performed to achieve all privacy models, suchas k-anonymity, t-closeness, and l-diversity. The proposed privacy frameworkachieves privacy of all three network components, i.e., link, node, and userattributes, with improved utility. The authors compare the proposed techniqueto underlying methods using OSN Yelp and Facebook datasets. The proposedapproach outperformed the underlying state of art methods for Degree ofAnonymization, computational efficiency, and information loss.展开更多
In the cloud computing environment, outsourcing service mode of data storage causes the security problem, the reliability of data cannot be guaranteed, and the privacy preservation problem has aroused wide concern. In...In the cloud computing environment, outsourcing service mode of data storage causes the security problem, the reliability of data cannot be guaranteed, and the privacy preservation problem has aroused wide concern. In order to solve the problem of inefficiency and high-complexity caused by traditional privacy preservation methods such as data encryption and access control technology, a privacy preservation method based on data coloring is proposed. The data coloring model is established and the coloring mechanism is adopted to deal with the sensitive data of numerical attributes, and the cloud model similarity measurement based on arithmetic average least-approximability is adopted to authenticate the ownership of privacy data. On the premise of high availability of data, the method strengthens the security of the privacy information. Then, the performance, validity and the parameter errors of the algorithm are quantitatively analyzed by the experiments using the UCI dataset. Under the same conditions of privacy preservation requirements, the proposed method can track privacy leakage efficiently and reduce privacy leakage risks. Compared with the k-anonymity approach, the proposed method enhances the computational time efficiency by 18.5%.展开更多
The deep learning models hold considerable potential for clinical applications, but there are many challenges to successfully training deep learning models. Large-scale data collection is required, which is frequently...The deep learning models hold considerable potential for clinical applications, but there are many challenges to successfully training deep learning models. Large-scale data collection is required, which is frequently only possible through multi-institutional cooperation. Building large central repositories is one strategy for multi-institution studies. However, this is hampered by issues regarding data sharing, including patient privacy, data de-identification, regulation, intellectual property, and data storage. These difficulties have lessened the impracticality of central data storage. In this survey, we will look at 24 research publications that concentrate on machine learning approaches linked to privacy preservation techniques for multi-institutional data, highlighting the multiple shortcomings of the existing methodologies. Researching different approaches will be made simpler in this case based on a number of factors, such as performance measures, year of publication and journals, achievements of the strategies in numerical assessments, and other factors. A technique analysis that considers the benefits and drawbacks of the strategies is additionally provided. The article also looks at some potential areas for future research as well as the challenges associated with increasing the accuracy of privacy protection techniques. The comparative evaluation of the approaches offers a thorough justification for the research’s purpose.展开更多
In crowdsourced federated learning,differential privacy is commonly used to prevent the aggregation server from recovering training data from the models uploaded by clients to achieve privacy preservation.However,impr...In crowdsourced federated learning,differential privacy is commonly used to prevent the aggregation server from recovering training data from the models uploaded by clients to achieve privacy preservation.However,improper privacy budget settings and perturbation methods will severely impact model performance.In order to achieve a harmonious equilibrium between privacy preservation and model performance,we propose a novel architecture for crowdsourced federated learning with personalized privacy preservation.In our architecture,to avoid the issue of poor model performance due to excessive privacy preservation requirements,we establish a two-stage dynamic game between the task requestor and clients to formulate the optimal privacy preservation strategy,allowing each client to independently control privacy preservation level.Additionally,we design a differential privacy perturbation mechanism based on weight priorities.It divides the weights based on their relevance with local data,applying different levels of perturbation to different types of weights.Finally,we conduct experiments on the proposed perturbation mechanism,and the experimental results indicate that our approach can achieve better global model performance with the same privacy budget.展开更多
Data security is one of the leading concerns and primary challenges for cloud computing. This issue is getting more and more serious with the development of cloud computing. However, the existing privacy-preserving da...Data security is one of the leading concerns and primary challenges for cloud computing. This issue is getting more and more serious with the development of cloud computing. However, the existing privacy-preserving data sharing techniques either fail to prevent the leakage of privacy or incur huge amounts of information loss. In this paper, we propose a novel technique, termed as linking-based anonymity model, which achieves K-anonymity with quasi-identifiers groups (QI-groups) having a size less than K. In the meanwhile, a semi-homogenous generalization is introduced to be against the attack incurred by homogenous generalization. To implement linking-based anonymization model, we propose a simple yet efficient heuristic local recoding method. Extensive experiments on real datasets are also conducted to show that the utility has been significantly improved by our approach compared with the state-of-the-art methods.展开更多
Various solutions have been proposed to enable mobile users to access location-based services while preserving their location privacy. Some of these solutions are based on a centralized architecture with the participa...Various solutions have been proposed to enable mobile users to access location-based services while preserving their location privacy. Some of these solutions are based on a centralized architecture with the participation of a trustworthy third party, whereas some other approaches are based on a mobile peer-to-peer (P2P) architecture. The former approaches suffer from the scalability problem when networks grow large, while the latter have to endure either low anonymization success rates or high communication overheads. To address these issues, this paper deals with an enhanced dual-active spatial cloaking algorithm (EDA) for preserving location privacy in mobile P2P networks. The proposed EDA allows mobile users to collect and actively disseminate their location information to other users. Moreover, to deal with the challenging characteristics of mobile P2P networks, e.g., constrained network resources and user mobility, EDA enables users (1) to perform a negotiation process to minimize the number of duplicate locations to be shared so as to significantly reduce the communication overhead among users, (2) to predict user locations based on the latest available information so as to eliminate the inaccuracy problem introduced by using some out-of-date locations, and (3) to use a latest-record-highest-priority (LRHP) strategy to reduce the probability of broadcasting fewer useful locations. Extensive simulations are conducted for a range of P2P network scenarios to evaluate the performance of EDA in comparison with the existing solutions. Experimental results demonstrate that the proposed EDA can improve the performance in terms of anonymity and service time with minimized communication overhead.展开更多
Benefiting from the development of Federated Learning(FL)and distributed communication systems,large-scale intelligent applications become possible.Distributed devices not only provide adequate training data,but also ...Benefiting from the development of Federated Learning(FL)and distributed communication systems,large-scale intelligent applications become possible.Distributed devices not only provide adequate training data,but also cause privacy leakage and energy consumption.How to optimize the energy consumption in distributed communication systems,while ensuring the privacy of users and model accuracy,has become an urgent challenge.In this paper,we define the FL as a 3-layer architecture including users,agents and server.In order to find a balance among model training accuracy,privacy-preserving effect,and energy consumption,we design the training process of FL as game models.We use an extensive game tree to analyze the key elements that influence the players’decisions in the single game,and then find the incentive mechanism that meet the social norms through the repeated game.The experimental results show that the Nash equilibrium we obtained satisfies the laws of reality,and the proposed incentive mechanism can also promote users to submit high-quality data in FL.Following the multiple rounds of play,the incentive mechanism can help all players find the optimal strategies for energy,privacy,and accuracy of FL in distributed communication systems.展开更多
Purpose-The purpose of this paper is to improve the privacy in healthcare datasets that hold sensitive information.Putting a stop to privacy divulgence and bestowing relevant information to legitimate users are at the...Purpose-The purpose of this paper is to improve the privacy in healthcare datasets that hold sensitive information.Putting a stop to privacy divulgence and bestowing relevant information to legitimate users are at the same time said to be of differing goals.Also,the swift evolution of big data has put forward considerable ease to all chores of life.As far as the big data era is concerned,propagation and information sharing are said to be the two main facets.Despite several research works performed on these aspects,with the incremental nature of data,the likelihood of privacy leakage is also substantially expanded through various benefits availed of big data.Hence,safeguarding data privacy in a complicated environment has become a major setback.Design/methodology/approach-In this study,a method called deep restricted additive homomorphic ElGamal privacy preservation(DR-AHEPP)to preserve the privacy of data even in case of incremental data is proposed.An entropy-based differential privacy quasi identification and DR-AHEPP algorithms are designed,respectively,for obtaining privacy-preserved minimum falsified quasi-identifier set and computationally efficient privacy-preserved data.Findings-Analysis results using Diabetes 130-US hospitals illustrate that the proposed DR-AHEPP method is more significant in preserving privacy on incremental data than existing methods.Acomparative analysis of state-of-the-art works with the objective to minimize information loss,false positive rate and execution time with higher accuracy is calibrated.Originality/value-The paper provides better performance using Diabetes 130-US hospitals for achieving high accuracy,low information loss and false positive rate.The result illustrates that the proposed method increases the accuracy by 4%and reduces the false positive rate and information loss by 25 and 35%,respectively,as compared to state-of-the-art works.展开更多
This paper addresses a special and imperceptible class of privacy,called implicit privacy.In contrast to traditional(explicit)privacy,implicit privacy has two essential prop-erties:(1)It is not initially defined as a ...This paper addresses a special and imperceptible class of privacy,called implicit privacy.In contrast to traditional(explicit)privacy,implicit privacy has two essential prop-erties:(1)It is not initially defined as a privacy attribute;(2)it is strongly associated with privacy attributes.In other words,attackers could utilize it to infer privacy attributes with a certain probability,indirectly resulting in the disclosure of private information.To deal with the implicit privacy disclosure problem,we give a measurable definition of implicit privacy,and propose an ex-ante implicit privacy-preserving framework based on data generation,called IMPOSTER.The framework consists of an implicit privacy detection module and an implicit privacy protection module.The former uses normalized mutual information to detect implicit privacy attributes that are strongly related to traditional privacy attributes.Based on the idea of data generation,the latter equips the Generative Adversarial Network(GAN)framework with an additional discriminator,which is used to eliminate the association between traditional privacy attributes and implicit ones.We elaborate a theoretical analysis for the convergence of the framework.Experiments demonstrate that with the learned gen-erator,IMPOSTER can alleviate the disclosure of implicit privacy while maintaining good data utility.展开更多
The increasing data pool in finance sectors forces machine learning(ML)to step into new complications.Banking data has significant financial implications and is confidential.Combining users data from several organizat...The increasing data pool in finance sectors forces machine learning(ML)to step into new complications.Banking data has significant financial implications and is confidential.Combining users data from several organizations for various banking services may result in various intrusions and privacy leakages.As a result,this study employs federated learning(FL)using a flower paradigm to preserve each organization’s privacy while collaborating to build a robust shared global model.However,diverse data distributions in the collaborative training process might result in inadequate model learning and a lack of privacy.To address this issue,the present paper proposes the imple-mentation of Federated Averaging(FedAvg)and Federated Proximal(FedProx)methods in the flower framework,which take advantage of the data locality while training and guaranteeing global convergence.Resultantly improves the privacy of the local models.This analysis used the credit card and Canadian Institute for Cybersecurity Intrusion Detection Evaluation(CICIDS)datasets.Precision,recall,and accuracy as performance indicators to show the efficacy of the proposed strategy using FedAvg and FedProx.The experimental findings suggest that the proposed approach helps to safely use banking data from diverse sources to enhance customer banking services by obtaining accuracy of 99.55%and 83.72%for FedAvg and 99.57%,and 84.63%for FedProx.展开更多
With the prevalence of the Internet of Things(IoT)systems,smart cities comprise complex networks,including sensors,actuators,appliances,and cyber services.The complexity and heterogeneity of smart cities have become v...With the prevalence of the Internet of Things(IoT)systems,smart cities comprise complex networks,including sensors,actuators,appliances,and cyber services.The complexity and heterogeneity of smart cities have become vulnerable to sophisticated cyber-attacks,especially privacy-related attacks such as inference and data poisoning ones.Federated Learning(FL)has been regarded as a hopeful method to enable distributed learning with privacypreserved intelligence in IoT applications.Even though the significance of developing privacy-preserving FL has drawn as a great research interest,the current research only concentrates on FL with independent identically distributed(i.i.d)data and few studies have addressed the non-i.i.d setting.FL is known to be vulnerable to Generative Adversarial Network(GAN)attacks,where an adversary can presume to act as a contributor participating in the training process to acquire the private data of other contributors.This paper proposes an innovative Privacy Protection-based Federated Deep Learning(PP-FDL)framework,which accomplishes data protection against privacy-related GAN attacks,along with high classification rates from non-i.i.d data.PP-FDL is designed to enable fog nodes to cooperate to train the FDL model in a way that ensures contributors have no access to the data of each other,where class probabilities are protected utilizing a private identifier generated for each class.The PP-FDL framework is evaluated for image classification using simple convolutional networks which are trained using MNIST and CIFAR-10 datasets.The empirical results have revealed that PF-DFL can achieve data protection and the framework outperforms the other three state-of-the-art models with 3%–8%as accuracy improvements.展开更多
As the volume of healthcare and medical data increases from diverse sources,real-world scenarios involving data sharing and collaboration have certain challenges,including the risk of privacy leakage,difficulty in dat...As the volume of healthcare and medical data increases from diverse sources,real-world scenarios involving data sharing and collaboration have certain challenges,including the risk of privacy leakage,difficulty in data fusion,low reliability of data storage,low effectiveness of data sharing,etc.To guarantee the service quality of data collaboration,this paper presents a privacy-preserving Healthcare and Medical Data Collaboration Service System combining Blockchain with Federated Learning,termed FL-HMChain.This system is composed of three layers:Data extraction and storage,data management,and data application.Focusing on healthcare and medical data,a healthcare and medical blockchain is constructed to realize data storage,transfer,processing,and access with security,real-time,reliability,and integrity.An improved master node selection consensus mechanism is presented to detect and prevent dishonest behavior,ensuring the overall reliability and trustworthiness of the collaborative model training process.Furthermore,healthcare and medical data collaboration services in real-world scenarios have been discussed and developed.To further validate the performance of FL-HMChain,a Convolutional Neural Network-based Federated Learning(FL-CNN-HMChain)model is investigated for medical image identification.This model achieves better performance compared to the baseline Convolutional Neural Network(CNN),having an average improvement of 4.7%on Area Under Curve(AUC)and 7%on Accuracy(ACC),respectively.Furthermore,the probability of privacy leakage can be effectively reduced by the blockchain-based parameter transfer mechanism in federated learning between local and global models.展开更多
With the growth of requirements for data sharing,a novel business model of digital assets trading has emerged that allows data owners to sell their data for monetary gain.In the distributed ledger of blockchain,howeve...With the growth of requirements for data sharing,a novel business model of digital assets trading has emerged that allows data owners to sell their data for monetary gain.In the distributed ledger of blockchain,however,the privacy of stakeholder's identity and the confidentiality of data content are threatened.Therefore,we proposed a blockchainenabled privacy-preserving and access control scheme to address the above problems.First,the multi-channel mechanism is introduced to provide the privacy protection of distributed ledger inside the channel and achieve coarse-grained access control to digital assets.Then,we use multi-authority attribute-based encryption(MAABE)algorithm to build a fine-grained access control model for data trading in a single channel and describe its instantiation in detail.Security analysis shows that the scheme has IND-CPA secure and can provide privacy protection and collusion resistance.Compared with other schemes,our solution has better performance in privacy protection and access control.The evaluation results demonstrate its effectiveness and practicability.展开更多
The dynamic landscape of the Internet of Things(IoT)is set to revolutionize the pace of interaction among entities,ushering in a proliferation of applications characterized by heightened quality and diversity.Among th...The dynamic landscape of the Internet of Things(IoT)is set to revolutionize the pace of interaction among entities,ushering in a proliferation of applications characterized by heightened quality and diversity.Among the pivotal applications within the realm of IoT,as a significant example,the Smart Grid(SG)evolves into intricate networks of energy deployment marked by data integration.This evolution concurrently entails data interchange with other IoT entities.However,there are also several challenges including data-sharing overheads and the intricate establishment of trusted centers in the IoT ecosystem.In this paper,we introduce a hierarchical secure data-sharing platform empowered by cloud-fog integration.Furthermore,we propose a novel non-interactive zero-knowledge proof-based group authentication and key agreement protocol that supports one-to-many sharing sets of IoT data,especially SG data.The security formal verification tool shows that the proposed scheme can achieve mutual authentication and secure data sharing while protecting the privacy of data providers.Compared with previous IoT data sharing schemes,the proposed scheme has advantages in both computational and transmission efficiency,and has more superiority with the increasing volume of shared data or increasing number of participants.展开更多
The fast proliferation of edge devices for the Internet of Things(IoT)has led to massive volumes of data explosion.The generated data is collected and shared using edge-based IoT structures at a considerably high freq...The fast proliferation of edge devices for the Internet of Things(IoT)has led to massive volumes of data explosion.The generated data is collected and shared using edge-based IoT structures at a considerably high frequency.Thus,the data-sharing privacy exposure issue is increasingly intimidating when IoT devices make malicious requests for filching sensitive information from a cloud storage system through edge nodes.To address the identified issue,we present evolutionary privacy preservation learning strategies for an edge computing-based IoT data sharing scheme.In particular,we introduce evolutionary game theory and construct a payoff matrix to symbolize intercommunication between IoT devices and edge nodes,where IoT devices and edge nodes are two parties of the game.IoT devices may make malicious requests to achieve their goals of stealing privacy.Accordingly,edge nodes should deny malicious IoT device requests to prevent IoT data from being disclosed.They dynamically adjust their own strategies according to the opponent's strategy and finally maximize the payoffs.Built upon a developed application framework to illustrate the concrete data sharing architecture,a novel algorithm is proposed that can derive the optimal evolutionary learning strategy.Furthermore,we numerically simulate evolutionarily stable strategies,and the final results experimentally verify the correctness of the IoT data sharing privacy preservation scheme.Therefore,the proposed model can effectively defeat malicious invasion and protect sensitive information from leaking when IoT data is shared.展开更多
Location estimation of underwater sensor networks(USNs)has become a critical technology,due to its fundamental role in the sensing,communication and control of ocean volume.However,the asynchronous clock,security atta...Location estimation of underwater sensor networks(USNs)has become a critical technology,due to its fundamental role in the sensing,communication and control of ocean volume.However,the asynchronous clock,security attack and mobility characteristics of underwater environment make localization much more challenging as compared with terrestrial sensor networks.This paper is concerned with a privacy-preserving asynchronous localization issue for USNs.Particularly,a hybrid network architecture that includes surface buoys,anchor nodes,active sensor nodes and ordinary sensor nodes is constructed.Then,an asynchronous localization protocol is provided,through which two privacy-preserving localization algorithms are designed to estimate the locations of active and ordinary sensor nodes.It is worth mentioning that,the proposed localization algorithms reveal disguised positions to the network,while they do not adopt any homomorphic encryption technique.More importantly,they can eliminate the effect of asynchronous clock,i.e.,clock skew and offset.The performance analyses for the privacy-preserving asynchronous localization algorithms are also presented.Finally,simulation and experiment results reveal that the proposed localization approach can avoid the leakage of position information,while the location accuracy can be significantly enhanced as compared with the other works.展开更多
With the deployment of more and more 5g networks,the limitations of 5g networks have been found,which undoubtedly promotes the exploratory research of 6G networks as the next generation solutions.These investigations ...With the deployment of more and more 5g networks,the limitations of 5g networks have been found,which undoubtedly promotes the exploratory research of 6G networks as the next generation solutions.These investigations include the fundamental security and privacy problems associated with 6G technologies.Therefore,in order to consolidate and solidify this foundational research as a basis for future investigations,we have prepared a survey on the status quo of 6G security and privacy.The survey begins with a historical review of previous networking technologies and how they have informed the current trends in 6G networking.We then discuss four key aspects of 6G networks–real-time intelligent edge computing,distributed artificial intelligence,intelligent radio,and 3D intercoms–and some promising emerging technologies in each area,along with the relevant security and privacy issues.The survey concludes with a report on the potential use of 6G.Some of the references used in this paper along and further details of several points raised can be found at:security-privacyin5g-6g.github.io.展开更多
Due to mobile Internet technology's rapid popularization,the Industrial Internet of Things(IIoT)can be seen everywhere in our daily lives.While IIoT brings us much convenience,a series of security and scalability ...Due to mobile Internet technology's rapid popularization,the Industrial Internet of Things(IIoT)can be seen everywhere in our daily lives.While IIoT brings us much convenience,a series of security and scalability issues related to permission operations rise to the surface during device communications.Hence,at present,a reliable and dynamic access control management system for IIoT is in urgent need.Up till now,numerous access control architectures have been proposed for IIoT.However,owing to centralized models and heterogeneous devices,security and scalability requirements still cannot be met.In this paper,we offer a smart contract token-based solution for decentralized access control in IIoT systems.Specifically,there are three smart contracts in our system,including the Token Issue Contract(TIC),User Register Contract(URC),and Manage Contract(MC).These three contracts collaboratively supervise and manage various events in IIoT environments.We also utilize the lightweight and post-quantum encryption algorithm-Nth-degree Truncated Polynomial Ring Units(NTRU)to preserve user privacy during the registration process.Subsequently,to evaluate our proposed architecture's performance,we build a prototype platform that connects to the local blockchain.Finally,experiment results show that our scheme has achieved secure and dynamic access control for the IIoT system compared with related research.展开更多
In recent years,mobile Internet technology and location based services have wide application.Application providers and users have accumulated huge amount of trajectory data.While publishing and analyzing user trajecto...In recent years,mobile Internet technology and location based services have wide application.Application providers and users have accumulated huge amount of trajectory data.While publishing and analyzing user trajectory data have brought great convenience for people,the disclosure risks of user privacy caused by the trajectory data publishing are also becoming more and more prominent.Traditional k-anonymous trajectory data publishing technologies cannot effectively protect user privacy against attackers with strong background knowledge.For privacy preserving trajectory data publishing,we propose a differential privacy based(k-Ψ)-anonymity method to defend against re-identification and probabilistic inference attack.The proposed method is divided into two phases:in the first phase,a dummy-based(k-Ψ)-anonymous trajectory data publishing algorithm is given,which improves(k-δ)-anonymity by considering changes of thresholdδon different road segments and constructing an adaptive threshold setΨthat takes into account road network information.In the second phase,Laplace noise regarding distance of anonymous locations under differential privacy is used for trajectory perturbation of the anonymous trajectory dataset outputted by the first phase.Experiments on real road network dataset are performed and the results show that the proposed method improves the trajectory indistinguishability and achieves good data utility in condition of preserving user privacy.展开更多
文摘With the recent technological developments,massive vehicular ad hoc networks(VANETs)have been established,enabling numerous vehicles and their respective Road Side Unit(RSU)components to communicate with oneanother.The best way to enhance traffic flow for vehicles and traffic management departments is to share thedata they receive.There needs to be more protection for the VANET systems.An effective and safe methodof outsourcing is suggested,which reduces computation costs by achieving data security using a homomorphicmapping based on the conjugate operation of matrices.This research proposes a VANET-based data outsourcingsystem to fix the issues.To keep data outsourcing secure,the suggested model takes cryptography models intoaccount.Fog will keep the generated keys for the purpose of vehicle authentication.For controlling and overseeingthe outsourced data while preserving privacy,the suggested approach considers the Trusted Certified Auditor(TCA).Using the secret key,TCA can identify the genuine identity of VANETs when harmful messages aredetected.The proposed model develops a TCA-based unique static vehicle labeling system using cryptography(TCA-USVLC)for secure data outsourcing and privacy preservation in VANETs.The proposed model calculatesthe trust of vehicles in 16 ms for an average of 180 vehicles and achieves 98.6%accuracy for data encryption toprovide security.The proposedmodel achieved 98.5%accuracy in data outsourcing and 98.6%accuracy in privacypreservation in fog-enabled VANETs.Elliptical curve cryptography models can be applied in the future for betterencryption and decryption rates with lightweight cryptography operations.
文摘Online Social Networks (OSN) sites allow end-users to share agreat deal of information, which may also contain sensitive information,that may be subject to commercial or non-commercial privacy attacks. Asa result, guaranteeing various levels of privacy is critical while publishingdata by OSNs. The clustering-based solutions proved an effective mechanismto achieve the privacy notions in OSNs. But fixed clustering limits theperformance and scalability. Data utility degrades with increased privacy,so balancing the privacy utility trade-off is an open research issue. Theresearch has proposed a novel privacy preservation model using the enhancedclustering mechanism to overcome this issue. The proposed model includesphases like pre-processing, enhanced clustering, and ensuring privacy preservation.The enhanced clustering algorithm is the second phase where authorsmodified the existing fixed k-means clustering using the threshold approach.The threshold value is determined based on the supplied OSN data of edges,nodes, and user attributes. Clusters are k-anonymized with multiple graphproperties by a novel one-pass algorithm. After achieving the k-anonymityof clusters, optimization was performed to achieve all privacy models, suchas k-anonymity, t-closeness, and l-diversity. The proposed privacy frameworkachieves privacy of all three network components, i.e., link, node, and userattributes, with improved utility. The authors compare the proposed techniqueto underlying methods using OSN Yelp and Facebook datasets. The proposedapproach outperformed the underlying state of art methods for Degree ofAnonymization, computational efficiency, and information loss.
基金supported by the National Natural Science Foundation of China under Grant No.61272458Shaanxi Provinces Natural Science Basic Research Planning Project under Grant No.2014JM2-6119Yu Lin Industry-Academy-Research Cooperation Project under Grant No.2014CXY-12
文摘In the cloud computing environment, outsourcing service mode of data storage causes the security problem, the reliability of data cannot be guaranteed, and the privacy preservation problem has aroused wide concern. In order to solve the problem of inefficiency and high-complexity caused by traditional privacy preservation methods such as data encryption and access control technology, a privacy preservation method based on data coloring is proposed. The data coloring model is established and the coloring mechanism is adopted to deal with the sensitive data of numerical attributes, and the cloud model similarity measurement based on arithmetic average least-approximability is adopted to authenticate the ownership of privacy data. On the premise of high availability of data, the method strengthens the security of the privacy information. Then, the performance, validity and the parameter errors of the algorithm are quantitatively analyzed by the experiments using the UCI dataset. Under the same conditions of privacy preservation requirements, the proposed method can track privacy leakage efficiently and reduce privacy leakage risks. Compared with the k-anonymity approach, the proposed method enhances the computational time efficiency by 18.5%.
文摘The deep learning models hold considerable potential for clinical applications, but there are many challenges to successfully training deep learning models. Large-scale data collection is required, which is frequently only possible through multi-institutional cooperation. Building large central repositories is one strategy for multi-institution studies. However, this is hampered by issues regarding data sharing, including patient privacy, data de-identification, regulation, intellectual property, and data storage. These difficulties have lessened the impracticality of central data storage. In this survey, we will look at 24 research publications that concentrate on machine learning approaches linked to privacy preservation techniques for multi-institutional data, highlighting the multiple shortcomings of the existing methodologies. Researching different approaches will be made simpler in this case based on a number of factors, such as performance measures, year of publication and journals, achievements of the strategies in numerical assessments, and other factors. A technique analysis that considers the benefits and drawbacks of the strategies is additionally provided. The article also looks at some potential areas for future research as well as the challenges associated with increasing the accuracy of privacy protection techniques. The comparative evaluation of the approaches offers a thorough justification for the research’s purpose.
基金This work was supported by the National Natural Science Foundation of China(No.62271072)Beijing Natural Science Foundation(No.4232009).
文摘In crowdsourced federated learning,differential privacy is commonly used to prevent the aggregation server from recovering training data from the models uploaded by clients to achieve privacy preservation.However,improper privacy budget settings and perturbation methods will severely impact model performance.In order to achieve a harmonious equilibrium between privacy preservation and model performance,we propose a novel architecture for crowdsourced federated learning with personalized privacy preservation.In our architecture,to avoid the issue of poor model performance due to excessive privacy preservation requirements,we establish a two-stage dynamic game between the task requestor and clients to formulate the optimal privacy preservation strategy,allowing each client to independently control privacy preservation level.Additionally,we design a differential privacy perturbation mechanism based on weight priorities.It divides the weights based on their relevance with local data,applying different levels of perturbation to different types of weights.Finally,we conduct experiments on the proposed perturbation mechanism,and the experimental results indicate that our approach can achieve better global model performance with the same privacy budget.
基金This work was supported in part by the National Natural Science Foundation of China under Grant Nos. U1509213, 61672303, 61370080, the Postdoctoral Science Foundation of China under Grant No. 2013M540323, and the Shanghai Municipal Science and Technology Commission Project under Grant No. 16DZ1100200.
文摘Data security is one of the leading concerns and primary challenges for cloud computing. This issue is getting more and more serious with the development of cloud computing. However, the existing privacy-preserving data sharing techniques either fail to prevent the leakage of privacy or incur huge amounts of information loss. In this paper, we propose a novel technique, termed as linking-based anonymity model, which achieves K-anonymity with quasi-identifiers groups (QI-groups) having a size less than K. In the meanwhile, a semi-homogenous generalization is introduced to be against the attack incurred by homogenous generalization. To implement linking-based anonymization model, we propose a simple yet efficient heuristic local recoding method. Extensive experiments on real datasets are also conducted to show that the utility has been significantly improved by our approach compared with the state-of-the-art methods.
基金Project (No. MOE-INTEL-11-06) supported by the MOE-Intel IT Research Fund of China
文摘Various solutions have been proposed to enable mobile users to access location-based services while preserving their location privacy. Some of these solutions are based on a centralized architecture with the participation of a trustworthy third party, whereas some other approaches are based on a mobile peer-to-peer (P2P) architecture. The former approaches suffer from the scalability problem when networks grow large, while the latter have to endure either low anonymization success rates or high communication overheads. To address these issues, this paper deals with an enhanced dual-active spatial cloaking algorithm (EDA) for preserving location privacy in mobile P2P networks. The proposed EDA allows mobile users to collect and actively disseminate their location information to other users. Moreover, to deal with the challenging characteristics of mobile P2P networks, e.g., constrained network resources and user mobility, EDA enables users (1) to perform a negotiation process to minimize the number of duplicate locations to be shared so as to significantly reduce the communication overhead among users, (2) to predict user locations based on the latest available information so as to eliminate the inaccuracy problem introduced by using some out-of-date locations, and (3) to use a latest-record-highest-priority (LRHP) strategy to reduce the probability of broadcasting fewer useful locations. Extensive simulations are conducted for a range of P2P network scenarios to evaluate the performance of EDA in comparison with the existing solutions. Experimental results demonstrate that the proposed EDA can improve the performance in terms of anonymity and service time with minimized communication overhead.
基金sponsored by the National Key R&D Program of China(No.2018YFB2100400)the National Natural Science Foundation of China(No.62002077,61872100)+4 种基金the Major Research Plan of the National Natural Science Foundation of China(92167203)the Guangdong Basic and Applied Basic Research Foundation(No.2020A1515110385)the China Postdoctoral Science Foundation(No.2022M710860)the Zhejiang Lab(No.2020NF0AB01)Guangzhou Science and Technology Plan Project(202102010440).
文摘Benefiting from the development of Federated Learning(FL)and distributed communication systems,large-scale intelligent applications become possible.Distributed devices not only provide adequate training data,but also cause privacy leakage and energy consumption.How to optimize the energy consumption in distributed communication systems,while ensuring the privacy of users and model accuracy,has become an urgent challenge.In this paper,we define the FL as a 3-layer architecture including users,agents and server.In order to find a balance among model training accuracy,privacy-preserving effect,and energy consumption,we design the training process of FL as game models.We use an extensive game tree to analyze the key elements that influence the players’decisions in the single game,and then find the incentive mechanism that meet the social norms through the repeated game.The experimental results show that the Nash equilibrium we obtained satisfies the laws of reality,and the proposed incentive mechanism can also promote users to submit high-quality data in FL.Following the multiple rounds of play,the incentive mechanism can help all players find the optimal strategies for energy,privacy,and accuracy of FL in distributed communication systems.
文摘Purpose-The purpose of this paper is to improve the privacy in healthcare datasets that hold sensitive information.Putting a stop to privacy divulgence and bestowing relevant information to legitimate users are at the same time said to be of differing goals.Also,the swift evolution of big data has put forward considerable ease to all chores of life.As far as the big data era is concerned,propagation and information sharing are said to be the two main facets.Despite several research works performed on these aspects,with the incremental nature of data,the likelihood of privacy leakage is also substantially expanded through various benefits availed of big data.Hence,safeguarding data privacy in a complicated environment has become a major setback.Design/methodology/approach-In this study,a method called deep restricted additive homomorphic ElGamal privacy preservation(DR-AHEPP)to preserve the privacy of data even in case of incremental data is proposed.An entropy-based differential privacy quasi identification and DR-AHEPP algorithms are designed,respectively,for obtaining privacy-preserved minimum falsified quasi-identifier set and computationally efficient privacy-preserved data.Findings-Analysis results using Diabetes 130-US hospitals illustrate that the proposed DR-AHEPP method is more significant in preserving privacy on incremental data than existing methods.Acomparative analysis of state-of-the-art works with the objective to minimize information loss,false positive rate and execution time with higher accuracy is calibrated.Originality/value-The paper provides better performance using Diabetes 130-US hospitals for achieving high accuracy,low information loss and false positive rate.The result illustrates that the proposed method increases the accuracy by 4%and reduces the false positive rate and information loss by 25 and 35%,respectively,as compared to state-of-the-art works.
基金supported in part by the National Key Research and Development Program of China under Grant 2018YFB2100801in part by the National Natural Science Foundation of China(NSFC)under Grant 61972287in part by the Fundamental Research Funds for the Central Universities under Grant 22120210524.
文摘This paper addresses a special and imperceptible class of privacy,called implicit privacy.In contrast to traditional(explicit)privacy,implicit privacy has two essential prop-erties:(1)It is not initially defined as a privacy attribute;(2)it is strongly associated with privacy attributes.In other words,attackers could utilize it to infer privacy attributes with a certain probability,indirectly resulting in the disclosure of private information.To deal with the implicit privacy disclosure problem,we give a measurable definition of implicit privacy,and propose an ex-ante implicit privacy-preserving framework based on data generation,called IMPOSTER.The framework consists of an implicit privacy detection module and an implicit privacy protection module.The former uses normalized mutual information to detect implicit privacy attributes that are strongly related to traditional privacy attributes.Based on the idea of data generation,the latter equips the Generative Adversarial Network(GAN)framework with an additional discriminator,which is used to eliminate the association between traditional privacy attributes and implicit ones.We elaborate a theoretical analysis for the convergence of the framework.Experiments demonstrate that with the learned gen-erator,IMPOSTER can alleviate the disclosure of implicit privacy while maintaining good data utility.
文摘The increasing data pool in finance sectors forces machine learning(ML)to step into new complications.Banking data has significant financial implications and is confidential.Combining users data from several organizations for various banking services may result in various intrusions and privacy leakages.As a result,this study employs federated learning(FL)using a flower paradigm to preserve each organization’s privacy while collaborating to build a robust shared global model.However,diverse data distributions in the collaborative training process might result in inadequate model learning and a lack of privacy.To address this issue,the present paper proposes the imple-mentation of Federated Averaging(FedAvg)and Federated Proximal(FedProx)methods in the flower framework,which take advantage of the data locality while training and guaranteeing global convergence.Resultantly improves the privacy of the local models.This analysis used the credit card and Canadian Institute for Cybersecurity Intrusion Detection Evaluation(CICIDS)datasets.Precision,recall,and accuracy as performance indicators to show the efficacy of the proposed strategy using FedAvg and FedProx.The experimental findings suggest that the proposed approach helps to safely use banking data from diverse sources to enhance customer banking services by obtaining accuracy of 99.55%and 83.72%for FedAvg and 99.57%,and 84.63%for FedProx.
文摘With the prevalence of the Internet of Things(IoT)systems,smart cities comprise complex networks,including sensors,actuators,appliances,and cyber services.The complexity and heterogeneity of smart cities have become vulnerable to sophisticated cyber-attacks,especially privacy-related attacks such as inference and data poisoning ones.Federated Learning(FL)has been regarded as a hopeful method to enable distributed learning with privacypreserved intelligence in IoT applications.Even though the significance of developing privacy-preserving FL has drawn as a great research interest,the current research only concentrates on FL with independent identically distributed(i.i.d)data and few studies have addressed the non-i.i.d setting.FL is known to be vulnerable to Generative Adversarial Network(GAN)attacks,where an adversary can presume to act as a contributor participating in the training process to acquire the private data of other contributors.This paper proposes an innovative Privacy Protection-based Federated Deep Learning(PP-FDL)framework,which accomplishes data protection against privacy-related GAN attacks,along with high classification rates from non-i.i.d data.PP-FDL is designed to enable fog nodes to cooperate to train the FDL model in a way that ensures contributors have no access to the data of each other,where class probabilities are protected utilizing a private identifier generated for each class.The PP-FDL framework is evaluated for image classification using simple convolutional networks which are trained using MNIST and CIFAR-10 datasets.The empirical results have revealed that PF-DFL can achieve data protection and the framework outperforms the other three state-of-the-art models with 3%–8%as accuracy improvements.
基金We are thankful for the funding support fromthe Science and Technology Projects of the National Archives Administration of China(Grant Number 2022-R-031)the Fundamental Research Funds for the Central Universities,Central China Normal University(Grant Number CCNU24CG014).
文摘As the volume of healthcare and medical data increases from diverse sources,real-world scenarios involving data sharing and collaboration have certain challenges,including the risk of privacy leakage,difficulty in data fusion,low reliability of data storage,low effectiveness of data sharing,etc.To guarantee the service quality of data collaboration,this paper presents a privacy-preserving Healthcare and Medical Data Collaboration Service System combining Blockchain with Federated Learning,termed FL-HMChain.This system is composed of three layers:Data extraction and storage,data management,and data application.Focusing on healthcare and medical data,a healthcare and medical blockchain is constructed to realize data storage,transfer,processing,and access with security,real-time,reliability,and integrity.An improved master node selection consensus mechanism is presented to detect and prevent dishonest behavior,ensuring the overall reliability and trustworthiness of the collaborative model training process.Furthermore,healthcare and medical data collaboration services in real-world scenarios have been discussed and developed.To further validate the performance of FL-HMChain,a Convolutional Neural Network-based Federated Learning(FL-CNN-HMChain)model is investigated for medical image identification.This model achieves better performance compared to the baseline Convolutional Neural Network(CNN),having an average improvement of 4.7%on Area Under Curve(AUC)and 7%on Accuracy(ACC),respectively.Furthermore,the probability of privacy leakage can be effectively reduced by the blockchain-based parameter transfer mechanism in federated learning between local and global models.
基金supported by National Key Research and Development Plan in China(Grant No.2020YFB1005500)Beijing Natural Science Foundation(Grant No.M21034)BUPT Excellent Ph.D Students Foundation(Grant No.CX2023218)。
文摘With the growth of requirements for data sharing,a novel business model of digital assets trading has emerged that allows data owners to sell their data for monetary gain.In the distributed ledger of blockchain,however,the privacy of stakeholder's identity and the confidentiality of data content are threatened.Therefore,we proposed a blockchainenabled privacy-preserving and access control scheme to address the above problems.First,the multi-channel mechanism is introduced to provide the privacy protection of distributed ledger inside the channel and achieve coarse-grained access control to digital assets.Then,we use multi-authority attribute-based encryption(MAABE)algorithm to build a fine-grained access control model for data trading in a single channel and describe its instantiation in detail.Security analysis shows that the scheme has IND-CPA secure and can provide privacy protection and collusion resistance.Compared with other schemes,our solution has better performance in privacy protection and access control.The evaluation results demonstrate its effectiveness and practicability.
基金supported by the National Key R&D Program of China(No.2022YFB3103400)the National Natural Science Foundation of China under Grants 61932015 and 62172317.
文摘The dynamic landscape of the Internet of Things(IoT)is set to revolutionize the pace of interaction among entities,ushering in a proliferation of applications characterized by heightened quality and diversity.Among the pivotal applications within the realm of IoT,as a significant example,the Smart Grid(SG)evolves into intricate networks of energy deployment marked by data integration.This evolution concurrently entails data interchange with other IoT entities.However,there are also several challenges including data-sharing overheads and the intricate establishment of trusted centers in the IoT ecosystem.In this paper,we introduce a hierarchical secure data-sharing platform empowered by cloud-fog integration.Furthermore,we propose a novel non-interactive zero-knowledge proof-based group authentication and key agreement protocol that supports one-to-many sharing sets of IoT data,especially SG data.The security formal verification tool shows that the proposed scheme can achieve mutual authentication and secure data sharing while protecting the privacy of data providers.Compared with previous IoT data sharing schemes,the proposed scheme has advantages in both computational and transmission efficiency,and has more superiority with the increasing volume of shared data or increasing number of participants.
基金supported in part by Zhejiang Provincial Natural Science Foundation of China under Grant nos.LZ22F020002 and LY22F020003National Natural Science Foundation of China under Grant nos.61772018 and 62002226the key project of Humanities and Social Sciences in Colleges and Universities of Zhejiang Province under Grant no.2021GH017.
文摘The fast proliferation of edge devices for the Internet of Things(IoT)has led to massive volumes of data explosion.The generated data is collected and shared using edge-based IoT structures at a considerably high frequency.Thus,the data-sharing privacy exposure issue is increasingly intimidating when IoT devices make malicious requests for filching sensitive information from a cloud storage system through edge nodes.To address the identified issue,we present evolutionary privacy preservation learning strategies for an edge computing-based IoT data sharing scheme.In particular,we introduce evolutionary game theory and construct a payoff matrix to symbolize intercommunication between IoT devices and edge nodes,where IoT devices and edge nodes are two parties of the game.IoT devices may make malicious requests to achieve their goals of stealing privacy.Accordingly,edge nodes should deny malicious IoT device requests to prevent IoT data from being disclosed.They dynamically adjust their own strategies according to the opponent's strategy and finally maximize the payoffs.Built upon a developed application framework to illustrate the concrete data sharing architecture,a novel algorithm is proposed that can derive the optimal evolutionary learning strategy.Furthermore,we numerically simulate evolutionarily stable strategies,and the final results experimentally verify the correctness of the IoT data sharing privacy preservation scheme.Therefore,the proposed model can effectively defeat malicious invasion and protect sensitive information from leaking when IoT data is shared.
基金supported in part by the National Natural Science Foundation of China(61873345,61973263)the Youth Talent Support Program of Hebei(BJ2018050,BJ2020031)+2 种基金the Teturned Overseas Chinese Scholar Foundation of Hebei(C201829)the Natural Science Foundation of Hebei(F2020203002)the Postgraduate Innovation Fund Project of Hebei(CXZZSS2019047)。
文摘Location estimation of underwater sensor networks(USNs)has become a critical technology,due to its fundamental role in the sensing,communication and control of ocean volume.However,the asynchronous clock,security attack and mobility characteristics of underwater environment make localization much more challenging as compared with terrestrial sensor networks.This paper is concerned with a privacy-preserving asynchronous localization issue for USNs.Particularly,a hybrid network architecture that includes surface buoys,anchor nodes,active sensor nodes and ordinary sensor nodes is constructed.Then,an asynchronous localization protocol is provided,through which two privacy-preserving localization algorithms are designed to estimate the locations of active and ordinary sensor nodes.It is worth mentioning that,the proposed localization algorithms reveal disguised positions to the network,while they do not adopt any homomorphic encryption technique.More importantly,they can eliminate the effect of asynchronous clock,i.e.,clock skew and offset.The performance analyses for the privacy-preserving asynchronous localization algorithms are also presented.Finally,simulation and experiment results reveal that the proposed localization approach can avoid the leakage of position information,while the location accuracy can be significantly enhanced as compared with the other works.
基金This work was supported by an ARC Linkage Project(LP180101150)from the Australian Research Council,Australia.
文摘With the deployment of more and more 5g networks,the limitations of 5g networks have been found,which undoubtedly promotes the exploratory research of 6G networks as the next generation solutions.These investigations include the fundamental security and privacy problems associated with 6G technologies.Therefore,in order to consolidate and solidify this foundational research as a basis for future investigations,we have prepared a survey on the status quo of 6G security and privacy.The survey begins with a historical review of previous networking technologies and how they have informed the current trends in 6G networking.We then discuss four key aspects of 6G networks–real-time intelligent edge computing,distributed artificial intelligence,intelligent radio,and 3D intercoms–and some promising emerging technologies in each area,along with the relevant security and privacy issues.The survey concludes with a report on the potential use of 6G.Some of the references used in this paper along and further details of several points raised can be found at:security-privacyin5g-6g.github.io.
文摘Due to mobile Internet technology's rapid popularization,the Industrial Internet of Things(IIoT)can be seen everywhere in our daily lives.While IIoT brings us much convenience,a series of security and scalability issues related to permission operations rise to the surface during device communications.Hence,at present,a reliable and dynamic access control management system for IIoT is in urgent need.Up till now,numerous access control architectures have been proposed for IIoT.However,owing to centralized models and heterogeneous devices,security and scalability requirements still cannot be met.In this paper,we offer a smart contract token-based solution for decentralized access control in IIoT systems.Specifically,there are three smart contracts in our system,including the Token Issue Contract(TIC),User Register Contract(URC),and Manage Contract(MC).These three contracts collaboratively supervise and manage various events in IIoT environments.We also utilize the lightweight and post-quantum encryption algorithm-Nth-degree Truncated Polynomial Ring Units(NTRU)to preserve user privacy during the registration process.Subsequently,to evaluate our proposed architecture's performance,we build a prototype platform that connects to the local blockchain.Finally,experiment results show that our scheme has achieved secure and dynamic access control for the IIoT system compared with related research.
基金supported by the Fundamental Research Funds for the Central Universities(No.GK201906009)CERNET Innovation Project(No.NGII20190704)Science and Technology Program of Xi’an City(No.2019216914GXRC005CG006-GXYD5.2).
文摘In recent years,mobile Internet technology and location based services have wide application.Application providers and users have accumulated huge amount of trajectory data.While publishing and analyzing user trajectory data have brought great convenience for people,the disclosure risks of user privacy caused by the trajectory data publishing are also becoming more and more prominent.Traditional k-anonymous trajectory data publishing technologies cannot effectively protect user privacy against attackers with strong background knowledge.For privacy preserving trajectory data publishing,we propose a differential privacy based(k-Ψ)-anonymity method to defend against re-identification and probabilistic inference attack.The proposed method is divided into two phases:in the first phase,a dummy-based(k-Ψ)-anonymous trajectory data publishing algorithm is given,which improves(k-δ)-anonymity by considering changes of thresholdδon different road segments and constructing an adaptive threshold setΨthat takes into account road network information.In the second phase,Laplace noise regarding distance of anonymous locations under differential privacy is used for trajectory perturbation of the anonymous trajectory dataset outputted by the first phase.Experiments on real road network dataset are performed and the results show that the proposed method improves the trajectory indistinguishability and achieves good data utility in condition of preserving user privacy.