BACKGROUND As a well-known fact to the public,gestational diabetes mellitus(GDM)could bring serious risks for both pregnant women and infants.During this important investigation into the linkage between GDM patients a...BACKGROUND As a well-known fact to the public,gestational diabetes mellitus(GDM)could bring serious risks for both pregnant women and infants.During this important investigation into the linkage between GDM patients and their altered expression in the serum,proteomics techniques were deployed to detect the differentially expressed proteins(DEPs)of in the serum of GDM patients to further explore its pathogenesis,and find out possible biomarkers to forecast GDM occurrence.METHODS Subjects were divided into GDM and normal control groups according to the IADPSG diagnostic criteria.Serum samples were randomly selected from four cases in each group at 24-28 wk of gestation,and the blood samples were identified by applying iTRAQ technology combined with liquid chromatography-tandem mass spectrometry.Key proteins and signaling pathways associated with GDM were identified by bioinformatics analysis,and the expression of key proteins in serum from 12 wk to 16 wk of gestation was further verified using enzyme-linked immunosorbent assay (ELISA).RESULTS Forty-seven proteins were significantly differentially expressed by analyzing the serum samples between the GDMgravidas as well as the healthy ones. Among them, 31 proteins were found to be upregulated notably and the rest16 proteins were downregulated remarkably. Bioinformatic data report revealed abnormal expression of proteinsassociated with lipid metabolism, coagulation cascade activation, complement system and inflammatory responsein the GDM group. ELISA results showed that the contents of RBP4, as well as ANGPTL8, increased in the serumof GDM gravidas compared with the healthy ones, and this change was found to initiate from 12 wk to 16 wk ofgestation.CONCLUSION GDM symptoms may involve abnormalities in lipid metabolism, coagulation cascade activation, complementsystem and inflammatory response. RBP4 and ANGPTL8 are expected to be early predictors of GDM.展开更多
Tauopathies,diseases characterized by neuropathological aggregates of tau including Alzheimer's disease and subtypes of fro ntotemporal dementia,make up the vast majority of dementia cases.Although there have been...Tauopathies,diseases characterized by neuropathological aggregates of tau including Alzheimer's disease and subtypes of fro ntotemporal dementia,make up the vast majority of dementia cases.Although there have been recent developments in tauopathy biomarkers and disease-modifying treatments,ongoing progress is required to ensure these are effective,economical,and accessible for the globally ageing population.As such,continued identification of new potential drug targets and biomarkers is critical."Big data"studies,such as proteomics,can generate information on thousands of possible new targets for dementia diagnostics and therapeutics,but currently remain underutilized due to the lack of a clear process by which targets are selected for future drug development.In this review,we discuss current tauopathy biomarkers and therapeutics,and highlight areas in need of improvement,particularly when addressing the needs of frail,comorbid and cognitively impaired populations.We highlight biomarkers which have been developed from proteomic data,and outline possible future directions in this field.We propose new criteria by which potential targets in proteomics studies can be objectively ranked as favorable for drug development,and demonstrate its application to our group's recent tau interactome dataset as an example.展开更多
Objective Hydroquinone(HQ),one of the phenolic metabolites of benzene,is widely recognized as an important participant in benzene-induced hematotoxicity.However,there are few relevant proteomics in HQ-induced hematoto...Objective Hydroquinone(HQ),one of the phenolic metabolites of benzene,is widely recognized as an important participant in benzene-induced hematotoxicity.However,there are few relevant proteomics in HQ-induced hematotoxicity and the mechanism hasn’t been fully understood yet.Methods In this study,we treated K562 cells with 40μmol/L HQ for 72 h,examined and validated protein expression changes by Label-free proteomic analysis and Parallel reaction monitoring(PRM),and performed bioinformatics analysis to identify interaction networks.Results One hundred and eighty-seven upregulated differentially expressed proteins(DEPs)and 279 downregulated DEPs were identified in HQ-exposed K562 cells,which were involved in neutrophilmediated immunity,blood microparticle,and other GO terms,as well as the lysosome,metabolic,cell cycle,and cellular senescence-related pathways.Focusing on the 23 DEGs and 5 DEPs in erythroid differentiation-related pathways,we constructed the network of protein interactions and determined 6 DEPs(STAT1,STAT3,CASP3,KIT,STAT5B,and VEGFA)as main hub proteins with the most interactions,among which STATs made a central impact and may be potential biomarkers of HQ-induced hematotoxicity.Conclusion Our work reinforced the use of proteomics and bioinformatic approaches to advance knowledge on molecular mechanisms of HQ-induced hematotoxicity at the protein level and provide a valuable basis for further clarification.展开更多
The wild Lepista sordida is a kind of precious and rare edible fungus.An excellent strain of it by artificial domestication was obtained,which was high-yield and high in iron content.In this study,high-throughput comp...The wild Lepista sordida is a kind of precious and rare edible fungus.An excellent strain of it by artificial domestication was obtained,which was high-yield and high in iron content.In this study,high-throughput comparative proteomics was used to reveal the regulatory mechanism of its primordium differentiation in the early fruiting body formation.The mycelium before the primordium differentiation mainly expressed high levels of mitochondrial functional proteins and carbon dioxide concentration regulatory proteins.In young mushrooms,the highly expressed proteins were mainly involved in cell component generation,cell proliferation,nitrogen compound metabolism,nucleotide metabolism,glutathione metabolism,and purine metabolism.The differential regulation patterns of pileus and stipe growth to maturity were also revealed.The highly expressed proteins related to transcription,RNA splicing,the production of various organelles,DNA conformational change,nucleosome organization,protein processing,maturation and transport,and cell detoxification regulated the pileus development and maturity.The proteins related to carbohydrate and energy metabolism,large amounts of obsolete cytoplasmic parts,nutrient deprivation,and external stimuli regulated the stipe development and maturity.Multiple CAZymes regulated nutrient absorption,morphogenesis,spore production,stress response,and other life activities at different growth and development stages.展开更多
White Hypsizygus marmoreus is a popular edible mushroom.Its mycelium is easy to be contaminated by Penicillium,which leads to a decrease in its quality and yield.Penicillium could compete for limited space and nutrien...White Hypsizygus marmoreus is a popular edible mushroom.Its mycelium is easy to be contaminated by Penicillium,which leads to a decrease in its quality and yield.Penicillium could compete for limited space and nutrients through rapid growth and produce a variety of harmful gases,such as benzene,aldehydes,phenols,etc.,to inhibit the growth of H.marmoreus mycelium.A series of changes occurred in H.marmoreus proteome after contamination when detected by the label-free tandem mass spectrometry(MS/MS)technique.Some proteins with up-regulated expression worked together to participate in some processes,such as the non-toxic transformation of harmful gases,glutathione metabolism,histone modification,nucleotide excision repair,clearing misfolded proteins,and synthesizing glutamine,which were mainly used in response to biological stress.The proteins with down-regulated expression are mainly related to the processes of ribosome function,protein processing,spliceosome,carbon metabolism,glycolysis,and gluconeogenesis.The reduction in the function of these proteins affected the production of the cell components,which might be an adjustment to adapt to growth retardation.This study further enhanced the understanding of the biological stress response and the growth restriction adaptation mechanisms in edible fungi.It also provided a theoretical basis for protein function exploration and edible mushroom food safety research.展开更多
BACKGROUND Obstructed defecation syndrome(ODS)represents the most prevalent form of chronic constipation,affecting a diverse patient population,leading to numerous complications,and imposing a significant burden on he...BACKGROUND Obstructed defecation syndrome(ODS)represents the most prevalent form of chronic constipation,affecting a diverse patient population,leading to numerous complications,and imposing a significant burden on healthcare resources.Most ODS patients have insufficient rectal propulsion,but the exact mechanism underlying the pathogenesis of ODS remains unclear.AIM To explore the molecular mechanism underlying the pathogenesis of ODS.METHODS A total of 30 pairs of rectal samples were collected from patients with ODS(ODS group)or grade IV prolapsed hemorrhoids without constipation(control group)for quantitative proteomic and bioinformatic analysis.Subsequently,50 pairs of paraffin-embedded rectal specimens were selected for immunohistochemistry and immunofluorescence studies to validate the analysis results.Human intestinal smooth cell contractile function experiments and electrophysiological experiments were conducted to verify the physiological functions of target proteins.Cellular ultrastructure was detected using transmission electron microscopy.RESULTS In comparison to the control group,the expression level of dystrophin(DMD)in rectal specimens from ODS patients was markedly reduced.This finding was corroborated using immunohistochemistry and immunofluorescence techniques.The diminished expression of DMD compromised the contractile function of intestinal smooth muscle cells.At the molecular level,nucleoporin protein 153 and L-type voltage-gated calcium channel were found to be overexpressed in intestinal smooth muscle cells exhibiting downregulated DMD expression.Electrophysiological experiments confirmed an excessive influx of calcium ions into these cells.Moreover,vacuolar-like structures which may be associated with excessive calcium influx were observed in the cells by transmission electron microscopy.CONCLUSION Decreased DMD expression in intestinal smooth muscle may upregulate L-type voltage-gated calcium channel expression,leading to excessive calcium influx which may cause a decrease in rectal propulsion,thereby contributing to the pathogenesis of ODS.展开更多
Objective:To uncover the underlying mechanisms of action of the Yinlai decoction on high-calorie dietinduced pneumonia through proteomics analysis.Methods:Based on the Gene Expression Omnibus(GEO)database,lung tissue ...Objective:To uncover the underlying mechanisms of action of the Yinlai decoction on high-calorie dietinduced pneumonia through proteomics analysis.Methods:Based on the Gene Expression Omnibus(GEO)database,lung tissue samples from normal and high-fat diet(HFD)fed mice in the GSE16377 dataset were selected as test cohorts to identify differentially expressed genes and conduct bioinformatics analyses.In the animal experiments,mice were randomly divided into the control(N),high-calorie diet pneumonia(M),and Yinlai decoction treatment(Y)groups.Mice in the M group received high-calorie feed and a 0.5 mg/mL lipopolysaccharide solution spray for 30 min for 3 d.The mice in the Y group were intragastrically administered 2 mL/10 g Yinlai decoction twice daily for 3 d.Pathological evaluation of the lung tissue was performed.Differentially expressed proteins(DEPs)in the lung tissue were identified using quantitative proteomics and bioinformatics analyses.The drug-target relationships between Yinlai decoction and core DEPs in the lung tissue were verified using AutoDock Vina and Molecular Graphics Laboratory(MGL)Tools.DEPs were verified by western blot.Results:GEO data mining showed that an HFD altered oxidative phosphorylation in mouse lung tissue.The Yinlai decoction alleviated pathological damage to lung tissue and pneumonia in mice that were fed a high-calorie diet.A total of 47 DEPs were identified between the Y and M groups.Enrichment analysis revealed their association with energy metabolism pathways such as the tricarboxylic acid cycle(TCA)and oxidative phosphorylation.The protein-protein interaction network revealed that Atp5a1,Pdha1,and Sdha were the target proteins mediating the therapeutic effects of Yinlai decoction.Molecular docking results suggested that the mechanism of the therapeutic effect of Yinlai decoction involves the binding of brassinolide,praeruptorin B,chrysoeriol,and other components in Yinlai decoction to Atp5a1.Conclusion:The Yinlai decoction alleviated lung tissue damage and pneumonia in mice that were fed a high-calorie diet by regulating the TCA and oxidative phosphorylation.Our study highlights the importance of a healthy diet for patients with pneumonia and provides a scientific basis for the prevention and treatment of pneumonia through dietary adjustments.展开更多
In this editorial,we comment on the article by Cao et al.Through applying isobaric tags for relative and absolute quantification technology coupled with liquid chromatography-tandem mass spectrometry,the researchers o...In this editorial,we comment on the article by Cao et al.Through applying isobaric tags for relative and absolute quantification technology coupled with liquid chromatography-tandem mass spectrometry,the researchers observed significant differential expression of 47 proteins when comparing serum samples from pregnant women with gestational diabetes mellitus(GDM)to the healthy ones.GDM symptoms may involve abnormalities in inflammatory response,complement system,coagulation cascade activation,and lipid metabolism.Retinol binding protein 4 and angiopoietin like 8 are potential early indicators of GDM.GDM stands out as one of the most prevalent metabolic complications during pregnancy and is linked to severe maternal and fetal outcomes like pre-eclampsia and stillbirth.Nevertheless,none of the biomarkers discovered so far have demonstrated effectiveness in predicting GDM.Our topic was designed to foster insights into advances in the application of proteomics for early prenatal screening of GDM.展开更多
Proteomics is one of the most active research fields in the post-genomic era. Here we briefly introduce the scientific background of the origination of proteomics and its content, research method. The new developments...Proteomics is one of the most active research fields in the post-genomic era. Here we briefly introduce the scientific background of the origination of proteomics and its content, research method. The new developments of proteomics at the levels of individual plants, tissues, organs and organells, as well as its applications in the area of plant genetic diversity, mutant characterization, and plant physiology, etc are reviewed. At last, the challenge and prospect of proteomics are discussed.展开更多
Aberrations in protein glycosylation and polysaccharides play a pivotal role in pancreatic tumorigenesis, influencing cancer progression, metastasis, immunoresponse and chemoresistance. Abnormal expression in sugar mo...Aberrations in protein glycosylation and polysaccharides play a pivotal role in pancreatic tumorigenesis, influencing cancer progression, metastasis, immunoresponse and chemoresistance. Abnormal expression in sugar moieties can impact the function of various glycoproteins, including mucins, surface receptors, adhesive proteins, proteoglycans, as well as their effectors and binding ligands, resulting in an increase in pancreatic cancer invasiveness and a cancerfavored microenvironment. Recent advance in glycoproteomics, glycomics and other chemical biology techniques have been employed to better understand the complex mechanism of glycosylation events and how they orchestrate molecular activities in genomics, proteomics and metabolomics implicated in pancreatic adenocarcinoma. A variety of strategies have been demonstrated targeting protein glycosylation and polysaccharides for diagnostic and therapeutic development.展开更多
Fruit ripening has been reported to be related to calcium(Ca),but the underlying mechanisms by which Ca regulates this process remain largely unknown.In order to study the changes of proteins and enriched phosphopepti...Fruit ripening has been reported to be related to calcium(Ca),but the underlying mechanisms by which Ca regulates this process remain largely unknown.In order to study the changes of proteins and enriched phosphopeptides,we conducted TMT labeling,bio-material-based PTM enrichment based on mass spectrometry in Ca-treated‘Golden Delicious’(GD)apple fruit(Malus×domestica).This dataset presents a comprehensive overview of the critical pathways involved in fruit ripening.A total of 47 proteins and 124 phosphoproteins significantly changed in Ca-treated fruit,which are crucial for regulating the cell wall and cytoskeleton,Ca-mediated signaling and transport,ethylene production,protein fate,especially ubiquitination-based protein degradation,and primary and secondary metabolisms.Our results indicated that Ca inhibited the abundance of polygalacturonase(PG)activity and increased the phosphorylation level of CSLD3.PG and phosphorylation were involved in cell wall degradation,thereby delaying fruit softening.As a secondary messenger,Ca-mediated signaling subsequently triggered downstream mitogen-activated protein kinases(MAPK)cascades and activated the membrane,transport,and ROS signaling.Moreover,MdEIN2,a key enzyme involved in the ubiquitin of protein modification,increased at Ser753 and Ser758 in Ca-treated fruit.Furthermore,diverse primary and secondary metabolisms including glycolysis,fatty acid metabolism,and oxidation respiratory chain were modulated to prevent fruit softening.These results provide basic information from protein and phosphorylation levels for apple fruit ripening during storage,which may be helpful for apple fruit storage control.展开更多
Single-cell or low-input multi-omics techniques have revolutionized the study of pre-implantation embryo development.However,the single-cell or low-input proteomic research in this field is relatively underdeveloped b...Single-cell or low-input multi-omics techniques have revolutionized the study of pre-implantation embryo development.However,the single-cell or low-input proteomic research in this field is relatively underdeveloped because of the higher threshold of the starting material for mammalian embryo samples and the lack of hypersensitive proteome technology.In this study,a comprehensive solution of ultrasensitive proteome technology(CS-UPT)was developed for single-cell or low-input mouse oocyte/embryo samples.The deep coverage and high-throughput routes significantly reduced the starting material and were selected by investigators based on their demands.Using the deep coverage route,we provided the first large-scale snapshot of the very early stage of mouse maternal-to-zygotic transition,including almost 5,500 protein groups from 20 mouse oocytes or zygotes for each sample.Moreover,significant protein regulatory networks centered on transcription factors and kinases between the MII oocyte and 1-cell embryo provided rich insights into minor zygotic genome activation.展开更多
Objective: To find new potential biomarkers and establish the patterns for the detection of ovarian cancer. Methods: Sixty one serum samples including 32 ovarian cancer patients and 29 healthy people were detected by ...Objective: To find new potential biomarkers and establish the patterns for the detection of ovarian cancer. Methods: Sixty one serum samples including 32 ovarian cancer patients and 29 healthy people were detected by surface-enhanced laser desorption/ionization mass spectrometry (SELDI-MS). The protein fingerprint data were analyzed by bioinformatics tools. Ten folds cross-validation support vector machine (SVM) was used to establish the diagnostic pattern. Results: Five potential bio- markers were found (2085 Da, 5881 Da, 7564 Da, 9422 Da, 6044 Da), combined with which the diagnostic pattern separated the ovarian cancer from the healthy samples with a sensitivity of 96.7%, a specificity of 96.7% and a positive predictive value of 96.7%. Conclusions: The combination of SELDI with bioinformatics tools could find new biomarkers and establish patterns with high sensitivity and specificity for the detection of ovarian cancer.展开更多
AIM: To assess the proteome of normal versus tumor tissue in squamous cell carcinoma of the esophagus (SCCE) in Iranian patients and compare our results with former reports by using proteomics. METHODS: Protein wa...AIM: To assess the proteome of normal versus tumor tissue in squamous cell carcinoma of the esophagus (SCCE) in Iranian patients and compare our results with former reports by using proteomics. METHODS: Protein was extracted from normal and tumor tissues. Two dimensional electrophoresis was carried out and spots with differential expression were identified with mass spectrometry. RNA extraction and RT-PCR along with immunodetection were performed. RESULTS: Fourteen proteins were found whose expression levels differed in tumor compared to normal tissues. Mass spectrometric analysis resulted in the identification of β-tropomyosin (TMβ), myosin light chain 2 (and its isoform), myosin regulatory light chain 2, peroxyredoxin 2, annexin I and an unknown polypeptide as the down regulated polypeptides in tumor tissue. Heat shock protein 70 (HSP70), TPM4-ALK fusion oncoprotein 2, myosin light polypeptide 6, keratin I, GH16431p and calreticulin were the up-regulated polypeptides found in tumor tissue. Several of these proteins, such as TMβ, HSP70, annexin Ⅰ, calreticulin, TPM4-ALK and isoforms of myosins, have been well recognized in tumorigenesis of esophageal or other types of cancers. CONCLUSION: Our study not only supports the involvement of some of the formerly reported proteins in SCCE but also introduces additional proteins found to be lost in SCCE, including TMβ.展开更多
AIM:To study the differential expression of proteins between natural taurine treated hepatic stellate cells and controls, and investigate the underlying regulatory mechanism of natural taurine in inhibiting hepatic fi...AIM:To study the differential expression of proteins between natural taurine treated hepatic stellate cells and controls, and investigate the underlying regulatory mechanism of natural taurine in inhibiting hepatic fibrosis.METHODS: A proteomic strategy combining two-dimensional gel electrophoresis and ultraperform ance liquid chromatographyelectrospray ionizationtandem mass spectrometry (UPLCESIMS/MS) was used to study the differential expression of proteins and Western blotting was used to validate the results. Gene ontology (GO) method was utilized to analyze the functional enrichment of differentially expressed proteins. Flow cytometry was performed to compare the apoptosis rate between taurinetreated and untreated hepatic stellate cells (HSCs).RESULTS: Nineteen differentially expressed proteins (11 upregulated and 8 downregulated) were identifiedby 2D/MS, and the expression profiles of GLO1 and ANXA1 were validated by Western blotting. GO analysis found that these differentially expressed proteins were enriched within biological processes such as "cellular apoptosis", "oxidation reaction" and "metabolic process" in clusters. Flow cytometric analysis showed that taurinetreated HSCs had a significantly increased apoptosis rate when compared with the control group.CONCLUSION: Natural taurine can promote HSC apoptosis so as to inhibit hepatic fibrosis.展开更多
AIM:To study the differential expression of Annexin A1(ANXA1)protein in human gastric adenocarcinoma.This study was also designed to analyze the relationship between ANXA1 expression and the clinicopathological parame...AIM:To study the differential expression of Annexin A1(ANXA1)protein in human gastric adenocarcinoma.This study was also designed to analyze the relationship between ANXA1 expression and the clinicopathological parameters of gastric carcinoma.METHODS:Purified gastric adenocarcinoma cells(GAC)and normal gastric epithelial cells(NGEC)were obtained from 15 patients with gastric cancer by laser capture microdissection.All of the peptide specimens were labeled as18O/16O after trypsin digestion.Differential protein expressions were quantitatively identified between GAC and NGEC by nanoliter-reverse-phase liquid chromatography-mass/mass spectrometry(nanoRPLC-MS/MS).The expressions of ANXA1 in GAC and NGEC were verified by western blot analysis.The tissue microarray containing the expressed ANXA1 in 75 pairs of gastric carcinoma and paracarcinoma specimens was detected by immunohistochemistry(IHC).The relationship between ANXA1 expression and clinicopathological parametes of gastric carcinoma was analyzed.RESULTS:A total of 78 differential proteins were identified.Western blotting revealed that ANXA1 expression was significantly upregulated in GAC(2.17/1,P<0.01).IHC results showed the correlations between ANXA1protein expression and the clinicopathological parameters,including invasive depth(T stage),lymph node metastasis(N stage),distant metastasis(M stage)and tumour-lymph node metastasis stage(P<0.01).However,the correlations between ANXA1 protein expression and the remaining clinicopathological parameters,including sex,age,histological differentiation and the size of tumour were not found(P>0.05).CONCLUSION:The upregulated ANXA1 expression may be associated with carcinogenesis,progression,invasion and metastasis of GAC.This protein could be considered as a biomarker of clinical prognostic prediction and targeted therapy of GAC.展开更多
The last decade has witnessed remarkable technological advances in mass spectrometry-based proteomics. The development of proteomics techniques has enabled the reliable analysis of complex proteomes, leading to the id...The last decade has witnessed remarkable technological advances in mass spectrometry-based proteomics. The development of proteomics techniques has enabled the reliable analysis of complex proteomes, leading to the identification and quantification of thousands of proteins in gastric cancer cells, tissues, and sera. This quantitative information has been used to profile the anomalies in gastric cancer and provide insights into the pathogenic mechanism of the disease. In this review, we mainly focus on the advances in mass spectrometry and quantitative proteomics that were achieved in the last five years and how these up-andcoming technologies are employed to track biochemical changes in gastric cancer cells. We conclude by presenting a perspective on quantitative proteomics and its future applications in the clinic and translational gastric cancer research.展开更多
The development of gastrointestinal diseases has been found to be associated with Helicobacter pylori (H. pylori) infection and various biochemical stresses in stomach and intestine. These stresses, such as oxidative,...The development of gastrointestinal diseases has been found to be associated with Helicobacter pylori (H. pylori) infection and various biochemical stresses in stomach and intestine. These stresses, such as oxidative, osmotic and acid stresses, may bring about bi-directional effects on both hosts and H. pylori, leading to changes of protein expression in their proteomes. Therefore, proteins differentially expressed in H. pylori under various stresses not only reflect gastrointestinal environment but also provide useful biomarkers for disease diagnosis and prognosis. In this regard, proteomic technology is an ideal tool to identify potential biomarkers as it can systematically monitor proteins and protein variation on a large scale of cell’s translational landscape, permitting in-depth analyses of host and pathogen interactions. By performing two-dimensional polyacrylamide gel electrophoresis (2-DE) followed by liquid chromatography-nanoESI-mass spectrometry (nanoLC-MS/MS), we have successfully pinpointed alkylhydroperoxide reductase (AhpC), neutrophil-activating protein and non-heme iron-binding ferritin as three prospective biomarkers showing up-regulation in H. pylori under oxidative, osmotic and acid stresses, respectively. Further biochemical characterization reveals that various environmental stresses can induce protein structure change and functional conversion in the identified biomarkers. Especially salient is the antioxidant enzyme AhpC, an abundant antioxidant protein present in H. pylori. It switches from a peroxide reductase of low-molecular-weight (LMW) oligomers to a molecular chaperone of high-molecular-weight (HMW) complexes under oxidative stress. Different seropositivy responses against LMW or HMW AhpC in H. pylori-infected patients faithfully match the disease progression from disease-free healthy persons to patients with gastric ulcer and cancer. These results has established AhpC of H. pylori as a promising diagnostic marker for gastrointestinal maladies, and highlight the utility of clinical proteomics for identifying disease biomarkers that can be uniquely applied to disease-oriented translational medicine.展开更多
Ovarian cancer is a lethal gynecologic malignancy with greater than 70% of women presenting with advanced stage disease. Despite new treatments, long term outcomes have not significantly changed in the past 30 years w...Ovarian cancer is a lethal gynecologic malignancy with greater than 70% of women presenting with advanced stage disease. Despite new treatments, long term outcomes have not significantly changed in the past 30 years with the five-year overall survival remaining between 20% and 40% for stage Ⅲ and Ⅳ disease. In contrast patients with stage Ⅰ disease have a greater than 90% five-year overall survival. Detection of ovarian cancer at an early stage would likely have significant impact on mortality rate. Screening biomarkers discovered at the bench have not translated to success in clinical trials. Existing screening modalities have not demonstrated survival benefit in completed prospective trials. Advances in high throughput screening are making it possible to evaluate the development of ovarian cancer in ways never before imagined. Data in the form of human "-omes" including the proteome, genome, metabolome, and transcriptome are now available in various packaged forms. With the correct pooling of resources including prospective collection of patient specimens, integration of high throughput screening, and use of molecular heterogeneity in biomarker discovery, we are poised to make progress in ovarian cancer screening. This review will summarize current biomarkers, imaging, and multimodality screening strategies in the context of emerging technologies.展开更多
基金This study was reviewed and approved by the Maternal and child health hospital of Hubei Province(Approval No.20201025).
文摘BACKGROUND As a well-known fact to the public,gestational diabetes mellitus(GDM)could bring serious risks for both pregnant women and infants.During this important investigation into the linkage between GDM patients and their altered expression in the serum,proteomics techniques were deployed to detect the differentially expressed proteins(DEPs)of in the serum of GDM patients to further explore its pathogenesis,and find out possible biomarkers to forecast GDM occurrence.METHODS Subjects were divided into GDM and normal control groups according to the IADPSG diagnostic criteria.Serum samples were randomly selected from four cases in each group at 24-28 wk of gestation,and the blood samples were identified by applying iTRAQ technology combined with liquid chromatography-tandem mass spectrometry.Key proteins and signaling pathways associated with GDM were identified by bioinformatics analysis,and the expression of key proteins in serum from 12 wk to 16 wk of gestation was further verified using enzyme-linked immunosorbent assay (ELISA).RESULTS Forty-seven proteins were significantly differentially expressed by analyzing the serum samples between the GDMgravidas as well as the healthy ones. Among them, 31 proteins were found to be upregulated notably and the rest16 proteins were downregulated remarkably. Bioinformatic data report revealed abnormal expression of proteinsassociated with lipid metabolism, coagulation cascade activation, complement system and inflammatory responsein the GDM group. ELISA results showed that the contents of RBP4, as well as ANGPTL8, increased in the serumof GDM gravidas compared with the healthy ones, and this change was found to initiate from 12 wk to 16 wk ofgestation.CONCLUSION GDM symptoms may involve abnormalities in lipid metabolism, coagulation cascade activation, complementsystem and inflammatory response. RBP4 and ANGPTL8 are expected to be early predictors of GDM.
基金supported by funding from the Bluesand Foundation,Alzheimer's Association(AARG-21-852072 and Bias Frangione Early Career Achievement Award)to EDan Australian Government Research Training Program scholarship and the University of Sydney's Brain and Mind Centre fellowship to AH。
文摘Tauopathies,diseases characterized by neuropathological aggregates of tau including Alzheimer's disease and subtypes of fro ntotemporal dementia,make up the vast majority of dementia cases.Although there have been recent developments in tauopathy biomarkers and disease-modifying treatments,ongoing progress is required to ensure these are effective,economical,and accessible for the globally ageing population.As such,continued identification of new potential drug targets and biomarkers is critical."Big data"studies,such as proteomics,can generate information on thousands of possible new targets for dementia diagnostics and therapeutics,but currently remain underutilized due to the lack of a clear process by which targets are selected for future drug development.In this review,we discuss current tauopathy biomarkers and therapeutics,and highlight areas in need of improvement,particularly when addressing the needs of frail,comorbid and cognitively impaired populations.We highlight biomarkers which have been developed from proteomic data,and outline possible future directions in this field.We propose new criteria by which potential targets in proteomics studies can be objectively ranked as favorable for drug development,and demonstrate its application to our group's recent tau interactome dataset as an example.
基金supported by the National Natural Science Foundation of China[Project No.81573192].
文摘Objective Hydroquinone(HQ),one of the phenolic metabolites of benzene,is widely recognized as an important participant in benzene-induced hematotoxicity.However,there are few relevant proteomics in HQ-induced hematotoxicity and the mechanism hasn’t been fully understood yet.Methods In this study,we treated K562 cells with 40μmol/L HQ for 72 h,examined and validated protein expression changes by Label-free proteomic analysis and Parallel reaction monitoring(PRM),and performed bioinformatics analysis to identify interaction networks.Results One hundred and eighty-seven upregulated differentially expressed proteins(DEPs)and 279 downregulated DEPs were identified in HQ-exposed K562 cells,which were involved in neutrophilmediated immunity,blood microparticle,and other GO terms,as well as the lysosome,metabolic,cell cycle,and cellular senescence-related pathways.Focusing on the 23 DEGs and 5 DEPs in erythroid differentiation-related pathways,we constructed the network of protein interactions and determined 6 DEPs(STAT1,STAT3,CASP3,KIT,STAT5B,and VEGFA)as main hub proteins with the most interactions,among which STATs made a central impact and may be potential biomarkers of HQ-induced hematotoxicity.Conclusion Our work reinforced the use of proteomics and bioinformatic approaches to advance knowledge on molecular mechanisms of HQ-induced hematotoxicity at the protein level and provide a valuable basis for further clarification.
基金funded by the Shandong Edible Fungus Agricultural Technology System(SDAIT-07-02)the National Natural Science Foundation of China(Grant No.32000041 and 32272789)+2 种基金the Shandong Provincial Natural Science Foundation,China(ZR2020QC005)the Qingdao Agricultural University Scientific Research Foundation(6631120076)horizontal project:Breeding and property protection of new varieties of factory produced Hypsizygus marmoreus(20183702012614).
文摘The wild Lepista sordida is a kind of precious and rare edible fungus.An excellent strain of it by artificial domestication was obtained,which was high-yield and high in iron content.In this study,high-throughput comparative proteomics was used to reveal the regulatory mechanism of its primordium differentiation in the early fruiting body formation.The mycelium before the primordium differentiation mainly expressed high levels of mitochondrial functional proteins and carbon dioxide concentration regulatory proteins.In young mushrooms,the highly expressed proteins were mainly involved in cell component generation,cell proliferation,nitrogen compound metabolism,nucleotide metabolism,glutathione metabolism,and purine metabolism.The differential regulation patterns of pileus and stipe growth to maturity were also revealed.The highly expressed proteins related to transcription,RNA splicing,the production of various organelles,DNA conformational change,nucleosome organization,protein processing,maturation and transport,and cell detoxification regulated the pileus development and maturity.The proteins related to carbohydrate and energy metabolism,large amounts of obsolete cytoplasmic parts,nutrient deprivation,and external stimuli regulated the stipe development and maturity.Multiple CAZymes regulated nutrient absorption,morphogenesis,spore production,stress response,and other life activities at different growth and development stages.
基金funded by the Shandong Provincial Natural Science Foundation,China (ZR2020QC005)the National Natural Science Foundation of China (32272789)+3 种基金the National Natural Science Foundation of China (32000041)the Shandong Edible Fungus Agricultural Technology System (SDAIT-07-02)the Shandong Provincial Key Research and Development Plan (2021ZDSYS28)the Qingdao Agricultural University Scientific Research Foundation (6631120076)。
文摘White Hypsizygus marmoreus is a popular edible mushroom.Its mycelium is easy to be contaminated by Penicillium,which leads to a decrease in its quality and yield.Penicillium could compete for limited space and nutrients through rapid growth and produce a variety of harmful gases,such as benzene,aldehydes,phenols,etc.,to inhibit the growth of H.marmoreus mycelium.A series of changes occurred in H.marmoreus proteome after contamination when detected by the label-free tandem mass spectrometry(MS/MS)technique.Some proteins with up-regulated expression worked together to participate in some processes,such as the non-toxic transformation of harmful gases,glutathione metabolism,histone modification,nucleotide excision repair,clearing misfolded proteins,and synthesizing glutamine,which were mainly used in response to biological stress.The proteins with down-regulated expression are mainly related to the processes of ribosome function,protein processing,spliceosome,carbon metabolism,glycolysis,and gluconeogenesis.The reduction in the function of these proteins affected the production of the cell components,which might be an adjustment to adapt to growth retardation.This study further enhanced the understanding of the biological stress response and the growth restriction adaptation mechanisms in edible fungi.It also provided a theoretical basis for protein function exploration and edible mushroom food safety research.
基金Supported by the National Natural Science Foundation of China,No.81500505the Construction of Predominant Disciplines of Zhongnan Hospital of Wuhan University,No.XKJS202017+1 种基金the Medical Science and Technology Innovation Platform of Joint Foundation of Health Commission of Hubei Province,Zhongnan Hospital of Wuhan University,No.PTXM2021025the Hubei Provincial Natural Science Foundation,No.2023AFC013.
文摘BACKGROUND Obstructed defecation syndrome(ODS)represents the most prevalent form of chronic constipation,affecting a diverse patient population,leading to numerous complications,and imposing a significant burden on healthcare resources.Most ODS patients have insufficient rectal propulsion,but the exact mechanism underlying the pathogenesis of ODS remains unclear.AIM To explore the molecular mechanism underlying the pathogenesis of ODS.METHODS A total of 30 pairs of rectal samples were collected from patients with ODS(ODS group)or grade IV prolapsed hemorrhoids without constipation(control group)for quantitative proteomic and bioinformatic analysis.Subsequently,50 pairs of paraffin-embedded rectal specimens were selected for immunohistochemistry and immunofluorescence studies to validate the analysis results.Human intestinal smooth cell contractile function experiments and electrophysiological experiments were conducted to verify the physiological functions of target proteins.Cellular ultrastructure was detected using transmission electron microscopy.RESULTS In comparison to the control group,the expression level of dystrophin(DMD)in rectal specimens from ODS patients was markedly reduced.This finding was corroborated using immunohistochemistry and immunofluorescence techniques.The diminished expression of DMD compromised the contractile function of intestinal smooth muscle cells.At the molecular level,nucleoporin protein 153 and L-type voltage-gated calcium channel were found to be overexpressed in intestinal smooth muscle cells exhibiting downregulated DMD expression.Electrophysiological experiments confirmed an excessive influx of calcium ions into these cells.Moreover,vacuolar-like structures which may be associated with excessive calcium influx were observed in the cells by transmission electron microscopy.CONCLUSION Decreased DMD expression in intestinal smooth muscle may upregulate L-type voltage-gated calcium channel expression,leading to excessive calcium influx which may cause a decrease in rectal propulsion,thereby contributing to the pathogenesis of ODS.
基金supported by the National Natural Science Foundation of China(81874421)the Innovation Team and Talents Cultivation Program of the National Administration of Traditional Chinese Medicine(ZYYCXTD-C-202006).
文摘Objective:To uncover the underlying mechanisms of action of the Yinlai decoction on high-calorie dietinduced pneumonia through proteomics analysis.Methods:Based on the Gene Expression Omnibus(GEO)database,lung tissue samples from normal and high-fat diet(HFD)fed mice in the GSE16377 dataset were selected as test cohorts to identify differentially expressed genes and conduct bioinformatics analyses.In the animal experiments,mice were randomly divided into the control(N),high-calorie diet pneumonia(M),and Yinlai decoction treatment(Y)groups.Mice in the M group received high-calorie feed and a 0.5 mg/mL lipopolysaccharide solution spray for 30 min for 3 d.The mice in the Y group were intragastrically administered 2 mL/10 g Yinlai decoction twice daily for 3 d.Pathological evaluation of the lung tissue was performed.Differentially expressed proteins(DEPs)in the lung tissue were identified using quantitative proteomics and bioinformatics analyses.The drug-target relationships between Yinlai decoction and core DEPs in the lung tissue were verified using AutoDock Vina and Molecular Graphics Laboratory(MGL)Tools.DEPs were verified by western blot.Results:GEO data mining showed that an HFD altered oxidative phosphorylation in mouse lung tissue.The Yinlai decoction alleviated pathological damage to lung tissue and pneumonia in mice that were fed a high-calorie diet.A total of 47 DEPs were identified between the Y and M groups.Enrichment analysis revealed their association with energy metabolism pathways such as the tricarboxylic acid cycle(TCA)and oxidative phosphorylation.The protein-protein interaction network revealed that Atp5a1,Pdha1,and Sdha were the target proteins mediating the therapeutic effects of Yinlai decoction.Molecular docking results suggested that the mechanism of the therapeutic effect of Yinlai decoction involves the binding of brassinolide,praeruptorin B,chrysoeriol,and other components in Yinlai decoction to Atp5a1.Conclusion:The Yinlai decoction alleviated lung tissue damage and pneumonia in mice that were fed a high-calorie diet by regulating the TCA and oxidative phosphorylation.Our study highlights the importance of a healthy diet for patients with pneumonia and provides a scientific basis for the prevention and treatment of pneumonia through dietary adjustments.
文摘In this editorial,we comment on the article by Cao et al.Through applying isobaric tags for relative and absolute quantification technology coupled with liquid chromatography-tandem mass spectrometry,the researchers observed significant differential expression of 47 proteins when comparing serum samples from pregnant women with gestational diabetes mellitus(GDM)to the healthy ones.GDM symptoms may involve abnormalities in inflammatory response,complement system,coagulation cascade activation,and lipid metabolism.Retinol binding protein 4 and angiopoietin like 8 are potential early indicators of GDM.GDM stands out as one of the most prevalent metabolic complications during pregnancy and is linked to severe maternal and fetal outcomes like pre-eclampsia and stillbirth.Nevertheless,none of the biomarkers discovered so far have demonstrated effectiveness in predicting GDM.Our topic was designed to foster insights into advances in the application of proteomics for early prenatal screening of GDM.
文摘Proteomics is one of the most active research fields in the post-genomic era. Here we briefly introduce the scientific background of the origination of proteomics and its content, research method. The new developments of proteomics at the levels of individual plants, tissues, organs and organells, as well as its applications in the area of plant genetic diversity, mutant characterization, and plant physiology, etc are reviewed. At last, the challenge and prospect of proteomics are discussed.
文摘Aberrations in protein glycosylation and polysaccharides play a pivotal role in pancreatic tumorigenesis, influencing cancer progression, metastasis, immunoresponse and chemoresistance. Abnormal expression in sugar moieties can impact the function of various glycoproteins, including mucins, surface receptors, adhesive proteins, proteoglycans, as well as their effectors and binding ligands, resulting in an increase in pancreatic cancer invasiveness and a cancerfavored microenvironment. Recent advance in glycoproteomics, glycomics and other chemical biology techniques have been employed to better understand the complex mechanism of glycosylation events and how they orchestrate molecular activities in genomics, proteomics and metabolomics implicated in pancreatic adenocarcinoma. A variety of strategies have been demonstrated targeting protein glycosylation and polysaccharides for diagnostic and therapeutic development.
基金supported by the National Natural Science Foundation of China (Grant Nos. 31722047, 31801848)LiaoNing Revitalization Talents Program (Grant No. XLYC1802019)
文摘Fruit ripening has been reported to be related to calcium(Ca),but the underlying mechanisms by which Ca regulates this process remain largely unknown.In order to study the changes of proteins and enriched phosphopeptides,we conducted TMT labeling,bio-material-based PTM enrichment based on mass spectrometry in Ca-treated‘Golden Delicious’(GD)apple fruit(Malus×domestica).This dataset presents a comprehensive overview of the critical pathways involved in fruit ripening.A total of 47 proteins and 124 phosphoproteins significantly changed in Ca-treated fruit,which are crucial for regulating the cell wall and cytoskeleton,Ca-mediated signaling and transport,ethylene production,protein fate,especially ubiquitination-based protein degradation,and primary and secondary metabolisms.Our results indicated that Ca inhibited the abundance of polygalacturonase(PG)activity and increased the phosphorylation level of CSLD3.PG and phosphorylation were involved in cell wall degradation,thereby delaying fruit softening.As a secondary messenger,Ca-mediated signaling subsequently triggered downstream mitogen-activated protein kinases(MAPK)cascades and activated the membrane,transport,and ROS signaling.Moreover,MdEIN2,a key enzyme involved in the ubiquitin of protein modification,increased at Ser753 and Ser758 in Ca-treated fruit.Furthermore,diverse primary and secondary metabolisms including glycolysis,fatty acid metabolism,and oxidation respiratory chain were modulated to prevent fruit softening.These results provide basic information from protein and phosphorylation levels for apple fruit ripening during storage,which may be helpful for apple fruit storage control.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.:82030099,30700397 Detail)the National Key R&D Program of China(Grant No.:2022YFD2101500)+5 种基金the Science and Technology Commission of Shanghai Municipality,China(Grant No.:22DZ2303000)the Shanghai Municipal Science and Technology Commission“Science and Technology Innovation Action Plan”Technical Standard Project,China(Grant No.:21DZ2201700)the Shanghai Municipal Science and Technology Commission“Science and Technology Innovation Action Plan”Natural Science Foundation Project,China(Grant No.:23ZR1435800)the Strategic Priority Research Program of the Chinese Academy of Sciences,China(Grant No.:XDB32060000)the Basic Frontier Scientific Research Program of Chinese Academy of Sciences(Grant No.:ZDBS-LY-SM019)the Yangfan Project of Shanghai Science and Technology Commission,China(Grant No.:22YF1454100),and the Innovative Research Team of High-level Local Universities in Shanghai,China.
文摘Single-cell or low-input multi-omics techniques have revolutionized the study of pre-implantation embryo development.However,the single-cell or low-input proteomic research in this field is relatively underdeveloped because of the higher threshold of the starting material for mammalian embryo samples and the lack of hypersensitive proteome technology.In this study,a comprehensive solution of ultrasensitive proteome technology(CS-UPT)was developed for single-cell or low-input mouse oocyte/embryo samples.The deep coverage and high-throughput routes significantly reduced the starting material and were selected by investigators based on their demands.Using the deep coverage route,we provided the first large-scale snapshot of the very early stage of mouse maternal-to-zygotic transition,including almost 5,500 protein groups from 20 mouse oocytes or zygotes for each sample.Moreover,significant protein regulatory networks centered on transcription factors and kinases between the MII oocyte and 1-cell embryo provided rich insights into minor zygotic genome activation.
基金Project (No. G1998051200) supported by the National Basic Research Program (973) of China
文摘Objective: To find new potential biomarkers and establish the patterns for the detection of ovarian cancer. Methods: Sixty one serum samples including 32 ovarian cancer patients and 29 healthy people were detected by surface-enhanced laser desorption/ionization mass spectrometry (SELDI-MS). The protein fingerprint data were analyzed by bioinformatics tools. Ten folds cross-validation support vector machine (SVM) was used to establish the diagnostic pattern. Results: Five potential bio- markers were found (2085 Da, 5881 Da, 7564 Da, 9422 Da, 6044 Da), combined with which the diagnostic pattern separated the ovarian cancer from the healthy samples with a sensitivity of 96.7%, a specificity of 96.7% and a positive predictive value of 96.7%. Conclusions: The combination of SELDI with bioinformatics tools could find new biomarkers and establish patterns with high sensitivity and specificity for the detection of ovarian cancer.
基金Supported by National Institute of Genetic Engineering and Biotechnology, No. 199 and Digestive Disease Research Center, No. 18/81
文摘AIM: To assess the proteome of normal versus tumor tissue in squamous cell carcinoma of the esophagus (SCCE) in Iranian patients and compare our results with former reports by using proteomics. METHODS: Protein was extracted from normal and tumor tissues. Two dimensional electrophoresis was carried out and spots with differential expression were identified with mass spectrometry. RNA extraction and RT-PCR along with immunodetection were performed. RESULTS: Fourteen proteins were found whose expression levels differed in tumor compared to normal tissues. Mass spectrometric analysis resulted in the identification of β-tropomyosin (TMβ), myosin light chain 2 (and its isoform), myosin regulatory light chain 2, peroxyredoxin 2, annexin I and an unknown polypeptide as the down regulated polypeptides in tumor tissue. Heat shock protein 70 (HSP70), TPM4-ALK fusion oncoprotein 2, myosin light polypeptide 6, keratin I, GH16431p and calreticulin were the up-regulated polypeptides found in tumor tissue. Several of these proteins, such as TMβ, HSP70, annexin Ⅰ, calreticulin, TPM4-ALK and isoforms of myosins, have been well recognized in tumorigenesis of esophageal or other types of cancers. CONCLUSION: Our study not only supports the involvement of some of the formerly reported proteins in SCCE but also introduces additional proteins found to be lost in SCCE, including TMβ.
基金Supported by The National Natural Science Foundation of China, No. 30660235Guangxi Natural Science Foundation, No. 0728080
文摘AIM:To study the differential expression of proteins between natural taurine treated hepatic stellate cells and controls, and investigate the underlying regulatory mechanism of natural taurine in inhibiting hepatic fibrosis.METHODS: A proteomic strategy combining two-dimensional gel electrophoresis and ultraperform ance liquid chromatographyelectrospray ionizationtandem mass spectrometry (UPLCESIMS/MS) was used to study the differential expression of proteins and Western blotting was used to validate the results. Gene ontology (GO) method was utilized to analyze the functional enrichment of differentially expressed proteins. Flow cytometry was performed to compare the apoptosis rate between taurinetreated and untreated hepatic stellate cells (HSCs).RESULTS: Nineteen differentially expressed proteins (11 upregulated and 8 downregulated) were identifiedby 2D/MS, and the expression profiles of GLO1 and ANXA1 were validated by Western blotting. GO analysis found that these differentially expressed proteins were enriched within biological processes such as "cellular apoptosis", "oxidation reaction" and "metabolic process" in clusters. Flow cytometric analysis showed that taurinetreated HSCs had a significantly increased apoptosis rate when compared with the control group.CONCLUSION: Natural taurine can promote HSC apoptosis so as to inhibit hepatic fibrosis.
基金Supported by National Natural Science Foundation of China,No.81001101Natural Science Foundation of Xinjiang Uygur Autonomous Region,China,No.2010211B20
文摘AIM:To study the differential expression of Annexin A1(ANXA1)protein in human gastric adenocarcinoma.This study was also designed to analyze the relationship between ANXA1 expression and the clinicopathological parameters of gastric carcinoma.METHODS:Purified gastric adenocarcinoma cells(GAC)and normal gastric epithelial cells(NGEC)were obtained from 15 patients with gastric cancer by laser capture microdissection.All of the peptide specimens were labeled as18O/16O after trypsin digestion.Differential protein expressions were quantitatively identified between GAC and NGEC by nanoliter-reverse-phase liquid chromatography-mass/mass spectrometry(nanoRPLC-MS/MS).The expressions of ANXA1 in GAC and NGEC were verified by western blot analysis.The tissue microarray containing the expressed ANXA1 in 75 pairs of gastric carcinoma and paracarcinoma specimens was detected by immunohistochemistry(IHC).The relationship between ANXA1 expression and clinicopathological parametes of gastric carcinoma was analyzed.RESULTS:A total of 78 differential proteins were identified.Western blotting revealed that ANXA1 expression was significantly upregulated in GAC(2.17/1,P<0.01).IHC results showed the correlations between ANXA1protein expression and the clinicopathological parameters,including invasive depth(T stage),lymph node metastasis(N stage),distant metastasis(M stage)and tumour-lymph node metastasis stage(P<0.01).However,the correlations between ANXA1 protein expression and the remaining clinicopathological parameters,including sex,age,histological differentiation and the size of tumour were not found(P>0.05).CONCLUSION:The upregulated ANXA1 expression may be associated with carcinogenesis,progression,invasion and metastasis of GAC.This protein could be considered as a biomarker of clinical prognostic prediction and targeted therapy of GAC.
基金Supported by the National Research Council of Science and Technology,No.DRC-14-2-KRISSthe National Research Foundation of Korea,No.2013056334,No.2014044403 and No.2015052849
文摘The last decade has witnessed remarkable technological advances in mass spectrometry-based proteomics. The development of proteomics techniques has enabled the reliable analysis of complex proteomes, leading to the identification and quantification of thousands of proteins in gastric cancer cells, tissues, and sera. This quantitative information has been used to profile the anomalies in gastric cancer and provide insights into the pathogenic mechanism of the disease. In this review, we mainly focus on the advances in mass spectrometry and quantitative proteomics that were achieved in the last five years and how these up-andcoming technologies are employed to track biochemical changes in gastric cancer cells. We conclude by presenting a perspective on quantitative proteomics and its future applications in the clinic and translational gastric cancer research.
基金Supported by(in part) Kaohsiung Medical University,Academia Sinica,and the National Science Council,Taipei,Taiwan,No.96-2311-B-037-005-MY3,No.99-2314-B-037-042,and No.99-2745-B-037-005 to Chiou SH
文摘The development of gastrointestinal diseases has been found to be associated with Helicobacter pylori (H. pylori) infection and various biochemical stresses in stomach and intestine. These stresses, such as oxidative, osmotic and acid stresses, may bring about bi-directional effects on both hosts and H. pylori, leading to changes of protein expression in their proteomes. Therefore, proteins differentially expressed in H. pylori under various stresses not only reflect gastrointestinal environment but also provide useful biomarkers for disease diagnosis and prognosis. In this regard, proteomic technology is an ideal tool to identify potential biomarkers as it can systematically monitor proteins and protein variation on a large scale of cell’s translational landscape, permitting in-depth analyses of host and pathogen interactions. By performing two-dimensional polyacrylamide gel electrophoresis (2-DE) followed by liquid chromatography-nanoESI-mass spectrometry (nanoLC-MS/MS), we have successfully pinpointed alkylhydroperoxide reductase (AhpC), neutrophil-activating protein and non-heme iron-binding ferritin as three prospective biomarkers showing up-regulation in H. pylori under oxidative, osmotic and acid stresses, respectively. Further biochemical characterization reveals that various environmental stresses can induce protein structure change and functional conversion in the identified biomarkers. Especially salient is the antioxidant enzyme AhpC, an abundant antioxidant protein present in H. pylori. It switches from a peroxide reductase of low-molecular-weight (LMW) oligomers to a molecular chaperone of high-molecular-weight (HMW) complexes under oxidative stress. Different seropositivy responses against LMW or HMW AhpC in H. pylori-infected patients faithfully match the disease progression from disease-free healthy persons to patients with gastric ulcer and cancer. These results has established AhpC of H. pylori as a promising diagnostic marker for gastrointestinal maladies, and highlight the utility of clinical proteomics for identifying disease biomarkers that can be uniquely applied to disease-oriented translational medicine.
文摘Ovarian cancer is a lethal gynecologic malignancy with greater than 70% of women presenting with advanced stage disease. Despite new treatments, long term outcomes have not significantly changed in the past 30 years with the five-year overall survival remaining between 20% and 40% for stage Ⅲ and Ⅳ disease. In contrast patients with stage Ⅰ disease have a greater than 90% five-year overall survival. Detection of ovarian cancer at an early stage would likely have significant impact on mortality rate. Screening biomarkers discovered at the bench have not translated to success in clinical trials. Existing screening modalities have not demonstrated survival benefit in completed prospective trials. Advances in high throughput screening are making it possible to evaluate the development of ovarian cancer in ways never before imagined. Data in the form of human "-omes" including the proteome, genome, metabolome, and transcriptome are now available in various packaged forms. With the correct pooling of resources including prospective collection of patient specimens, integration of high throughput screening, and use of molecular heterogeneity in biomarker discovery, we are poised to make progress in ovarian cancer screening. This review will summarize current biomarkers, imaging, and multimodality screening strategies in the context of emerging technologies.