The elementary reactions of propylene polymerization catalyzed by conventional Ziegler-Natta catalysts was proposed according to the comprehensive view and without considering the effect of any impurity in the materia...The elementary reactions of propylene polymerization catalyzed by conventional Ziegler-Natta catalysts was proposed according to the comprehensive view and without considering the effect of any impurity in the material on propylene polymerization. The Monte Carlo simulation technique was employed to investigate the kinetics of propylene polymerization in order to determine the validity of the stationary state assumption and the effects of the polymerization temperature on the polymerization. The simulated total amount of active species, which only increases quickly at the beginning of the polymerization, indicates that the stationary state assumption in the studied system is valid. Moreover, significant effects of polymerization temperature on the polymerization conversion, and the molecular weight and its distribution were also analyzed. The simulated results show that the consumption rate of propylene increases with the increase of polymerization temperature; the maximum values of the number-average degree of polymerization are constant at different polymerization temperatures, however, the peak appears earlier with the higher temperature; as the polymerization temperature increases, the average molecular weight decreases and the molecular weight distribution changes greatly.展开更多
A comprehensive mechanism for propylene polymerization was proposed by considering the effects of main impurities in the material on propylene polymerization. According to the proposed mechanism, Monte Carlo simulatio...A comprehensive mechanism for propylene polymerization was proposed by considering the effects of main impurities in the material on propylene polymerization. According to the proposed mechanism, Monte Carlo simulation was employed to investigate the polymerization kinetics in order to determine the effects of the main impurities on the polymerization. Significant influences of the main impurities on the rate, number-average degree and controlling capability of hydrogen of the polymerization were analyzed.展开更多
A two-phase dynamic model, describing gas phase propylene polymerization in a fluidized bed reactor, was used to explore the dynamic behavior and process control of the polypropylene production rate and reactor temper...A two-phase dynamic model, describing gas phase propylene polymerization in a fluidized bed reactor, was used to explore the dynamic behavior and process control of the polypropylene production rate and reactor temperature. The open loop analysis revealed the nonlinear behavior of the polypropylene fluidized bed reactor, jus- tifying the use of an advanced control algorithm for efficient control of the process variables. In this case, a central- ized model predictive control (MPC) technique was implemented to control the polypropylene production rate and reactor temperature by manipulating the catalyst feed rate and cooling water flow rate respectively. The corre- sponding MPC controller was able to track changes in the setpoint smoothly for the reactor temperature and pro- duction rate while the setpoint tracking of the conventional proportional-integral (PI) controller was oscillatory with overshoots and obvious interaction between the reactor temperature and production rate loops. The MPC was able to produce controller moves which not only were well within the specified input constraints for both control vari- ables, but also non-aggressive and sufficiently smooth for practical implementations. Furthermore, the closed loop dynamic simulations indicated that the speed of rejecting the process disturbances for the MPC controller were also acceotable for both controlled variables.展开更多
A novel mathematical model for single particle slurry propylene polymerization rising heterogeneous Ziegler-Natta catalysts has been developed to describe the kinetic behavior, the molecular weight-distribution, the m...A novel mathematical model for single particle slurry propylene polymerization rising heterogeneous Ziegler-Natta catalysts has been developed to describe the kinetic behavior, the molecular weight-distribution, the monomer concentration, the degree of polymerization, the polydispersity index (PDI), etc. This model provides a more valid mathematical description by accounting for the monomer diffusion phenomena at two levels as multigrai model counts, and obtains results that are more applicable to the conditions existing in most polymerizations of industrial interest. Considering that some models on the mesoscale phenomena are so complex that some existingmodeling aspects have to be simplified or even neglected to make the model convenient for use in interesting engineering studies, it is very important to put some effort into determining what sort of numerical analysis works bestfor these problems. For this reason, special attentionis.paid to these studies to explorean efficient algorithm usingadaptive grid-point spacing in a tlnlte-ditterence technique to tlgure out more practical mass transport models andconvection-diffusion models efficiently. The reasonable outcomes, as well as the significant computation time saving, have been achieved, thereby displaying the advantage of this calculation method.展开更多
The estimation of the amount of reactive impurities in a loop reactor is of strategic importance to the propylene polymerization industry. It is essential to investigate the level of impurities in order to develop rel...The estimation of the amount of reactive impurities in a loop reactor is of strategic importance to the propylene polymerization industry. It is essential to investigate the level of impurities in order to develop reliable monitoring and control strategies. This paper described one approach based on generation function technique with the following two steps. First, a new mechanism for propylene polymerization was proposed by considering the effects of the reactive impurities in the material on the propylene polymerization. Second, a series of equations of population balance for the propylene polymerization in loop reactors were established based on the proposed mechanism. Accordingly, the equations were transformed into the mathematic matrix through the generation function technique to investigate the effects of the reactive impurities on the propylene polymerization. Significant effects of the reactive impurities were analyzed through computational simulation. The results show that the concentration of active centre on catalysts and the polymerization conversion both decrease with the increase of the initial concentration of any reactive impurity; hydrogen concentration decreases with the increase of the initial concentration of ethylene or butylenes, whereas, it increases with the increase of the initial concentration of propadiene; the simulated weight average molecular weight and the molecular weight distribution index of polymer resins both increase with the increase of the initial concentration of ethylene or butylenes. They decrease with the increase of the initial concentration of propadiene.展开更多
A series of electron donors,including 1,1-cyclopentanecarboxylic acid diethyl ester (CPCADEE),1,1cyclopentanedimethanol acetic diester (CPDMAD),1,1-biethoxymethyl pentane (BEMP),2,2-diethyl diethylmalonate (DEDEM)and ...A series of electron donors,including 1,1-cyclopentanecarboxylic acid diethyl ester (CPCADEE),1,1cyclopentanedimethanol acetic diester (CPDMAD),1,1-biethoxymethyl pentane (BEMP),2,2-diethyl diethylmalonate (DEDEM)and 2,2-diethyl-1,3-propanediol acetic diester (DEPDADE),were synthesized by diethyl malonate (DEM).The purities and structures of the above products were characterized by gas chromatography (GC) and gas chromatography-mass spectrometer (GC-MS),respectively.Furthermore,the possible optimal three-dimensional structures of these donors were simulated by means of Gaussian 03 and Chem 3D.Then these electron donors were coordinated with tetrachloro titanium (TiCl 4) and chloride magnesium (MgCl 2)to obtain the catalysts for the polymerization of propylene.The catalytic activities and properties of polypropylene are greatly improved by adding external donor(ED) when CPCADEE or DEPDADE is used as internal donor(ID).However,when BEMP was used as ID,the highest catalytic activity is obtained without adding ED,which can reduce production costs and simplify catalytic synthesis.The experiments indicate that BEMP has the shortest distance of oxygen atoms and the highest electronegativity.展开更多
A novel MgCl2-supported Ziegler-Natta catalyst containing diethyl diisopropylsuccinate donor was prepared and propylene polymerizations with the combination of such catalyst and four external donors were investigated ...A novel MgCl2-supported Ziegler-Natta catalyst containing diethyl diisopropylsuccinate donor was prepared and propylene polymerizations with the combination of such catalyst and four external donors were investigated in detail. The catalyst was compared with a commercial one with phthalate as internal donor in terms of catalytic activity, hydrogen sensitivity and stereospecificity in propylene polymerization. The molecular weight,molecular weight distribution and microstructure of the produced polypropylenes were compared also. It was found that the novel catalyst containing succinate internal donor showed higher activity and higher stereospecificity than those with phthalate as internal donor. Consequently, polypropylenes obtained by the succinate-based catalyst showed high molecular weight, high melting temperature, high isotactic index and broad molecular weight distribution than those obtained with the commercial catalyst.展开更多
Two unbridged metallocene catalysts, bis(2,4,7-trimethylindenyl)zirconium dichloride (met-I) and bis(2,4,6-trimethylindenyl)zirconium dichloride (met-II), which are different in the position of substituents on the six...Two unbridged metallocene catalysts, bis(2,4,7-trimethylindenyl)zirconium dichloride (met-I) and bis(2,4,6-trimethylindenyl)zirconium dichloride (met-II), which are different in the position of substituents on the six-membered ring of the indenyl ligands were synthesized. The effect of substituents in the two metallocenes on the propylene polymerization was studied in the presence of methylaluminoxane (MAO) and triisobutylaluminium (TIBA). From the analysis of microstructure determined by C-13-NMR, it was demonstrated that the polymers produced by met-II have higher [mmmm] isotactic sequences than that of met-I. Using a mechanism based on model statistical analysis, it was found that chain-end model was dominant for met-I. However, met-II obeys the concurrent two-sites model during polymerization, which can be attributed to the existence of 'racemic-like' conformer in its system.展开更多
Three unbridged metallocenes, bis(2,4,7-Me3-indenyl)zirconium dichloride(1) , bis(2-Me-4, 7-Et2-indenyl)zirconium dichloride (2) and bis (2, 4, 6-Me3-indenyl) zirconium dichloride (3) were synthesized. The effect of s...Three unbridged metallocenes, bis(2,4,7-Me3-indenyl)zirconium dichloride(1) , bis(2-Me-4, 7-Et2-indenyl)zirconium dichloride (2) and bis (2, 4, 6-Me3-indenyl) zirconium dichloride (3) were synthesized. The effect of solvent polarity on propylene polymerization catalyzed by the metallocenes in the presence of methylaluminoxane(MAO) and triisobutylaluminum(TIBA) was investigated in the toluene/CH2Cl2 mixed solvent. Changing the solvent polarity was found to influence the catalytic activity, polymer molecular weight and stereospecificity of the catalysts. The changes in the position of the substituents on the ligand caused the different responses of the catalyst to the changes in solvent polarity. The isotactic stereosequence of polypropylene was found to increase with the increase in the polarity of the reaction medium.展开更多
The effects of poisoning materials on catalytic activity and isospecificity of the supported Ziegler-Natta catalyst were investigated.A minor amount of simple structure of Lewis base,i.e.,methanol,acetone,ethyl acetat...The effects of poisoning materials on catalytic activity and isospecificity of the supported Ziegler-Natta catalyst were investigated.A minor amount of simple structure of Lewis base,i.e.,methanol,acetone,ethyl acetate,was introduced into the catalyst slurry for partial poisoning catalytic active centers.It was found that the variations in deactivation power were in the order of methanol>acetone>ethyl acetate.The kinetic investigation via stopped-flow polymerization showed that poisoning compounds cau...展开更多
Many attempts have been made to control the regioselectivity for olefin poly- merization by varying the structures of ligands in catalysts. The regioselectivity of propylene polymerization was investigated by replacin...Many attempts have been made to control the regioselectivity for olefin poly- merization by varying the structures of ligands in catalysts. The regioselectivity of propylene polymerization was investigated by replacing a nitrogen atom in the Pd(II) diimine catalyst with an oxygen atom from density functional theory method at the B3LYP/LANL2DZ level. The results show that the 1,2-insertion becomes a rival mechanism to the 2,1-insertion when the nitrogen atom is replaced by the oxygen atom leading to an asymmetric environment in the catalyst, and that the steric effect in the asymmetrical catalyst plays an important part in the polymerization. The insertion barrier from 2-O is much higher than that from 2-N. A pyramid transition state was characterized for the catalyst to convert 2-O back to 2-N through internal rotation. The propylene prefers to coordinate at the opposite side of O in the catalyst. This is the driving force for the internal rotation. The results are significant for isotactic and syndiotactic polymerization.展开更多
The bond breaking and forming in chemical reactions is a typical rare event,which is one of the difficult problems in molecular dynamics simulations.Numerous enhanced sampling methods have been developed to extend the...The bond breaking and forming in chemical reactions is a typical rare event,which is one of the difficult problems in molecular dynamics simulations.Numerous enhanced sampling methods have been developed to extend the time scale covered by molecular simulations.However,the difficulties of obtaining appropriate collective variables from complicated reaction pathways and a controlled sampling over the desired phase space remain as challenges.Herein,we use MetaITS,which combines metadynamics and integrated tempered sampling,to increase the sampling efficiency for chemical reactions.Metadynamics with collective variables obtained by harmonic linear discriminant analysis can efficiently decrease the main energy barrier of chemical reaction.Meanwhile,integrated tempered sampling can enhance the exploration of other degrees of freedom.In this study,we applied the MetaITS method to two transition-metal-catalyzed organic reactions with complicated reaction coordinates.We simulated here a zirconocene-catalyzed propylene polymerization to investigate the regioselectivity and temperature effects.We also studied a Sharpless epoxidation reaction,for which both chiral products are observed through simulation.展开更多
The formations of defective MgC12 surfaces, and subsequent adsorption of Ti species and electron donor, as well as propylene polymerization over the Ziegler-Natta catalyst have been investigated using density function...The formations of defective MgC12 surfaces, and subsequent adsorption of Ti species and electron donor, as well as propylene polymerization over the Ziegler-Natta catalyst have been investigated using density functional theory (DFT) method. Twelve possible support models of regular and defective MgC12 (110) and (100) surfaces were built. The individual adsorptions of titanium chlorides as mononuclear or dinuclear, and ethyl benzoate (EB) as electron donor, on these models were evaluated. The analysis of energies presented the cases of EB adsorption were generally more stable than titanium chlorides on both surfaces. Thus, EB as internal electron donor mainly prevented TIC14 from coordinating on the MgC12 surfaces where mostly non-stereospecific active sites could be formed. Exceptionally, A5 the site model with terminal Cl-vacancy on the MgC12 support, presented stronger adsorption of TiCl4 than that of EB on (110) surface. Since the TIC14 and ethyl benzoate (EB) would compete to adsorb on the support surface, it seems reasonable to assume that TIC14 might predominately occupy this site, which can act as the most plausible active site for propylene polymerization. The first insertion of propylene monomer into the A5 active site model showed that it exhibited good regioselectivity but poor stereospecificity in the absence of electron donor.展开更多
In this article, the effect of diethylaluminum chloride (DEAC) in propylene polymerization with MgC12-supported Ziegler-Natta catalyst was studied. Addition of DEAC in the catalyst system caused evident change in ca...In this article, the effect of diethylaluminum chloride (DEAC) in propylene polymerization with MgC12-supported Ziegler-Natta catalyst was studied. Addition of DEAC in the catalyst system caused evident change in catalytic activity and polymer chain structure. The activity decrease in raising DEAC/Ti molar ratio from 0 to 2 is a result of depressed production of isotactic polypropylene chains. The number of active centers in fractions of each polymer sample was determined by quenching the polymerization with 2-thiophenecarbonyl chloride and fractionating the polymer into isotactic, medium- isotactic and atactic fractions. The number of active centers in isotactic fraction ([Ci*]/[Ti]) was lowered by increasing DEAC/Ti molar ratio to 2, but further increasing the DEAC/Ti molar ratio to 20 caused marked increase of [Ci*]/[Ti]. The number of active centers that produce atactic and medium-isotactic PP chains was less influenced by DEAC in the range of DEAC/Ti = 0-10, but increased when the DEAC/Ti molar ratio was further raised to 20. The propagation rate constant of Ci* (k^i) was evidently increased when DEAC/Ti molar ratio was raised from 0 to 5, but further increase in DEAC/Ti ratio caused gradual decrease in kpi. The complicated effect of DEAC on the polymerization kinetics, catalysis behaviors and polymer structure can be reasonably explained by adsorption of DEAC on the central metal of the active centers or on Mg atoms adjacent to the central metal展开更多
The penta-ether compound was synthesized by the reaction of di(trimethylolpropane) with sodium hydride as the strong base and methyl iodide as the alkyl halide. This compound was characterized by NMR, FTIR, and GC t...The penta-ether compound was synthesized by the reaction of di(trimethylolpropane) with sodium hydride as the strong base and methyl iodide as the alkyl halide. This compound was characterized by NMR, FTIR, and GC techniques. The MgCl_2-supported titanium catalysts were incorporated with varying amounts of penta-ether compound as the internal donor and also the catalysts without the internal donor were synthesized. The synthesized catalysts and the conventional ZieglerNatta catalyst were characterized. The titanium contents were determined by spectrophotometry, magnesium by complexometric titration and chloride by argentometric titration. The effects of the new internal donor on propylene polymerization with the prepared MgCl_2-supported Ziegler-Natta catalysts were investigated and then these results were compared to the results obtained using the conventional diisobutyl phthalate-besed-Ziegler-Natta catalyst. The highest crystallinity degree, melting temperature, and isotacticity of polypropylene were obtained using the catalyst with a pentaether/Mg molar ratio equal to 0.21.展开更多
Ansa-Cyclohexyl-bis(4,5,6,7-tertrahydro-l-indenyl) zirconium dichloride (5) was used as catalyst for propylene and ethylene polymerization together with methyl aluminoxane (MAO) as the cocatalyst. Isotactic poly...Ansa-Cyclohexyl-bis(4,5,6,7-tertrahydro-l-indenyl) zirconium dichloride (5) was used as catalyst for propylene and ethylene polymerization together with methyl aluminoxane (MAO) as the cocatalyst. Isotactic polypropylene (PP) was obtained with the highest activity of 6.37× 107g PP (molZr)^-1h^-1. The mesomeso (mmmmm) pentads sequence content of PP was determined by 13C NMR spectroscopy. The dependence of the microstructure on the reaction temperature and the AI/Zr molar ratio was examined and the catalytic activity of complex 5 was compared with that of the similar ansa-zirconocene 3. The high activity of the new zirconocene 5 for propylene isospectic polymerization at high temperature (60℃) is the result of its unique bridged-group structure. Complex 5/MAO displays also high catalytic activity of 0.46× 10^6 to 9.87× 10^6g PE(molZr)^-h^-in the homo-polymerization of ethylene, The visometric molecular weight of PE ranges from 0.97×10^4 to 11.16×10^4 g.mol^- under the given conditions.^13C NMR spectroscopy analysis proves the PE to be linear polyethylene (LPE).展开更多
A L463^5 Box-Behnken design was used for developing a model to predict and optimize the molecular weight (Mw ) of polypropylene (PP) ; a second-order polynomial regression equation was derived to predict responses...A L463^5 Box-Behnken design was used for developing a model to predict and optimize the molecular weight (Mw ) of polypropylene (PP) ; a second-order polynomial regression equation was derived to predict responses. The significance of variables and their interactions were tested by means of the ANOVA with 95% confidence limits; the standardized effects were investigated by Pareto chart, the optimum values of the selected variables were obtained by analyzing the response surface contour plots. The optimized Mw value of 1. 217 × 10^5 g/mol was very close to the industrial value ( ( 1.22 ±0. 004) ×10^6 g/tool) at the optimum values.展开更多
Prediction of melt index (MI), the most important parameter in determining the product's grade and quality control of polypropylene produced in practical industrial processes, is studied. A novel soft-sensor model ...Prediction of melt index (MI), the most important parameter in determining the product's grade and quality control of polypropylene produced in practical industrial processes, is studied. A novel soft-sensor model with principal component analysis (PCA), radial basis function (RBF) networks, and multi-scale analysis (MSA) is proposed to infer the MI of manufactured products from real process variables, where PCA is carried out to select the most relevant process features and to eliminate the correlations of the input variables, MSA is introduced to a^quire much more information and to reduce the uncertainty of the system, and RBF networks are used to characterize the nonlinearity of the process. The research results show that the proposed method provides promising prediction reliability and accuracy, and supposed to have extensive application prospects in propylene polymerization processes.展开更多
Novel MgCl2-supported Ziegler-Natta (Z-N) catalysts prepared using a new one-pot ball milling method can effectively control the amounts of Ti-loading in the catalysts. Complex GPC data on polypropylene synthesized by...Novel MgCl2-supported Ziegler-Natta (Z-N) catalysts prepared using a new one-pot ball milling method can effectively control the amounts of Ti-loading in the catalysts. Complex GPC data on polypropylene synthesized by these novel catalysts were analyzed using the method of fitting the molecular weight distribution (MWD) curves with a multiple Flory-Schulz function. It was found that multiple active centers exist in these novel catalysts. Detailed study of the effects of the Ti-loadings in the catalysts on the distribution of the active centers showed that the Ti-loadings in the novel MgCl2-supported Z-N catalysts might affect the proportion of each type of active centers; and might be the main factor responsible for the effect of the Ti-loadings on the microstructure, the molecular weight and molecular weight distribution width of the resultant polymer, the catalytic activity and polymerization kinetics.展开更多
基金The National Natural Science Foundation of China(No.20406016)the Project of Fujian Petrochemical Company of SIN-OPEC (No.MS/FJ-08-JS-15-2005-01).
文摘The elementary reactions of propylene polymerization catalyzed by conventional Ziegler-Natta catalysts was proposed according to the comprehensive view and without considering the effect of any impurity in the material on propylene polymerization. The Monte Carlo simulation technique was employed to investigate the kinetics of propylene polymerization in order to determine the validity of the stationary state assumption and the effects of the polymerization temperature on the polymerization. The simulated total amount of active species, which only increases quickly at the beginning of the polymerization, indicates that the stationary state assumption in the studied system is valid. Moreover, significant effects of polymerization temperature on the polymerization conversion, and the molecular weight and its distribution were also analyzed. The simulated results show that the consumption rate of propylene increases with the increase of polymerization temperature; the maximum values of the number-average degree of polymerization are constant at different polymerization temperatures, however, the peak appears earlier with the higher temperature; as the polymerization temperature increases, the average molecular weight decreases and the molecular weight distribution changes greatly.
基金Supported by the National Natural Science Foundation of China (No.20406016) and Fujian Petrochemical Company ofSINOPEC (No. MS/FJ-08-JS-15-2005-01).
文摘A comprehensive mechanism for propylene polymerization was proposed by considering the effects of main impurities in the material on propylene polymerization. According to the proposed mechanism, Monte Carlo simulation was employed to investigate the polymerization kinetics in order to determine the effects of the main impurities on the polymerization. Significant influences of the main impurities on the rate, number-average degree and controlling capability of hydrogen of the polymerization were analyzed.
基金Supported by the Research Grants of the Research Council of Malaya
文摘A two-phase dynamic model, describing gas phase propylene polymerization in a fluidized bed reactor, was used to explore the dynamic behavior and process control of the polypropylene production rate and reactor temperature. The open loop analysis revealed the nonlinear behavior of the polypropylene fluidized bed reactor, jus- tifying the use of an advanced control algorithm for efficient control of the process variables. In this case, a central- ized model predictive control (MPC) technique was implemented to control the polypropylene production rate and reactor temperature by manipulating the catalyst feed rate and cooling water flow rate respectively. The corre- sponding MPC controller was able to track changes in the setpoint smoothly for the reactor temperature and pro- duction rate while the setpoint tracking of the conventional proportional-integral (PI) controller was oscillatory with overshoots and obvious interaction between the reactor temperature and production rate loops. The MPC was able to produce controller moves which not only were well within the specified input constraints for both control vari- ables, but also non-aggressive and sufficiently smooth for practical implementations. Furthermore, the closed loop dynamic simulations indicated that the speed of rejecting the process disturbances for the MPC controller were also acceotable for both controlled variables.
基金Supported by the National High Technology Development Program of China (No.2006AA05Z226), Natural Science Foundation of Zhejiang Province (No.Y105370), National HI-TECH Industrialization Program of China (No.2004-2080), and Science Fund for Distinguished Young Scholars of Zhejiang University (No. 111000-581645).
文摘A novel mathematical model for single particle slurry propylene polymerization rising heterogeneous Ziegler-Natta catalysts has been developed to describe the kinetic behavior, the molecular weight-distribution, the monomer concentration, the degree of polymerization, the polydispersity index (PDI), etc. This model provides a more valid mathematical description by accounting for the monomer diffusion phenomena at two levels as multigrai model counts, and obtains results that are more applicable to the conditions existing in most polymerizations of industrial interest. Considering that some models on the mesoscale phenomena are so complex that some existingmodeling aspects have to be simplified or even neglected to make the model convenient for use in interesting engineering studies, it is very important to put some effort into determining what sort of numerical analysis works bestfor these problems. For this reason, special attentionis.paid to these studies to explorean efficient algorithm usingadaptive grid-point spacing in a tlnlte-ditterence technique to tlgure out more practical mass transport models andconvection-diffusion models efficiently. The reasonable outcomes, as well as the significant computation time saving, have been achieved, thereby displaying the advantage of this calculation method.
基金This work was financially supported by the National Natural Science Foundation of China (No. 20406016)Fujian Petrochemical Company of SINOPEC (No. MS/FJ-08-JS-15-2005-01)
文摘The estimation of the amount of reactive impurities in a loop reactor is of strategic importance to the propylene polymerization industry. It is essential to investigate the level of impurities in order to develop reliable monitoring and control strategies. This paper described one approach based on generation function technique with the following two steps. First, a new mechanism for propylene polymerization was proposed by considering the effects of the reactive impurities in the material on the propylene polymerization. Second, a series of equations of population balance for the propylene polymerization in loop reactors were established based on the proposed mechanism. Accordingly, the equations were transformed into the mathematic matrix through the generation function technique to investigate the effects of the reactive impurities on the propylene polymerization. Significant effects of the reactive impurities were analyzed through computational simulation. The results show that the concentration of active centre on catalysts and the polymerization conversion both decrease with the increase of the initial concentration of any reactive impurity; hydrogen concentration decreases with the increase of the initial concentration of ethylene or butylenes, whereas, it increases with the increase of the initial concentration of propadiene; the simulated weight average molecular weight and the molecular weight distribution index of polymer resins both increase with the increase of the initial concentration of ethylene or butylenes. They decrease with the increase of the initial concentration of propadiene.
基金Supported by National Natural Science Foundation of China (No. 20476080)Tianjin Natural Science Foundation (No. 07JCYBJC00600)
文摘A series of electron donors,including 1,1-cyclopentanecarboxylic acid diethyl ester (CPCADEE),1,1cyclopentanedimethanol acetic diester (CPDMAD),1,1-biethoxymethyl pentane (BEMP),2,2-diethyl diethylmalonate (DEDEM)and 2,2-diethyl-1,3-propanediol acetic diester (DEPDADE),were synthesized by diethyl malonate (DEM).The purities and structures of the above products were characterized by gas chromatography (GC) and gas chromatography-mass spectrometer (GC-MS),respectively.Furthermore,the possible optimal three-dimensional structures of these donors were simulated by means of Gaussian 03 and Chem 3D.Then these electron donors were coordinated with tetrachloro titanium (TiCl 4) and chloride magnesium (MgCl 2)to obtain the catalysts for the polymerization of propylene.The catalytic activities and properties of polypropylene are greatly improved by adding external donor(ED) when CPCADEE or DEPDADE is used as internal donor(ID).However,when BEMP was used as ID,the highest catalytic activity is obtained without adding ED,which can reduce production costs and simplify catalytic synthesis.The experiments indicate that BEMP has the shortest distance of oxygen atoms and the highest electronegativity.
文摘A novel MgCl2-supported Ziegler-Natta catalyst containing diethyl diisopropylsuccinate donor was prepared and propylene polymerizations with the combination of such catalyst and four external donors were investigated in detail. The catalyst was compared with a commercial one with phthalate as internal donor in terms of catalytic activity, hydrogen sensitivity and stereospecificity in propylene polymerization. The molecular weight,molecular weight distribution and microstructure of the produced polypropylenes were compared also. It was found that the novel catalyst containing succinate internal donor showed higher activity and higher stereospecificity than those with phthalate as internal donor. Consequently, polypropylenes obtained by the succinate-based catalyst showed high molecular weight, high melting temperature, high isotactic index and broad molecular weight distribution than those obtained with the commercial catalyst.
基金This project was supported by the National Natural Science Foundation of China and the Petrochemical Incorporation of China (Grant number: 29734144).
文摘Two unbridged metallocene catalysts, bis(2,4,7-trimethylindenyl)zirconium dichloride (met-I) and bis(2,4,6-trimethylindenyl)zirconium dichloride (met-II), which are different in the position of substituents on the six-membered ring of the indenyl ligands were synthesized. The effect of substituents in the two metallocenes on the propylene polymerization was studied in the presence of methylaluminoxane (MAO) and triisobutylaluminium (TIBA). From the analysis of microstructure determined by C-13-NMR, it was demonstrated that the polymers produced by met-II have higher [mmmm] isotactic sequences than that of met-I. Using a mechanism based on model statistical analysis, it was found that chain-end model was dominant for met-I. However, met-II obeys the concurrent two-sites model during polymerization, which can be attributed to the existence of 'racemic-like' conformer in its system.
基金National Natural Science Foundation of China and SINOPEC(No.29734144).
文摘Three unbridged metallocenes, bis(2,4,7-Me3-indenyl)zirconium dichloride(1) , bis(2-Me-4, 7-Et2-indenyl)zirconium dichloride (2) and bis (2, 4, 6-Me3-indenyl) zirconium dichloride (3) were synthesized. The effect of solvent polarity on propylene polymerization catalyzed by the metallocenes in the presence of methylaluminoxane(MAO) and triisobutylaluminum(TIBA) was investigated in the toluene/CH2Cl2 mixed solvent. Changing the solvent polarity was found to influence the catalytic activity, polymer molecular weight and stereospecificity of the catalysts. The changes in the position of the substituents on the ligand caused the different responses of the catalyst to the changes in solvent polarity. The isotactic stereosequence of polypropylene was found to increase with the increase in the polarity of the reaction medium.
基金The authors gratefully acknowledge the Thailand Research Fund(TRF)Royal Golden Jubilee program for the financial support.
文摘The effects of poisoning materials on catalytic activity and isospecificity of the supported Ziegler-Natta catalyst were investigated.A minor amount of simple structure of Lewis base,i.e.,methanol,acetone,ethyl acetate,was introduced into the catalyst slurry for partial poisoning catalytic active centers.It was found that the variations in deactivation power were in the order of methanol>acetone>ethyl acetate.The kinetic investigation via stopped-flow polymerization showed that poisoning compounds cau...
基金This work was supported by the Natural Science Foundation of Heilongjiang Province (No. B0313) and Research Foundation of China University of Mining and Technology
文摘Many attempts have been made to control the regioselectivity for olefin poly- merization by varying the structures of ligands in catalysts. The regioselectivity of propylene polymerization was investigated by replacing a nitrogen atom in the Pd(II) diimine catalyst with an oxygen atom from density functional theory method at the B3LYP/LANL2DZ level. The results show that the 1,2-insertion becomes a rival mechanism to the 2,1-insertion when the nitrogen atom is replaced by the oxygen atom leading to an asymmetric environment in the catalyst, and that the steric effect in the asymmetrical catalyst plays an important part in the polymerization. The insertion barrier from 2-O is much higher than that from 2-N. A pyramid transition state was characterized for the catalyst to convert 2-O back to 2-N through internal rotation. The propylene prefers to coordinate at the opposite side of O in the catalyst. This is the driving force for the internal rotation. The results are significant for isotactic and syndiotactic polymerization.
基金supported by National Natural Science Foundation of China(grant nos.21927901,21821004,and 21873007 to Y.Q.G.,grant no.21933004 to Y.D.W.,grant nos.22273061 and 22003042 to Y.I.Y.)the Key-Area Research and Development Program of Guangdong Province(grant no.2020B0101350001 to Y.D.W.).
文摘The bond breaking and forming in chemical reactions is a typical rare event,which is one of the difficult problems in molecular dynamics simulations.Numerous enhanced sampling methods have been developed to extend the time scale covered by molecular simulations.However,the difficulties of obtaining appropriate collective variables from complicated reaction pathways and a controlled sampling over the desired phase space remain as challenges.Herein,we use MetaITS,which combines metadynamics and integrated tempered sampling,to increase the sampling efficiency for chemical reactions.Metadynamics with collective variables obtained by harmonic linear discriminant analysis can efficiently decrease the main energy barrier of chemical reaction.Meanwhile,integrated tempered sampling can enhance the exploration of other degrees of freedom.In this study,we applied the MetaITS method to two transition-metal-catalyzed organic reactions with complicated reaction coordinates.We simulated here a zirconocene-catalyzed propylene polymerization to investigate the regioselectivity and temperature effects.We also studied a Sharpless epoxidation reaction,for which both chiral products are observed through simulation.
基金supported by the Program of Introducing Talents of Discipline to Universities (B08021)Fundamental Research Funds for the Central Universities
文摘The formations of defective MgC12 surfaces, and subsequent adsorption of Ti species and electron donor, as well as propylene polymerization over the Ziegler-Natta catalyst have been investigated using density functional theory (DFT) method. Twelve possible support models of regular and defective MgC12 (110) and (100) surfaces were built. The individual adsorptions of titanium chlorides as mononuclear or dinuclear, and ethyl benzoate (EB) as electron donor, on these models were evaluated. The analysis of energies presented the cases of EB adsorption were generally more stable than titanium chlorides on both surfaces. Thus, EB as internal electron donor mainly prevented TIC14 from coordinating on the MgC12 surfaces where mostly non-stereospecific active sites could be formed. Exceptionally, A5 the site model with terminal Cl-vacancy on the MgC12 support, presented stronger adsorption of TiCl4 than that of EB on (110) surface. Since the TIC14 and ethyl benzoate (EB) would compete to adsorb on the support surface, it seems reasonable to assume that TIC14 might predominately occupy this site, which can act as the most plausible active site for propylene polymerization. The first insertion of propylene monomer into the A5 active site model showed that it exhibited good regioselectivity but poor stereospecificity in the absence of electron donor.
基金supported by the National Natural Science Foundation of China (No. 21074108)the Major State Basic Research Programs (No. 2011CB606001)
文摘In this article, the effect of diethylaluminum chloride (DEAC) in propylene polymerization with MgC12-supported Ziegler-Natta catalyst was studied. Addition of DEAC in the catalyst system caused evident change in catalytic activity and polymer chain structure. The activity decrease in raising DEAC/Ti molar ratio from 0 to 2 is a result of depressed production of isotactic polypropylene chains. The number of active centers in fractions of each polymer sample was determined by quenching the polymerization with 2-thiophenecarbonyl chloride and fractionating the polymer into isotactic, medium- isotactic and atactic fractions. The number of active centers in isotactic fraction ([Ci*]/[Ti]) was lowered by increasing DEAC/Ti molar ratio to 2, but further increasing the DEAC/Ti molar ratio to 20 caused marked increase of [Ci*]/[Ti]. The number of active centers that produce atactic and medium-isotactic PP chains was less influenced by DEAC in the range of DEAC/Ti = 0-10, but increased when the DEAC/Ti molar ratio was further raised to 20. The propagation rate constant of Ci* (k^i) was evidently increased when DEAC/Ti molar ratio was raised from 0 to 5, but further increase in DEAC/Ti ratio caused gradual decrease in kpi. The complicated effect of DEAC on the polymerization kinetics, catalysis behaviors and polymer structure can be reasonably explained by adsorption of DEAC on the central metal of the active centers or on Mg atoms adjacent to the central metal
基金financially supported by the Marun Petrochemical Co.,Mahshahr,Iran
文摘The penta-ether compound was synthesized by the reaction of di(trimethylolpropane) with sodium hydride as the strong base and methyl iodide as the alkyl halide. This compound was characterized by NMR, FTIR, and GC techniques. The MgCl_2-supported titanium catalysts were incorporated with varying amounts of penta-ether compound as the internal donor and also the catalysts without the internal donor were synthesized. The synthesized catalysts and the conventional ZieglerNatta catalyst were characterized. The titanium contents were determined by spectrophotometry, magnesium by complexometric titration and chloride by argentometric titration. The effects of the new internal donor on propylene polymerization with the prepared MgCl_2-supported Ziegler-Natta catalysts were investigated and then these results were compared to the results obtained using the conventional diisobutyl phthalate-besed-Ziegler-Natta catalyst. The highest crystallinity degree, melting temperature, and isotacticity of polypropylene were obtained using the catalyst with a pentaether/Mg molar ratio equal to 0.21.
基金the National Natural Science Foundation of China(20374043)SINOPEC(X501025)
文摘Ansa-Cyclohexyl-bis(4,5,6,7-tertrahydro-l-indenyl) zirconium dichloride (5) was used as catalyst for propylene and ethylene polymerization together with methyl aluminoxane (MAO) as the cocatalyst. Isotactic polypropylene (PP) was obtained with the highest activity of 6.37× 107g PP (molZr)^-1h^-1. The mesomeso (mmmmm) pentads sequence content of PP was determined by 13C NMR spectroscopy. The dependence of the microstructure on the reaction temperature and the AI/Zr molar ratio was examined and the catalytic activity of complex 5 was compared with that of the similar ansa-zirconocene 3. The high activity of the new zirconocene 5 for propylene isospectic polymerization at high temperature (60℃) is the result of its unique bridged-group structure. Complex 5/MAO displays also high catalytic activity of 0.46× 10^6 to 9.87× 10^6g PE(molZr)^-h^-in the homo-polymerization of ethylene, The visometric molecular weight of PE ranges from 0.97×10^4 to 11.16×10^4 g.mol^- under the given conditions.^13C NMR spectroscopy analysis proves the PE to be linear polyethylene (LPE).
基金Supported by the R&D Program of Catalyst Company,SINOPEC(G8101-11-ZS-0016*)
文摘A L463^5 Box-Behnken design was used for developing a model to predict and optimize the molecular weight (Mw ) of polypropylene (PP) ; a second-order polynomial regression equation was derived to predict responses. The significance of variables and their interactions were tested by means of the ANOVA with 95% confidence limits; the standardized effects were investigated by Pareto chart, the optimum values of the selected variables were obtained by analyzing the response surface contour plots. The optimized Mw value of 1. 217 × 10^5 g/mol was very close to the industrial value ( ( 1.22 ±0. 004) ×10^6 g/tool) at the optimum values.
基金Supported by the National Natural Science Foundation of China (No. 20106008)National HI-TECH Industrialization Program of China (No. Fagai-Gaoji-2004-2080)Science Fund for Distinguished Young Scholars of Zhejiang University (No. 111000-581645).
文摘Prediction of melt index (MI), the most important parameter in determining the product's grade and quality control of polypropylene produced in practical industrial processes, is studied. A novel soft-sensor model with principal component analysis (PCA), radial basis function (RBF) networks, and multi-scale analysis (MSA) is proposed to infer the MI of manufactured products from real process variables, where PCA is carried out to select the most relevant process features and to eliminate the correlations of the input variables, MSA is introduced to a^quire much more information and to reduce the uncertainty of the system, and RBF networks are used to characterize the nonlinearity of the process. The research results show that the proposed method provides promising prediction reliability and accuracy, and supposed to have extensive application prospects in propylene polymerization processes.
基金Project supported by the National Natural Science Foundation ofChina (No. 20172045) Science and Technology Plan Fund of Zhe-jiang Province (No. 001101116) and Foundation for Doctors ofNingbo City (No. 2003A62012) China
文摘Novel MgCl2-supported Ziegler-Natta (Z-N) catalysts prepared using a new one-pot ball milling method can effectively control the amounts of Ti-loading in the catalysts. Complex GPC data on polypropylene synthesized by these novel catalysts were analyzed using the method of fitting the molecular weight distribution (MWD) curves with a multiple Flory-Schulz function. It was found that multiple active centers exist in these novel catalysts. Detailed study of the effects of the Ti-loadings in the catalysts on the distribution of the active centers showed that the Ti-loadings in the novel MgCl2-supported Z-N catalysts might affect the proportion of each type of active centers; and might be the main factor responsible for the effect of the Ti-loadings on the microstructure, the molecular weight and molecular weight distribution width of the resultant polymer, the catalytic activity and polymerization kinetics.