Pulse laser welding of 0.6 mm-thick AA5052-H32 was performed to determine the optimum set of parameters including laser pulse current,pulse frequency and pulse duration that meets the AWS D17.1 specifications for aero...Pulse laser welding of 0.6 mm-thick AA5052-H32 was performed to determine the optimum set of parameters including laser pulse current,pulse frequency and pulse duration that meets the AWS D17.1 specifications for aerospace industry.The microstructure and mechanical properties of the weldments were also investigated.Relationships between the parameters and weld bead geometry were found.High quality weld joints without solidification crack that met AWS D17.1 requirements were obtained at(I)high pulse energy(25 J)and high average peak power(4.2 kW)and(II)low pulse energy(17.6 J)and low average peak power(2.8 kW).The weld joint formed at lower heat energy input exhibited finer dendritic grain structure.Mg vapourisation and hard phase compound(Al0.5Fe3Si0.5)formation decreased in the weld joint formed at lower heat energy input.Consequently,the tensile strength of the weldment formed at lower heat energy input(168 MPa)is by a factor of 1.15 higher but showed^29%decrease in hardness(111 HV0.1)at the joint when being compared with the weldment formed at higher heat energy input.Appropriate parameters selection is critical to obtaining 0.6 mm-thick AA5052-H32 pulse laser weld joints that meet AWS D17.1 requirements for aircraft structures.展开更多
The objective of this work was to investigate the possibility of taper angle correction in cutting of complex micro-mechanical contours using a TruMicro ultra-short pulse laser in combination with the SCANLAB precSYS ...The objective of this work was to investigate the possibility of taper angle correction in cutting of complex micro-mechanical contours using a TruMicro ultra-short pulse laser in combination with the SCANLAB precSYS micro machining sub system. In a first step, the influence of the process parameters on the kerftaper angle of metallic alloys was systematically investigated without beam inclination. A set of base parameters was derived for the subsequent investigations. In a second step, the kerftaper angle was controlled by static beam inclination. In a third step, the same optics was used in its dynamic precession mode to fabricate micro-mechanical components of complex contours with perpendicular 0~ taper angles. It was found that taper angle adjustments of up to 7.5~ are possible with the used setup for cutting applications. Taper angle control is possible both in the static beam inclination mode and in the dynamic precession mode. The static mode could be interesting for contours with sharp inner radii and for achieving faster cutting times similar to results with fixed optics, but would require excellent synchronization of beam inclination and axis motion. The dynamic precession mode would allow an easier integration of the optics into a laser machine but will result in longer cutting times and limitations with respect to achievable inner radii.展开更多
The heteroepitaxial growth of multilayer Cu/Pd(100) thin film via pulse laser deposition (PLD) at room temperature is simulated by using kinetic Monte Carlo (KMC) method with realistic physical parameters. The e...The heteroepitaxial growth of multilayer Cu/Pd(100) thin film via pulse laser deposition (PLD) at room temperature is simulated by using kinetic Monte Carlo (KMC) method with realistic physical parameters. The effects of mass transport between interlayers, edge diffusion of adatoms along the islands and instantaneous deposition are considered in the simulation model, Emphasis is placed on revealing the details of multilayer Cu/Pd(100) thin film growth and estimating the Ehrlich-Schwoebel (ES) barrier. It is shown that the instantaneous deposition in the PLD growth gives rise to the layer-by-layer growth mode, persisting up to about 9 monolayers (ML) of Cu/Pd(100). The ES barriers of 0.08 ± 0.01 eV is estimated by comparing the KMC simulation results with the real scanning tunnelling microscopy (STM) measurements,展开更多
The pulsed laser deposition(PLD)technology was used to effectively create conductive nano and micro hafnium oxide with great purity and transparency for(HfO_(2))nanofilms.In many optoelectronics devices and their appl...The pulsed laser deposition(PLD)technology was used to effectively create conductive nano and micro hafnium oxide with great purity and transparency for(HfO_(2))nanofilms.In many optoelectronics devices and their applications,the presence of a high dielectric substance like a nano HfO2,between the metal contacts and the substrates was critical.We used the Pulsed Laser Deposition method to fabricate an Al/HfO_(2)/p-Si Schottky barrier diode where the nanostructured HfO2 films as an intermediate layer and varied substrate temperatures.The optical result reveals a high degree of transparency(93%).The optical bandgap of deposited HfO2 films was observed to vary between 4.9 and 5.3 eV,with a value of roughly 5.3 eV at the optimal preparation condition.The morphology of the surface shows a high homogeneous nano structure with the average values of the roughness about(0.3 nm).With regard to substrate temperature,the produced factor ideality for fabricated diode was determined to be lowering and the associated values of the barrier height rose based on I-Vcharacterization.With regard to substrate temperature,the produced factor ideality for fabricated diode was determined to be lowering and the associated values of the barrier height rose based on I-V characterization.The diode manufactured at 600℃,in particular,had a higher ideality factor value(n=3.2).展开更多
It has been recently shown that inhomogeneity of a semiconductor heterostructure leads to increasing of sharpness of diffusion-junction and implanted-junction rectifiers,which are formed in the semiconductor heterostr...It has been recently shown that inhomogeneity of a semiconductor heterostructure leads to increasing of sharpness of diffusion-junction and implanted-junction rectifiers,which are formed in the semiconductor heterostructure.It has been also shown that together with increasing of the sharpness,homogeneity of impurity distribution in doped area increases.The both effect could be increased by formation of an inhomogeneous distribution of temperature(for example,by laser annealing).Some conditions on correlation between inhomogeneities of the semiconductor heterostructure and temperature distribution have been considered.Annealing time has been optimized for pulse laser annealing.展开更多
TiO2 thin films were prepared on glass substrates using the PLD (Pulsed Laser Deposition) technique. In order to carry out the ablation process, a Nd:YAG laser was used emitting in 1064 nm wavelength at 10 Hz repetiti...TiO2 thin films were prepared on glass substrates using the PLD (Pulsed Laser Deposition) technique. In order to carry out the ablation process, a Nd:YAG laser was used emitting in 1064 nm wavelength at 10 Hz repetition rate, set up for operating in both single-pulse and multi-pulse regimes. A comparison of the deposition rate, the optical and morphological properties of the layers obtained from both ablation regimes was made, which showed that the multi-pulsed ablation produced layers with a higher surface quality and better optical properties.展开更多
The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and...The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and Cu_(2)O/Ni O/NF electrodes via in situ pulsed laser irradiation in liquids(PLIL)for the bifunctional electrocatalysis of oxygen evolution reaction(OER)and furfural oxidation reaction(FOR),respectively.Simultaneous oxidation of NF surface to NiO and deposition of CoO and/or Cu_(2)O on NF during PLIL offer distinct advantages for enhancing both the OER and FOR.CoO/NiO/NF electrocatalyst provides a consistently low overpotential of~359 m V(OER)at 10 m A/cm^(2),achieving the maximum FA yield(~16.37 m M)with 61.5%selectivity,79.5%carbon balance,and a remarkable Faradaic efficiency of~90.1%during 2 h of FOR at 1.43 V(vs.reversible hydrogen electrode).Mechanistic pathway via in situ electrochemical-Raman spectroscopy on CoO/NiO/NF reveals the involvement of phase transition intermediates(NiOOH and CoOOH)as surface-active centers during electrochemical oxidation.The carbonyl carbon in FF is attacked by hydroxyl groups to form unstable hydrates that subsequently undergo further oxidation to yield FA products.This method holds promise for large-scale applications,enabling simultaneous production of renewable building materials and fuel.展开更多
We investigated the role of metal atomization and solvent decomposition into reductive species and carbon clusters in the phase formation of transition-metal carbides(TMCs;namely,Co_(3)C,Fe_(3)C,TiC,and MoC)by pulsed ...We investigated the role of metal atomization and solvent decomposition into reductive species and carbon clusters in the phase formation of transition-metal carbides(TMCs;namely,Co_(3)C,Fe_(3)C,TiC,and MoC)by pulsed laser ablation of Co,Fe,Ti,and Mo metals in acetone.The interaction between carbon s-p-orbitals and metal d-orbitals causes a redistribution of valence structure through charge transfer,leading to the formation of surface defects as observed by X-ray photoelectron spectroscopy.These defects influence the evolved TMCs,making them effective for hydrogen and oxygen evolution reactions(HER and OER)in an alkaline medium.Co_(3)C with more oxygen affinity promoted CoO(OH)intermediates,and the electrochemical surface oxidation to Co_(3)O_(4)was captured via in situ/operando electrochemical Raman probes,increasing the number of active sites for OER activity.MoC with more d-vacancies exhibits strong hydrogen binding,promoting HER kinetics,whereas Fe_(3)C and TiC with more defect states to trap charge carriers may hinder both OER and HER activities.The results show that the assembled membrane-less electrolyzer with Co_(3)C∥Co_(3)C and MoC∥MoC electrodes requires~2.01 and 1.99 V,respectively,to deliver a 10 mA cm−2 with excellent electrochemical and structural stability.In addition,the ascertained pulsed laser synthesis mechanism and unit-cell packing relations will open up sustainable pathways for obtaining highly stable electrocatalysts for electrolyzers.展开更多
This paper presents a novel view of the impact of electron collision off-axis positions on the dynamic properties and relativistic nonlinear Thomson inverse scattering of excited electrons within tightly focused, circ...This paper presents a novel view of the impact of electron collision off-axis positions on the dynamic properties and relativistic nonlinear Thomson inverse scattering of excited electrons within tightly focused, circularly polarized laser pulses of varying intensities. We examine the effects of the transverse ponderomotive force, specifically how the deviation angle and speed of electron motion are affected by the initial off-axis position of the electron and the peak amplitude of the laser pulse. When the laser pulse intensity is low, an increase in the electron's initial off-axis distance results in reduced spatial radiation power, improved collimation, super-continuum phenomena generation, red-shifting of the spectrum's harmonic peak, and significant symmetry in the radiation radial direction. However, in contradiction to conventional understandings,when the laser pulse intensity is relatively high, the properties of the relativistic nonlinear Thomson inverse scattering of the electron deviate from the central axis, changing direction in opposition to the aforementioned effects. After reaching a peak, these properties then shift again, aligning with the previous direction. The complex interplay of these effects suggests a greater nuance and intricacy in the relationship between laser pulse intensity, electron position, and scattering properties than previously thought.展开更多
Pulsed laser welding was used in joining pure aluminum to stainless steel in a lap joint configuration. It is found that the mechanical properties of the laser joints were closely correlated with the bead geometry, i....Pulsed laser welding was used in joining pure aluminum to stainless steel in a lap joint configuration. It is found that the mechanical properties of the laser joints were closely correlated with the bead geometry, i.e., penetration depth. In order to study the correlation, two typical laser welds with different penetration depths were analyzed. In high penetration depth (354 μm) joint, Al-rich Fe?Al IMCs with microcracks were formed at the Al/fusion zone (FZ) interface. The joint strength was found to be (27.2±1.7) N/mm and three failure modes were observed near the Al/FZ interface. In low penetration depth (108 μm) joint, Fe-rich Fe?Al IMCs without any defect were formed at the Al/FZ interface. The joint strength was found to be (46.2±1.9) N/mm and one failure mode was observed across the FZ.展开更多
Porosity is a challenging issue in additive manufacturing and is detrimental to the quality of the additively manufactured products.In this study,a real-time porosity reduction technique was developed by incorporating...Porosity is a challenging issue in additive manufacturing and is detrimental to the quality of the additively manufactured products.In this study,a real-time porosity reduction technique was developed by incorporating a pulse laser into a laser metal powder directed energy deposition(DED)system.The incorporated pulse laser can accelerate fluid flow within the melt pool and facilitate the escape of pores before complete solidification.It achieves this real-time porosity reduction by inducing accelerated and turbulent Marangoni flow,ultrasonic waves,and shock waves into the melt pool.The uniqueness and advantages of the proposed technique include the following:(1)For a laser metal powder DED process,this study proposed a noncontact,nondestructive,and real-time porosity reduction technique at the melt pool level.(2)It was experimentally and numerically validated that the developed technique did not alter the geometry and the grain structure of the manufactured Ti-6Al-4V samples.(3)Because the porosity reduction is accomplished at the melt pool level,its application is not limited by the size,shape,or complexity of the printing target.(4)The developed technique can be readily incorporated into the existing DED systems without any modification of the original tool-path design.The experimental results showed that the pore volume fraction decreased from 0.132%to 0.005%,no pores larger than 6×10^(4)μm^(3) were observed,and a 91%reduction in the total pore number was achieved when the pulse laser energy reached 11.5 mJ.展开更多
Muons produced by a short pulse laser can serve as a new type of muon source having potential advantages of high intensity, small source emittance, short pulse duration and low cost. To validate it in experiments, a s...Muons produced by a short pulse laser can serve as a new type of muon source having potential advantages of high intensity, small source emittance, short pulse duration and low cost. To validate it in experiments, a suitable muon diagnostics system is needed since high muon flux generated by a short pulse laser shot is always accompanied by high radiation background, which is quite different from cases in general muon researches. A detection system is proposed to distinguish muon signals from radiation background by measuring the muon lifetime. It is based on the scintillator detector with water and lead shields, in which water is used to adjust energies of muons stopped in the scintillator and lead to against radiation background. A Geant 4 simulation on the performance of the detection system shows that efficiency up to 52% could be arrived for low-energy muons around 200 MeV and this efficiency decreases to 14% for high-energy muons above 1000 MeV. The simulation also shows that the muon lifetime can be derived properly by measuring attenuation of the scintilla light of electrons from muon decays inside the scintillator detector.展开更多
To overcome the shortcomings of the single-shot autocorrelation SSA where only one pulse width is obtained when the SSA is applied to measure the pulse width of ultrashort laser pulses a modified SSA for measuring the...To overcome the shortcomings of the single-shot autocorrelation SSA where only one pulse width is obtained when the SSA is applied to measure the pulse width of ultrashort laser pulses a modified SSA for measuring the spatiotemporal characteristics of ultrashort laser pulses at different spatial positions is proposed. The spatiotemporal characteristics of femtosecond laser pulses output from the Ti sapphire regenerative amplifier system are experimentally measured by the proposed method. It was found that the complex spatial characteristics are measured accurately.The pulse widths at different spatial positions are various which obey the Gaussian distribution.The pulse width at the same spatial position becomes narrow with the increase in input average power when femtosecond laser pulses pass through a carbon disulfide CS2 nonlinear medium.The experimental results verify that the proposed method is valid for measuring the spatiotemporal characteristics of ultrashort laser pulses at different spatial positions.展开更多
The dynamics of molecular rotational wave packets of D2 induced by ultrashort laser pulses was investigated numerically by solving the time-dependent SchrSdinger equation. Results show that an ultrashort pulse can man...The dynamics of molecular rotational wave packets of D2 induced by ultrashort laser pulses was investigated numerically by solving the time-dependent SchrSdinger equation. Results show that an ultrashort pulse can manipulate a coherent rotational wave packet of D2 se- lectively. In the calculation, a first laser pulse was used to create a coherent rotational wave packet from an initial thermal ensemble of D2 at the temperature of 300 K. The second laser pulse was used to manipulate the rotational wave packet selectively around the first quarter and the three quarters revival. The alignment parameter and its Fourier transform amplitude both illustrate that the relative populations of even and odd rotational states in the final rotational wave packet of D2 can be manipulated by precisely selecting the time delay between the first and the second ultrashort pulse.展开更多
Based on the kinetic theoretical Vlasov-Poisson equation, a surface Coulomb explosion model of SiO2 material induced by ultra-short pulsed laser radiation is established. The non-equilibrium free electron distribution...Based on the kinetic theoretical Vlasov-Poisson equation, a surface Coulomb explosion model of SiO2 material induced by ultra-short pulsed laser radiation is established. The non-equilibrium free electron distribution resulting from the two mechanisms of multi-photon ionization and avalanche ionization is computed. A quantitative analysis is given to describe the Coulomb explosion induced by the self-consistent electric field, and the impact of the parameters of laser pulses on the surface ablation is also discussed. The results show that the electron relaxation time is not constant, but it is related to the microscopic state of the electrons, so the relaxation time approximation is not available on the femtosecond time scale. The ablation depths computed by the theoretical model are in good agreement with the experimental results in the range of pulse durations from 0 to 1 ps.展开更多
We present an interferometry setup and the detailed fringe analysis method for intense short pulse(SP) laser experiments.The interferometry scheme was refined through multiple campaigns to investigate the effects of p...We present an interferometry setup and the detailed fringe analysis method for intense short pulse(SP) laser experiments.The interferometry scheme was refined through multiple campaigns to investigate the effects of pre-plasmas on energetic electrons at the Jupiter Laser Facility at Lawrence Livermore National Laboratory. The interferometer used a frequency doubled(λ=0.527 μm) 0.5 ps long optical probe beam to measure the pre-plasma density, an invaluable parameter to better understand how varying pre-plasma conditions affect the characteristics of the energetic electrons. The hardware of the diagnostic, data analysis and example data are presented. The diagnostic setup and the analysis procedure can be employed for any other SP laser experiments and interferograms, respectively.展开更多
A 222 nm all-solid-state far-ultraviolet C(UVC)pulse laser system based on an optical parametric oscillator(OPO)and second-harmonic generation(SHG)usingβ-Ba2BO4(BBO)crystals was demonstrated.Pumped by a Nd∶Y3Al5O12 ...A 222 nm all-solid-state far-ultraviolet C(UVC)pulse laser system based on an optical parametric oscillator(OPO)and second-harmonic generation(SHG)usingβ-Ba2BO4(BBO)crystals was demonstrated.Pumped by a Nd∶Y3Al5O12 laser with a repetition rate of 100 Hz at 355 nm,the maximum signal laser pulse energy of 1.22 mJ at 444 nm wavelength was obtained from the BBO-OPO system,corresponding to a conversion efficiency of 27.9%.The maximum output pulse energy of 164.9μJ at the 222 nm wavelength was successfully achieved,corresponding to an SHG conversion efficiency of 16.2%.Moreover,the tunable output wavelength of UVC light from 210 nm to 252.5 nm was achieved.展开更多
The resonant third-harmonic generation of a tion was investigated. Because of self-focusing self-focusing laser in plasma with a density transi- of the fundamental laser pulse, a transverse intensity gradient was crea...The resonant third-harmonic generation of a tion was investigated. Because of self-focusing self-focusing laser in plasma with a density transi- of the fundamental laser pulse, a transverse intensity gradient was created, which generated a plasma wave at the fundamental wave frequency. Phase matching was satisfied by using a Wiggler magnetic field, which provided additional angular too- mentum to the third-harmonic photon to make the process resonant. An enhancement was observed in the resonant third-harmonic generation of an intense short-pulse laser in plasma embedded with a magnetic Wiggler with a density transition. A plasma density ramp played an important role in the self-focusing, enhancing the third-harmonic generation in plasma. We also examined the ef- fect of the Wiggler magnetic field on the pulse slippage of the third-harmonic pulse in plasma. The pulse slippage was due to the group-velocity mismatch between the fundamental and third-harmonic pulses.展开更多
This paper introduces major characteristics of the single event latchup(SEL) in CMOS devices.We accomplish SEL tests for CPU and SRAM devices through the simulation by a pulse laser.The laser simulation results give...This paper introduces major characteristics of the single event latchup(SEL) in CMOS devices.We accomplish SEL tests for CPU and SRAM devices through the simulation by a pulse laser.The laser simulation results give the energy threshold for samples to undergo SEL.SEL current pulses are measured for CMOS devices in the latchup state,the sensitive areas in the devices are acquired,the major traits,causing large scale circuits to undergo SEL,are summarized,and the test equivalence between a pulse laser and ions is also analyzed.展开更多
In the present paper, Copper Phthalocyanine (CuPc) thin films were deposited on glass and silicon substrate by thermal evaporation and pulsed laser deposition (PLD) methods. CuPc thin films prepared at different annea...In the present paper, Copper Phthalocyanine (CuPc) thin films were deposited on glass and silicon substrate by thermal evaporation and pulsed laser deposition (PLD) methods. CuPc thin films prepared at different annealing temperatures (298, 323, 348, 373, 423 K) respectively. The structure and surface morphology of CuPc in powder and thin films forms prepared by two methods were studied using Energy dispersive X-ray (EDX), X-ray f§lt;span§gt;lorescence (XRF), X-ray§lt;/span§gt;diffraction (XRD), Atomic force microscope (AFM), and Scanning electron microscope (SEM). It showed that there was a change and enhancement in the crystallinity and surface morphology due to change in the annealing temperature (T§lt;sub§gt;a§lt;/sub§gt;). The purpose of our work is to find the optimal temperature for which the film produces best structural properties for CuPc thin film to produce organic field effect transistor. Analysis of X-ray diffraction patterns of CuPc in powder form showed that it had an α-poly-crystalline phase with monoclinic structure, with preferentially oriented (100) plane transform to §lt;i§gt;β§lt;/i§gt;-single crystalline morestable structure at different annealing temperatures.展开更多
基金the funding (UniversityIndustry Engagement Grant)support provided by the Universiti Sains Malaysia under the Teaching Fellowship Scheme
文摘Pulse laser welding of 0.6 mm-thick AA5052-H32 was performed to determine the optimum set of parameters including laser pulse current,pulse frequency and pulse duration that meets the AWS D17.1 specifications for aerospace industry.The microstructure and mechanical properties of the weldments were also investigated.Relationships between the parameters and weld bead geometry were found.High quality weld joints without solidification crack that met AWS D17.1 requirements were obtained at(I)high pulse energy(25 J)and high average peak power(4.2 kW)and(II)low pulse energy(17.6 J)and low average peak power(2.8 kW).The weld joint formed at lower heat energy input exhibited finer dendritic grain structure.Mg vapourisation and hard phase compound(Al0.5Fe3Si0.5)formation decreased in the weld joint formed at lower heat energy input.Consequently,the tensile strength of the weldment formed at lower heat energy input(168 MPa)is by a factor of 1.15 higher but showed^29%decrease in hardness(111 HV0.1)at the joint when being compared with the weldment formed at higher heat energy input.Appropriate parameters selection is critical to obtaining 0.6 mm-thick AA5052-H32 pulse laser weld joints that meet AWS D17.1 requirements for aircraft structures.
文摘The objective of this work was to investigate the possibility of taper angle correction in cutting of complex micro-mechanical contours using a TruMicro ultra-short pulse laser in combination with the SCANLAB precSYS micro machining sub system. In a first step, the influence of the process parameters on the kerftaper angle of metallic alloys was systematically investigated without beam inclination. A set of base parameters was derived for the subsequent investigations. In a second step, the kerftaper angle was controlled by static beam inclination. In a third step, the same optics was used in its dynamic precession mode to fabricate micro-mechanical components of complex contours with perpendicular 0~ taper angles. It was found that taper angle adjustments of up to 7.5~ are possible with the used setup for cutting applications. Taper angle control is possible both in the static beam inclination mode and in the dynamic precession mode. The static mode could be interesting for contours with sharp inner radii and for achieving faster cutting times similar to results with fixed optics, but would require excellent synchronization of beam inclination and axis motion. The dynamic precession mode would allow an easier integration of the optics into a laser machine but will result in longer cutting times and limitations with respect to achievable inner radii.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No 2006CB708612) and Natural Science Foundation for Young Scientists of Zhejiang Province, China (Grant No RC02069).Acknowledgment We would like to thank Dr Ling-wang Wang of the Computational Research Division at the Lawrence Berkeley National Lab and Dr Xiangrong Ye of Department of Material Science and Chemical Engineering, University of California at San Diego for helpful discussion.
文摘The heteroepitaxial growth of multilayer Cu/Pd(100) thin film via pulse laser deposition (PLD) at room temperature is simulated by using kinetic Monte Carlo (KMC) method with realistic physical parameters. The effects of mass transport between interlayers, edge diffusion of adatoms along the islands and instantaneous deposition are considered in the simulation model, Emphasis is placed on revealing the details of multilayer Cu/Pd(100) thin film growth and estimating the Ehrlich-Schwoebel (ES) barrier. It is shown that the instantaneous deposition in the PLD growth gives rise to the layer-by-layer growth mode, persisting up to about 9 monolayers (ML) of Cu/Pd(100). The ES barriers of 0.08 ± 0.01 eV is estimated by comparing the KMC simulation results with the real scanning tunnelling microscopy (STM) measurements,
文摘The pulsed laser deposition(PLD)technology was used to effectively create conductive nano and micro hafnium oxide with great purity and transparency for(HfO_(2))nanofilms.In many optoelectronics devices and their applications,the presence of a high dielectric substance like a nano HfO2,between the metal contacts and the substrates was critical.We used the Pulsed Laser Deposition method to fabricate an Al/HfO_(2)/p-Si Schottky barrier diode where the nanostructured HfO2 films as an intermediate layer and varied substrate temperatures.The optical result reveals a high degree of transparency(93%).The optical bandgap of deposited HfO2 films was observed to vary between 4.9 and 5.3 eV,with a value of roughly 5.3 eV at the optimal preparation condition.The morphology of the surface shows a high homogeneous nano structure with the average values of the roughness about(0.3 nm).With regard to substrate temperature,the produced factor ideality for fabricated diode was determined to be lowering and the associated values of the barrier height rose based on I-Vcharacterization.With regard to substrate temperature,the produced factor ideality for fabricated diode was determined to be lowering and the associated values of the barrier height rose based on I-V characterization.The diode manufactured at 600℃,in particular,had a higher ideality factor value(n=3.2).
基金supported by grant of President of Russia (project № MK-548.2010.2)
文摘It has been recently shown that inhomogeneity of a semiconductor heterostructure leads to increasing of sharpness of diffusion-junction and implanted-junction rectifiers,which are formed in the semiconductor heterostructure.It has been also shown that together with increasing of the sharpness,homogeneity of impurity distribution in doped area increases.The both effect could be increased by formation of an inhomogeneous distribution of temperature(for example,by laser annealing).Some conditions on correlation between inhomogeneities of the semiconductor heterostructure and temperature distribution have been considered.Annealing time has been optimized for pulse laser annealing.
文摘TiO2 thin films were prepared on glass substrates using the PLD (Pulsed Laser Deposition) technique. In order to carry out the ablation process, a Nd:YAG laser was used emitting in 1064 nm wavelength at 10 Hz repetition rate, set up for operating in both single-pulse and multi-pulse regimes. A comparison of the deposition rate, the optical and morphological properties of the layers obtained from both ablation regimes was made, which showed that the multi-pulsed ablation produced layers with a higher surface quality and better optical properties.
基金supported by the Korea Basic Science Institute(National research Facilities and Equipment Center)grant funded by the Ministry of Education(2019R1A6C1010042,2021R1A6C103A427)the financial support from the National Research Foundation of Korea(NRF)(2022R1A2C2010686,2022R1A4A3033528,2021R1I1A1A01060380,2021R1C1C2010726,2019H1D3A1A01071209)。
文摘The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and Cu_(2)O/Ni O/NF electrodes via in situ pulsed laser irradiation in liquids(PLIL)for the bifunctional electrocatalysis of oxygen evolution reaction(OER)and furfural oxidation reaction(FOR),respectively.Simultaneous oxidation of NF surface to NiO and deposition of CoO and/or Cu_(2)O on NF during PLIL offer distinct advantages for enhancing both the OER and FOR.CoO/NiO/NF electrocatalyst provides a consistently low overpotential of~359 m V(OER)at 10 m A/cm^(2),achieving the maximum FA yield(~16.37 m M)with 61.5%selectivity,79.5%carbon balance,and a remarkable Faradaic efficiency of~90.1%during 2 h of FOR at 1.43 V(vs.reversible hydrogen electrode).Mechanistic pathway via in situ electrochemical-Raman spectroscopy on CoO/NiO/NF reveals the involvement of phase transition intermediates(NiOOH and CoOOH)as surface-active centers during electrochemical oxidation.The carbonyl carbon in FF is attacked by hydroxyl groups to form unstable hydrates that subsequently undergo further oxidation to yield FA products.This method holds promise for large-scale applications,enabling simultaneous production of renewable building materials and fuel.
基金National Research Foundation of Korea,Grant/Award Numbers:2019H1D3A1A01071209,2021R1I1A1A01060380,2022R1A2C2010686,2022R1A4A3033528Korea Basic Science Institute,Grant/Award Numbers:2019R1A6C1010042,2021R1A6C103A427。
文摘We investigated the role of metal atomization and solvent decomposition into reductive species and carbon clusters in the phase formation of transition-metal carbides(TMCs;namely,Co_(3)C,Fe_(3)C,TiC,and MoC)by pulsed laser ablation of Co,Fe,Ti,and Mo metals in acetone.The interaction between carbon s-p-orbitals and metal d-orbitals causes a redistribution of valence structure through charge transfer,leading to the formation of surface defects as observed by X-ray photoelectron spectroscopy.These defects influence the evolved TMCs,making them effective for hydrogen and oxygen evolution reactions(HER and OER)in an alkaline medium.Co_(3)C with more oxygen affinity promoted CoO(OH)intermediates,and the electrochemical surface oxidation to Co_(3)O_(4)was captured via in situ/operando electrochemical Raman probes,increasing the number of active sites for OER activity.MoC with more d-vacancies exhibits strong hydrogen binding,promoting HER kinetics,whereas Fe_(3)C and TiC with more defect states to trap charge carriers may hinder both OER and HER activities.The results show that the assembled membrane-less electrolyzer with Co_(3)C∥Co_(3)C and MoC∥MoC electrodes requires~2.01 and 1.99 V,respectively,to deliver a 10 mA cm−2 with excellent electrochemical and structural stability.In addition,the ascertained pulsed laser synthesis mechanism and unit-cell packing relations will open up sustainable pathways for obtaining highly stable electrocatalysts for electrolyzers.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10947170/A05 and 11104291)the Natural Science Fund for Colleges and Universities in Jiangsu Province (Grant No.10KJB140006)+2 种基金the Natural Sciences Foundation of Shanghai (Grant No.11ZR1441300)the Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant No.NY221098)the Jiangsu Qing Lan Project for their sponsorship。
文摘This paper presents a novel view of the impact of electron collision off-axis positions on the dynamic properties and relativistic nonlinear Thomson inverse scattering of excited electrons within tightly focused, circularly polarized laser pulses of varying intensities. We examine the effects of the transverse ponderomotive force, specifically how the deviation angle and speed of electron motion are affected by the initial off-axis position of the electron and the peak amplitude of the laser pulse. When the laser pulse intensity is low, an increase in the electron's initial off-axis distance results in reduced spatial radiation power, improved collimation, super-continuum phenomena generation, red-shifting of the spectrum's harmonic peak, and significant symmetry in the radiation radial direction. However, in contradiction to conventional understandings,when the laser pulse intensity is relatively high, the properties of the relativistic nonlinear Thomson inverse scattering of the electron deviate from the central axis, changing direction in opposition to the aforementioned effects. After reaching a peak, these properties then shift again, aligning with the previous direction. The complex interplay of these effects suggests a greater nuance and intricacy in the relationship between laser pulse intensity, electron position, and scattering properties than previously thought.
基金Project(51265035)supported by the National Natural Science Foundation of ChinaProject(20151BAB206042)supported by the Natural Science Foundation of Jiangxi Province,ChinaProject(GJJ150020)supported by the Jiangxi Provincial Department of Education,China
文摘Pulsed laser welding was used in joining pure aluminum to stainless steel in a lap joint configuration. It is found that the mechanical properties of the laser joints were closely correlated with the bead geometry, i.e., penetration depth. In order to study the correlation, two typical laser welds with different penetration depths were analyzed. In high penetration depth (354 μm) joint, Al-rich Fe?Al IMCs with microcracks were formed at the Al/fusion zone (FZ) interface. The joint strength was found to be (27.2±1.7) N/mm and three failure modes were observed near the Al/FZ interface. In low penetration depth (108 μm) joint, Fe-rich Fe?Al IMCs without any defect were formed at the Al/FZ interface. The joint strength was found to be (46.2±1.9) N/mm and one failure mode was observed across the FZ.
基金supported by a National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)[Grant No.2019R1A3B3067987]supported by SQ Engineering during his stay at KAIST。
文摘Porosity is a challenging issue in additive manufacturing and is detrimental to the quality of the additively manufactured products.In this study,a real-time porosity reduction technique was developed by incorporating a pulse laser into a laser metal powder directed energy deposition(DED)system.The incorporated pulse laser can accelerate fluid flow within the melt pool and facilitate the escape of pores before complete solidification.It achieves this real-time porosity reduction by inducing accelerated and turbulent Marangoni flow,ultrasonic waves,and shock waves into the melt pool.The uniqueness and advantages of the proposed technique include the following:(1)For a laser metal powder DED process,this study proposed a noncontact,nondestructive,and real-time porosity reduction technique at the melt pool level.(2)It was experimentally and numerically validated that the developed technique did not alter the geometry and the grain structure of the manufactured Ti-6Al-4V samples.(3)Because the porosity reduction is accomplished at the melt pool level,its application is not limited by the size,shape,or complexity of the printing target.(4)The developed technique can be readily incorporated into the existing DED systems without any modification of the original tool-path design.The experimental results showed that the pore volume fraction decreased from 0.132%to 0.005%,no pores larger than 6×10^(4)μm^(3) were observed,and a 91%reduction in the total pore number was achieved when the pulse laser energy reached 11.5 mJ.
基金supported by the Science Challenge Project (No.JCKY2016212A505)the CAEP Foundation (No.2014A0102003)
文摘Muons produced by a short pulse laser can serve as a new type of muon source having potential advantages of high intensity, small source emittance, short pulse duration and low cost. To validate it in experiments, a suitable muon diagnostics system is needed since high muon flux generated by a short pulse laser shot is always accompanied by high radiation background, which is quite different from cases in general muon researches. A detection system is proposed to distinguish muon signals from radiation background by measuring the muon lifetime. It is based on the scintillator detector with water and lead shields, in which water is used to adjust energies of muons stopped in the scintillator and lead to against radiation background. A Geant 4 simulation on the performance of the detection system shows that efficiency up to 52% could be arrived for low-energy muons around 200 MeV and this efficiency decreases to 14% for high-energy muons above 1000 MeV. The simulation also shows that the muon lifetime can be derived properly by measuring attenuation of the scintilla light of electrons from muon decays inside the scintillator detector.
基金The National Natural Science Foundation of China(No.61171081,No.61471164)the Natural Science Foundation of Hunan Province(No.14JJ6043)
文摘To overcome the shortcomings of the single-shot autocorrelation SSA where only one pulse width is obtained when the SSA is applied to measure the pulse width of ultrashort laser pulses a modified SSA for measuring the spatiotemporal characteristics of ultrashort laser pulses at different spatial positions is proposed. The spatiotemporal characteristics of femtosecond laser pulses output from the Ti sapphire regenerative amplifier system are experimentally measured by the proposed method. It was found that the complex spatial characteristics are measured accurately.The pulse widths at different spatial positions are various which obey the Gaussian distribution.The pulse width at the same spatial position becomes narrow with the increase in input average power when femtosecond laser pulses pass through a carbon disulfide CS2 nonlinear medium.The experimental results verify that the proposed method is valid for measuring the spatiotemporal characteristics of ultrashort laser pulses at different spatial positions.
文摘The dynamics of molecular rotational wave packets of D2 induced by ultrashort laser pulses was investigated numerically by solving the time-dependent SchrSdinger equation. Results show that an ultrashort pulse can manipulate a coherent rotational wave packet of D2 se- lectively. In the calculation, a first laser pulse was used to create a coherent rotational wave packet from an initial thermal ensemble of D2 at the temperature of 300 K. The second laser pulse was used to manipulate the rotational wave packet selectively around the first quarter and the three quarters revival. The alignment parameter and its Fourier transform amplitude both illustrate that the relative populations of even and odd rotational states in the final rotational wave packet of D2 can be manipulated by precisely selecting the time delay between the first and the second ultrashort pulse.
文摘Based on the kinetic theoretical Vlasov-Poisson equation, a surface Coulomb explosion model of SiO2 material induced by ultra-short pulsed laser radiation is established. The non-equilibrium free electron distribution resulting from the two mechanisms of multi-photon ionization and avalanche ionization is computed. A quantitative analysis is given to describe the Coulomb explosion induced by the self-consistent electric field, and the impact of the parameters of laser pulses on the surface ablation is also discussed. The results show that the electron relaxation time is not constant, but it is related to the microscopic state of the electrons, so the relaxation time approximation is not available on the femtosecond time scale. The ablation depths computed by the theoretical model are in good agreement with the experimental results in the range of pulse durations from 0 to 1 ps.
基金support from the LDRD (15-ERD-054) program to finish the manuscriptthe auspices of the US DOE by LLNL under contract no.DEAC52-07NA27344funded by the LDRD (12-ERD-062) program
文摘We present an interferometry setup and the detailed fringe analysis method for intense short pulse(SP) laser experiments.The interferometry scheme was refined through multiple campaigns to investigate the effects of pre-plasmas on energetic electrons at the Jupiter Laser Facility at Lawrence Livermore National Laboratory. The interferometer used a frequency doubled(λ=0.527 μm) 0.5 ps long optical probe beam to measure the pre-plasma density, an invaluable parameter to better understand how varying pre-plasma conditions affect the characteristics of the energetic electrons. The hardware of the diagnostic, data analysis and example data are presented. The diagnostic setup and the analysis procedure can be employed for any other SP laser experiments and interferograms, respectively.
基金supported by the Natural Science Foundation of Shanghai(No.19YF1453600)the Key Task Project in Scientific and Technological Research on Social Development of Shanghai(No.20dz1206502)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA22000000)the Major Program of the National Natural Science Foundation of China(No.61991453).
文摘A 222 nm all-solid-state far-ultraviolet C(UVC)pulse laser system based on an optical parametric oscillator(OPO)and second-harmonic generation(SHG)usingβ-Ba2BO4(BBO)crystals was demonstrated.Pumped by a Nd∶Y3Al5O12 laser with a repetition rate of 100 Hz at 355 nm,the maximum signal laser pulse energy of 1.22 mJ at 444 nm wavelength was obtained from the BBO-OPO system,corresponding to a conversion efficiency of 27.9%.The maximum output pulse energy of 164.9μJ at the 222 nm wavelength was successfully achieved,corresponding to an SHG conversion efficiency of 16.2%.Moreover,the tunable output wavelength of UVC light from 210 nm to 252.5 nm was achieved.
文摘The resonant third-harmonic generation of a tion was investigated. Because of self-focusing self-focusing laser in plasma with a density transi- of the fundamental laser pulse, a transverse intensity gradient was created, which generated a plasma wave at the fundamental wave frequency. Phase matching was satisfied by using a Wiggler magnetic field, which provided additional angular too- mentum to the third-harmonic photon to make the process resonant. An enhancement was observed in the resonant third-harmonic generation of an intense short-pulse laser in plasma embedded with a magnetic Wiggler with a density transition. A plasma density ramp played an important role in the self-focusing, enhancing the third-harmonic generation in plasma. We also examined the ef- fect of the Wiggler magnetic field on the pulse slippage of the third-harmonic pulse in plasma. The pulse slippage was due to the group-velocity mismatch between the fundamental and third-harmonic pulses.
文摘This paper introduces major characteristics of the single event latchup(SEL) in CMOS devices.We accomplish SEL tests for CPU and SRAM devices through the simulation by a pulse laser.The laser simulation results give the energy threshold for samples to undergo SEL.SEL current pulses are measured for CMOS devices in the latchup state,the sensitive areas in the devices are acquired,the major traits,causing large scale circuits to undergo SEL,are summarized,and the test equivalence between a pulse laser and ions is also analyzed.
文摘In the present paper, Copper Phthalocyanine (CuPc) thin films were deposited on glass and silicon substrate by thermal evaporation and pulsed laser deposition (PLD) methods. CuPc thin films prepared at different annealing temperatures (298, 323, 348, 373, 423 K) respectively. The structure and surface morphology of CuPc in powder and thin films forms prepared by two methods were studied using Energy dispersive X-ray (EDX), X-ray f§lt;span§gt;lorescence (XRF), X-ray§lt;/span§gt;diffraction (XRD), Atomic force microscope (AFM), and Scanning electron microscope (SEM). It showed that there was a change and enhancement in the crystallinity and surface morphology due to change in the annealing temperature (T§lt;sub§gt;a§lt;/sub§gt;). The purpose of our work is to find the optimal temperature for which the film produces best structural properties for CuPc thin film to produce organic field effect transistor. Analysis of X-ray diffraction patterns of CuPc in powder form showed that it had an α-poly-crystalline phase with monoclinic structure, with preferentially oriented (100) plane transform to §lt;i§gt;β§lt;/i§gt;-single crystalline morestable structure at different annealing temperatures.