The Yutu-2 rover onboard the Chang’E-4 mission performed the first lunar penetrating radar detection on the farside of the Moon.The high-frequency channel presented us with many unprecedented details of the subsurfac...The Yutu-2 rover onboard the Chang’E-4 mission performed the first lunar penetrating radar detection on the farside of the Moon.The high-frequency channel presented us with many unprecedented details of the subsurface structures within a depth of approximately 50 m.However,it was still difficult to identify finer layers from the cluttered reflections and scattering waves.We applied deconvolution to improve the vertical resolution of the radar profile by extending the limited bandwidth associated with the emissive radar pulse.To overcome the challenges arising from the mixed-phase wavelets and the problematic amplification of noise,we performed predictive deconvolution to remove the minimum-phase components from the Chang’E-4 dataset,followed by a comprehensive phase rotation to rectify phase anomalies in the radar image.Subsequently,we implemented irreversible migration filtering to mitigate the noise and diminutive clutter echoes amplified by deconvolution.The processed data showed evident enhancement of the vertical resolution with a widened bandwidth in the frequency domain and better signal clarity in the time domain,providing us with more undisputed details of subsurface structures near the Chang’E-4 landing site.展开更多
In the preparation of firing tables, the determination of projectile drag coefficientsthrough firing test radar data reduction is very important. Many methods have been developed for this work but none of them appear ...In the preparation of firing tables, the determination of projectile drag coefficientsthrough firing test radar data reduction is very important. Many methods have been developed for this work but none of them appear to be satisfactory in one Way or another. Inthis paper a multi-spline model of drag coefficient (cd) curve is developed that can guaranteefirst derivative continuity of the cd curve and has good flexibility of fitting accurately to acd curve from subsonic up to supersonic range. Practical firing data reduction tests showboth fast convergence and accurate fitting results. Typical velocity fitting RMS errors are0.05-0.08 m/s.展开更多
This paper examines how assimilating surface observations can improve the analysis and forecast ability of a four- dimensional Variational Doppler Radar Analysis System (VDRAS). Observed surface temperature and wind...This paper examines how assimilating surface observations can improve the analysis and forecast ability of a four- dimensional Variational Doppler Radar Analysis System (VDRAS). Observed surface temperature and winds are assimilated together with radar radial velocity and reflectivity into a convection-permitting model using the VDRAS four-dimensional variational (4DVAR) data assimilation system. A squall-line case observed during a field campaign is selected to investigate the performance of the technique. A single observation experiment shows that assimilating surface observations can influence the analyzed fields in both the horizontal and vertical directions. The surface-based cold pool, divergence and gust front of the squall line are all strengthened through the assimilation of the single surface observation. Three experiments--assimilating radar data only, assimilating radar data with surface data blended in a mesoscale background, and assimilating both radar and surface observations with a 4DVAR cost function--are conducted to examine the impact of the surface data assimilation. Independent surface and wind profiler observations are used for verification. The result shows that the analysis and forecast are improved when surface observations are assimilated in addition to radar observations. It is also shown that the additional surface data can help improve the analysis and forecast at low levels. Surface and low-level features of the squall line-- including the surface warm inflow, cold pool, gust front, and low-level wind--are much closer to the observations after assimilating the surface data in VDRAS.展开更多
On 21 May 2021(UTC),an MW 7.4 earthquake jolted the east Bayan Har block in the Tibetan Plateau.The earthquake received widespread attention as it is the largest event in the Tibetan Plateau and its surroundings since...On 21 May 2021(UTC),an MW 7.4 earthquake jolted the east Bayan Har block in the Tibetan Plateau.The earthquake received widespread attention as it is the largest event in the Tibetan Plateau and its surroundings since the 2008 Wenchuan earthquake,and especially in proximity to the seismic gaps on the east Kunlun fault.Here we use satellite interferometric synthetic aperture radar data and subpixel offset observations along the range directions to characterize the coseismic deformation of the earthquake.Range offset displacements depict clear surface ruptures with a total length of~170 km involving two possible activated fault segments in the earthquake.Coseismic modeling results indicate that the earthquake was dominated by left-lateral strike-slip motions of up to 7 m within the top 12 km of the crust.The well-resolved slip variations are characterized by five major slip patches along strike and 64%of shallow slip deficit,suggesting a young seismogenic structure.Spatial-temporal changes of the postseismic deformation are mapped from early 6-day and 24-day InSAR observations,and are well explained by time-dependent afterslip models.Analysis of Global Navigation Satellite System(GNSS)velocity profiles and strain rates suggests that the eastward extrusion of plateau is diffusely distributed across the east Bayan Har block,but exhibits significant lateral heterogeneities,as evidenced by magnetotelluric observations.The block-wide distributed deformation of the east Bayan Har block along with the significant co-and post-seismic stress loadings from the Madoi earthquake imply high seismic risks along regional faults,especially the Tuosuo Lake and Maqên-Maqu segments of the Kunlun fault that are known as seismic gaps.展开更多
The traditional threat score based on fixed thresholds for precipitation verification is sensitive to intensity forecast bias. In this study, the neighborhood precipitation threat score is modified by defining the thr...The traditional threat score based on fixed thresholds for precipitation verification is sensitive to intensity forecast bias. In this study, the neighborhood precipitation threat score is modified by defining the thresholds in terms of the percentiles of overall precipitation instead of fixed threshold values. The impact of intensity forecast bias on the calculated threat score is reduced. The method is tested with the forecasts of a tropical storm that re-intensified after making landfall and caused heavy flooding. The forecasts are produced with and without radar data assimilation. The forecast with assimilation of both radial velocity and reflectivity produce precipitation patterns that better match observations but have large positive intensity bias. When using fixed thresholds, the neighborhood threat scores fail to yield high scores for forecasts that have good pattern match with observations, due to large intensity bias. In contrast, the percentile-based neighborhood method yields the highest score for the forecast with the best pattern match and the smallest position error. The percentile-based method also yields scores that are more consistent with object-based verifications, which are less sensitive to intensity bias, demonstrating the potential value of percentile-based verification.展开更多
A heavy rainfall case related to Mesoscale Convective Systems (MCSs) over the Korean Peninsula was selected to investigate the impact of radar data assimilation on a heavy rainfall forecast. The Weather Research and...A heavy rainfall case related to Mesoscale Convective Systems (MCSs) over the Korean Peninsula was selected to investigate the impact of radar data assimilation on a heavy rainfall forecast. The Weather Research and Forecasting (WRF) three-dimensional variational (3DVAR) data assimilation system with tuning of the length scale of the background error covariance and observation error parameters was used to assimilate radar radial velocity and reffectivity data. The radar data used in the assimilation experiments were preprocessed using quality-control procedures and interpolated/thinned into Cartesian coordinates by the SPRINT/CEDRIC packages. Sensitivity experiments were carried out in order to determine the optimal values of the assimilation window length and the update frequency used for the rapid update cycle and incremental analysis update experiments. The assimilation of radar data has a positive influence on the heavy rainfall forecast. Quantitative features of the heavy rainfall case, such as the maximum rainfall amount and Root Mean Squared Differences (RMSDs) of zonal/meridional wind components, were improved by tuning of the length scale and observation error parameters. Qualitative features of the case, such as the maximum rainfall position and time series of hourly rainfall, were enhanced by an incremental analysis update technique. The positive effects of the radar data assimilation and the tuning of the length scale and observation error parameters were clearly shown by the 3DVAR increment.展开更多
Many weather radar networks in the world have now provided polarimetric radar data(PRD)that have the potential to improve our understanding of cloud and precipitation microphysics,and numerical weather prediction(NWP)...Many weather radar networks in the world have now provided polarimetric radar data(PRD)that have the potential to improve our understanding of cloud and precipitation microphysics,and numerical weather prediction(NWP).To realize this potential,an accurate and efficient set of polarimetric observation operators are needed to simulate and assimilate the PRD with an NWP model for an accurate analysis of the model state variables.For this purpose,a set of parameterized observation operators are developed to simulate and assimilate polarimetric radar data from NWP model-predicted hydrometeor mixing ratios and number concentrations of rain,snow,hail,and graupel.The polarimetric radar variables are calculated based on the T-matrix calculation of wave scattering and integrations of the scattering weighted by the particle size distribution.The calculated polarimetric variables are then fitted to simple functions of water content and volumeweighted mean diameter of the hydrometeor particle size distribution.The parameterized PRD operators are applied to an ideal case and a real case predicted by the Weather Research and Forecasting(WRF)model to have simulated PRD,which are compared with existing operators and real observations to show their validity and applicability.The new PRD operators use less than one percent of the computing time of the old operators to complete the same simulations,making it efficient in PRD simulation and assimilation usage.展开更多
Due to the demand of data processing for polar ice radar in our laboratory, a Curvelet Thresholding Neural Network (TNN) noise reduction method is proposed, and a new threshold function with infinite-order continuous ...Due to the demand of data processing for polar ice radar in our laboratory, a Curvelet Thresholding Neural Network (TNN) noise reduction method is proposed, and a new threshold function with infinite-order continuous derivative is constructed. The method is based on TNN model. In the learning process of TNN, the gradient descent method is adopted to solve the adaptive optimal thresholds of different scales and directions in Curvelet domain, and to achieve an optimal mean square error performance. In this paper, the specific implementation steps are presented, and the superiority of this method is verified by simulation. Finally, the proposed method is used to process the ice radar data obtained during the 28th Chinese National Antarctic Research Expedition in the region of Zhongshan Station, Antarctica. Experimental results show that the proposed method can reduce the noise effectively, while preserving the edge of the ice layers.展开更多
Typhoon Rananim (0414) has been simulated by using the non-hydrostatic Advanced Regional Prediction System (ARPS) from Center of Analysis and Prediction of Storms (CAPS). The prediction of Rananim has generally ...Typhoon Rananim (0414) has been simulated by using the non-hydrostatic Advanced Regional Prediction System (ARPS) from Center of Analysis and Prediction of Storms (CAPS). The prediction of Rananim has generally been improved with ARPS using the new generation CINRAD Doppler radar data. Numerical experiments with or without using the radar data have shown that model initial fields with the assimilated radar radial velocity data in ARPS can change the wind field at the middle and high levels of the troposphere; fine characteristics of the tropical cyclone (TC) are introduced into the initial wind, the x component of wind speed south of the TC is increased and so is the y component west of it. They lead to improved forecasting of TC tracks for the time after landfall. The field of water vapor mixing ratio, temperature, cloud water mixing ratio and rainwater mixing ratio have also been improved by using radar refiectivity data. The model's initial response to the introduction of hydrometeors has been increased. It is shown that horizontal model resolution has a significant impact on intensity forecasts, by greatly improving the forecasting of TC rainfall, and heavy rainstorm of the TC specially, as well as its distribution and variation with time.展开更多
An ensemble three-dimensional ensemble-variational(3DEnVar)data assimilation(E3DA)system was developed within the Weather Research and Forecasting model’s 3DVar framework to assimilate radar data to improve convectiv...An ensemble three-dimensional ensemble-variational(3DEnVar)data assimilation(E3DA)system was developed within the Weather Research and Forecasting model’s 3DVar framework to assimilate radar data to improve convective forecasting.In this system,ensemble perturbations are updated by an ensemble of 3DEnVar and the ensemble forecasts are used to generate the flow-dependent background error covariance.The performance of the E3DA system was first evaluated against one experiment without radar DA and one radar DA experiment with 3DVar,using a severe storm case over southeastern China on 5 June 2009.Results indicated that E3DA improved the quantitative forecast skills of reflectivity and precipitation,as well as their spatial distributions in terms of both intensity and coverage over 3DVar.The root-mean-square error of radial velocity from 3DVar was reduced by E3DA,with stronger low-level wind closer to observation.It was also found that E3DA improved the wind,temperature and water vapor mixing ratio,with the lowest errors at the surface and upper levels.3DVar showed moderate improvements in comparison with forecasts without radar DA.A diagnosis of the analysis revealed that E3DA increased vertical velocity,temperature,and humidity corresponding to the added reflectivity,while 3DVar failed to produce these adjustments,because of the lack of reasonable cross-variable correlations.The performance of E3DA was further verified using two convective cases over southern and southeastern China,and the reflectivity forecast skill was also improved over 3DVar.展开更多
[Objective] The Doppler radar data about a super monomer hailstorms in the northeastern Qinghai-Tibet Plateau in the Zhongchuan Airport in the Lanzhou City on September 6,2010 was studied.[Method] By dint of routine d...[Objective] The Doppler radar data about a super monomer hailstorms in the northeastern Qinghai-Tibet Plateau in the Zhongchuan Airport in the Lanzhou City on September 6,2010 was studied.[Method] By dint of routine data and radar data,the low vortex shear line type and the super monomer hailstorm around the Zhongchuan Airport in the Lanzhou City on September 6,2010 were expounded.Basic product and secondary product of Doppler radar were used in this process to reflect the characteristics of strong convection weather.Some characteristics of this process shall be explored.[Result] A small gush of cold air from the cold vortex of 500 hPa in the middle and high layer provided impacts.The warm shear line provided water vapor and energy in the 700 hPa.There was strong convective weather in the upper air.Such 10 minutes of hailstorm was rarely seen in the drought land in the northwest.The characteristics of the strong convection were distinct and typical.The front showed no echo form.However,it can not be reflected in 'strong wedge' in another form.In this process,characteristics of BWER and middle scale cyclone were distinct.And this was a typical hailstorm process caused by super monomer.[Conclusion] The study provided some helpful references for the forecast of strong convection weather in the Zhongchuan Airport in Lanzhou City.展开更多
Assimilation configurations have significant impacts on analysis results and subsequent forecasts. A squall line system that occurred on 23 April 2007 over southern China was used to investigate the impacts of the dat...Assimilation configurations have significant impacts on analysis results and subsequent forecasts. A squall line system that occurred on 23 April 2007 over southern China was used to investigate the impacts of the data assimilation frequency of radar data on analyses and forecasts. A three-dimensional variational system was used to assimilate radial velocity data,and a cloud analysis system was used for reflectivity assimilation with a 2-h assimilation window covering the initial stage of the squall line. Two operators of radar reflectivity for cloud analyses corresponding to single-and double-moment schemes were used. In this study, we examined the sensitivity of assimilation frequency using 10-, 20-, 30-, and 60-min assimilation intervals. The results showed that analysis fields were not consistent with model dynamics and microphysics in general;thus, model states, including dynamic and microphysical variables, required approximately 20 min to reach a new balance after data assimilation in all experiments. Moreover, a 20-min data assimilation interval generally produced better forecasts for both single-and double-moment schemes in terms of equitable threat and bias scores. We conclude that a higher data assimilation frequency can produce a more intense cold pool and rear inflow jets but does not necessarily lead to a better forecast.展开更多
The present study designs experiments on the direct assimilation of radial velocity and reflectivity data collected by an S-band Doppler weather radar(CINRAD WSR-98D) at the Hefei Station and the reanalysis data produ...The present study designs experiments on the direct assimilation of radial velocity and reflectivity data collected by an S-band Doppler weather radar(CINRAD WSR-98D) at the Hefei Station and the reanalysis data produced by the United States National Centers for Environmental Prediction using the Weather Research and Forecasting(WRF) model,the WRF model with a three-dimensional variational(3DVAR) data assimilation system and the WRF model with an ensemble square root filter(EnSRF) data assimilation system.In addition,the present study analyzes a Meiyu front heavy rainfall process that occurred in the Yangtze-Huaihe River Basin from July 4 to July 5,2003,through numerical simulation.The results show the following.(1) The assimilation of the radar radial velocity data can increase the perturbations in the low-altitude atmosphere over the heavy rainfall region,enhance the convective activities and reduce excessive simulated precipitation.(2) The 3DVAR assimilation method significantly adjusts the horizontal wind field.The assimilation of the reflectivity data improves the microphysical quantities and dynamic fields in the model.In addition,the assimilation of the radial velocity and reflectivity data can better adjust the wind fields and improve the intensity and location of the simulated radar echo bands.(3) The EnSRF assimilation method can assimilate more small-scale wind field information into the model.The assimilation of the reflectivity data alone can relatively accurately forecast the rainfall centers.In addition,the assimilation of the radial velocity and reflectivity data can improve the location of the simulated radar echo bands.(4) The use of the 3DVAR and EnSRF assimilation methods to assimilate the radar radial velocity and reflectivity data can improve the forecast of precipitation,rain-band areal coverage and the center location and intensity of precipitation.展开更多
3D image reconstruction for weather radar data can not only help the weatherman to improve the forecast efficiency and accuracy, but also help people to understand the weather conditions easily and quickly. Marching C...3D image reconstruction for weather radar data can not only help the weatherman to improve the forecast efficiency and accuracy, but also help people to understand the weather conditions easily and quickly. Marching Cubes (MC) algorithm in the surface rendering has more excellent applicability in 3D reconstruction for the slice images;it may shorten the time to find and calculate the isosurface from raw volume data, reflect the shape structure more accurately. In this paper, we discuss a method to reconstruct the 3D weather cloud image by using the proposed Cube Weighting Interpolation (CWI) and MC algorithm. Firstly, we detail the steps of CWI, apply it to project the raw radar data into the cubes and obtain the equally spaced cloud slice images, then employ MC algorithm to draw the isosurface. Some experiments show that our method has a good effect and simple operation, which may provide an intuitive and effective reference for realizing the 3D surface reconstruction and meteorological image stereo visualization.展开更多
The radar ray path equations are used to determine the physical location of each radar measurement. These equations are necessary for mapping radar data to computational grids for diagnosis, display and numerical weat...The radar ray path equations are used to determine the physical location of each radar measurement. These equations are necessary for mapping radar data to computational grids for diagnosis, display and numerical weather prediction (NWP). They are also used to determine the forward operators for assimilation of radar data into forecast models. In this paper, a stepwise ray tracing method is developed. The influence of the atmospheric refractive index on the ray path equations at different locations related to an intense cold front is examined against the ray path derived from the new tracing method. It is shown that the radar ray path is not very sensitive to sharp vertical gradients of refractive index caused by the strong temperature inversion and large moisture gradient in this case. In the paper, the errors caused by using the simplified straight ray path equations are also examined. It is found that there will be significant errors in the physical location of radar measurements if the earth's curvature is not considered, especially at lower elevation angles. A reduced form of the equation for beam height calculation is derived using Taylor series expansion. It is computationally more efficient and also avoids the need to use double precision variables to mitigate the small difference between two large terms in the original form. The accuracy of this reduced form is found to be sufficient for modeling use.展开更多
In this paper, by using the biorthogonal quadrature filters, the biorthogonal mul-tiresolution analysis of finite dimension space equipped with inner product and the fast discrete wavelet transform (FDWT) are construc...In this paper, by using the biorthogonal quadrature filters, the biorthogonal mul-tiresolution analysis of finite dimension space equipped with inner product and the fast discrete wavelet transform (FDWT) are constructed. The dual transform method is proposed and the radar data storage is reduced by it. The method of choosing the wavelet coefficients, and the methods of correlation and nearest neighbor classification in wavelet domain based on the compressed data, are presented. The experimental results of the classification, using the high resolution range returns from six kinds of aircrafts, show that the methods of transform, compression and recognition are efficient.展开更多
Different choices of control variables in variational assimilation can bring about different influences on the analyzed atmospheric state. Based on the WRF model's three-dimensional variational assimilation system, t...Different choices of control variables in variational assimilation can bring about different influences on the analyzed atmospheric state. Based on the WRF model's three-dimensional variational assimilation system, this study compares the be- havior of two momentum control variable options-streamfunction velocity potential (ψ-χ) and horizontal wind components (U-V)-in radar wind data assimilation for a squall line case that occurred in Jiangsu Province on 24 August 2014. The wind increment from the single observation test shows that the ψ-χ control variable scheme produces negative increments in the neighborhood around the observation point because streamfunction and velocity potential preserve integrals of velocity. On the contrary, the U-V control variable scheme objectively reflects the information of the observation itself. Furthermore, radial velocity data from 17 Doppler radars in eastern China are assimilated. As compared to the impact of conventional observation, the assimilation of radar radial velocity based on the U-V control variable scheme significantly improves the mesoscale dynamic field in the initial condition. The enhanced low-level jet stream, water vapor convergence and low-level wind shear result in better squall line forecasting. However, the ψ-χ control variable scheme generates a discontinuous wind field and unrealistic convergence/divergence in the analyzed field, which lead to a degraded precipitation forecast.展开更多
This paper introduces a variational assimilation technique for the retrieval of wind fields from Doppler radar data. The assimilated information included both the radial velocity (RV) and the movement of radar echo....This paper introduces a variational assimilation technique for the retrieval of wind fields from Doppler radar data. The assimilated information included both the radial velocity (RV) and the movement of radar echo. In this assimilation technique, the key is transforming the movement of radar echo to a new radar measuring variable- "apparent velocity" (AV). Thus, the information of wind is added, and the indeterminacy of recovering two-dimensional wind only by AV was overcome effectively by combining RV with AV. By means of CMA GRAPES-3Dvar and CINRAD data, some experiments were performed. The results show that the method of retrieval of wind fields is useful in obtaining the construction of the weather system.展开更多
To improve the accuracy of short-term (0-12 h) forecasts of severe weather in southern China, a real-time storm-scale forecasting system, the Hourly Assimilation and Prediction System (HAPS), has been implemented ...To improve the accuracy of short-term (0-12 h) forecasts of severe weather in southern China, a real-time storm-scale forecasting system, the Hourly Assimilation and Prediction System (HAPS), has been implemented in Shenzhen, China. The forecasting system is characterized by combining the Advanced Research Weather Research and Forecasting (WRF-ARW) model and the Advanced Regional Prediction System (ARPS) three-dimensional variational data assimilation (3DVAR) pack- age. It is capable of assimilating radar reflectivity and radial velocity data from multiple Doppler radars as well as surface automatic weather station (AWS) data. Experiments are designed to evaluate the impacts of data assimilation on quantitative precipitation forecasting (QPF) by studying a heavy rainfall event in southern China. The forecasts from these experiments are verified against radar, surface, and precipitation observations. Comparison of echo structure and accumulated precipitation suggests that radar data assimilation is useful in improving the short-term forecast by capturing the location and orientation of the band of accumulated rainfall. The assimilation of radar data improves the short-term precipitation forecast skill by up to 9 hours by producing more convection. The slight but generally positive impact that surface AWS data has on the forecast of near-surface variables can last up to 6-9 hours. The assimilation of AWS observations alone has some benefit for improving the Fractions Skill Score (FSS) and bias scores; when radar data are assimilated, the additional AWS data may increase the degree of rainfall overprediction.展开更多
The burden distribution real-time estimation problem of multi-loop charging based on the real multi-radar data is resolved.Firstly , an iterative algorithm is introduced to calculate the radial coordinate of the pile-...The burden distribution real-time estimation problem of multi-loop charging based on the real multi-radar data is resolved.Firstly , an iterative algorithm is introduced to calculate the radial coordinate of the pile-top.Then , based on the multi-radar data , the burden profile is estimated by a cubic-curve equation at the end of the multi-loop charging.Furthermore , the burden profile before the next multi-loop charging is calculated based on multi-radar data by considering the impact of burden descent.On the basis of these burden profiles , a more accurate thickness ratio of ore to coke ( RO/C ) at the radial direction of blast furnace can be obtained.Finally , an example is given to calculate the burden profiles and RO/C by using the real multi-radar data sampled from Baosteel , which shows the effectiveness of the method introduced.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42325406 and 42304187)the China Postdoctoral Science Foundation(Grant No.2023M733476)+3 种基金the CAS Project for Young Scientists in Basic Research(Grant No.YSBR082)the National Key R&D Program of China(Grant No.2022YFF0503203)the Key Research Program of the Institute of Geology and GeophysicsChinese Academy of Sciences(Grant Nos.IGGCAS-202101 and IGGCAS-202401).
文摘The Yutu-2 rover onboard the Chang’E-4 mission performed the first lunar penetrating radar detection on the farside of the Moon.The high-frequency channel presented us with many unprecedented details of the subsurface structures within a depth of approximately 50 m.However,it was still difficult to identify finer layers from the cluttered reflections and scattering waves.We applied deconvolution to improve the vertical resolution of the radar profile by extending the limited bandwidth associated with the emissive radar pulse.To overcome the challenges arising from the mixed-phase wavelets and the problematic amplification of noise,we performed predictive deconvolution to remove the minimum-phase components from the Chang’E-4 dataset,followed by a comprehensive phase rotation to rectify phase anomalies in the radar image.Subsequently,we implemented irreversible migration filtering to mitigate the noise and diminutive clutter echoes amplified by deconvolution.The processed data showed evident enhancement of the vertical resolution with a widened bandwidth in the frequency domain and better signal clarity in the time domain,providing us with more undisputed details of subsurface structures near the Chang’E-4 landing site.
文摘In the preparation of firing tables, the determination of projectile drag coefficientsthrough firing test radar data reduction is very important. Many methods have been developed for this work but none of them appear to be satisfactory in one Way or another. Inthis paper a multi-spline model of drag coefficient (cd) curve is developed that can guaranteefirst derivative continuity of the cd curve and has good flexibility of fitting accurately to acd curve from subsonic up to supersonic range. Practical firing data reduction tests showboth fast convergence and accurate fitting results. Typical velocity fitting RMS errors are0.05-0.08 m/s.
基金primarily supported by the National Fundamental Research 973 Program of China(Grant No.2013CB430101)the National Natural Science Foundation of China(Grant Nos.41275031,41322032 and 41475015)+1 种基金the Social Commonwealth Research Program(Grant Nos.GYHY201506004 and GYHY201006007)the Program for New Century Excellent Talents in Universities of China
文摘This paper examines how assimilating surface observations can improve the analysis and forecast ability of a four- dimensional Variational Doppler Radar Analysis System (VDRAS). Observed surface temperature and winds are assimilated together with radar radial velocity and reflectivity into a convection-permitting model using the VDRAS four-dimensional variational (4DVAR) data assimilation system. A squall-line case observed during a field campaign is selected to investigate the performance of the technique. A single observation experiment shows that assimilating surface observations can influence the analyzed fields in both the horizontal and vertical directions. The surface-based cold pool, divergence and gust front of the squall line are all strengthened through the assimilation of the single surface observation. Three experiments--assimilating radar data only, assimilating radar data with surface data blended in a mesoscale background, and assimilating both radar and surface observations with a 4DVAR cost function--are conducted to examine the impact of the surface data assimilation. Independent surface and wind profiler observations are used for verification. The result shows that the analysis and forecast are improved when surface observations are assimilated in addition to radar observations. It is also shown that the additional surface data can help improve the analysis and forecast at low levels. Surface and low-level features of the squall line-- including the surface warm inflow, cold pool, gust front, and low-level wind--are much closer to the observations after assimilating the surface data in VDRAS.
基金supported by the Natural Science Foundation of Jiangsu Province(Grant No.SBK2020043202)by Key Laboratory of Geospace Environment and Geodesy,Ministry of Education,Wuhan University(No.19-01-08).
文摘On 21 May 2021(UTC),an MW 7.4 earthquake jolted the east Bayan Har block in the Tibetan Plateau.The earthquake received widespread attention as it is the largest event in the Tibetan Plateau and its surroundings since the 2008 Wenchuan earthquake,and especially in proximity to the seismic gaps on the east Kunlun fault.Here we use satellite interferometric synthetic aperture radar data and subpixel offset observations along the range directions to characterize the coseismic deformation of the earthquake.Range offset displacements depict clear surface ruptures with a total length of~170 km involving two possible activated fault segments in the earthquake.Coseismic modeling results indicate that the earthquake was dominated by left-lateral strike-slip motions of up to 7 m within the top 12 km of the crust.The well-resolved slip variations are characterized by five major slip patches along strike and 64%of shallow slip deficit,suggesting a young seismogenic structure.Spatial-temporal changes of the postseismic deformation are mapped from early 6-day and 24-day InSAR observations,and are well explained by time-dependent afterslip models.Analysis of Global Navigation Satellite System(GNSS)velocity profiles and strain rates suggests that the eastward extrusion of plateau is diffusely distributed across the east Bayan Har block,but exhibits significant lateral heterogeneities,as evidenced by magnetotelluric observations.The block-wide distributed deformation of the east Bayan Har block along with the significant co-and post-seismic stress loadings from the Madoi earthquake imply high seismic risks along regional faults,especially the Tuosuo Lake and Maqên-Maqu segments of the Kunlun fault that are known as seismic gaps.
基金primarily supported by the National 973 Fundamental Research Program of China(Grant No.2013CB430103)the Department of Transportation Federal Aviation Administration(Grant No.NA17RJ1227)through the National Oceanic and Atmospheric Administration+1 种基金supported by the National Science Foundation of China(Grant No.41405100)the Fundamental Research Funds for the Central Universities(Grant No.20620140343)
文摘The traditional threat score based on fixed thresholds for precipitation verification is sensitive to intensity forecast bias. In this study, the neighborhood precipitation threat score is modified by defining the thresholds in terms of the percentiles of overall precipitation instead of fixed threshold values. The impact of intensity forecast bias on the calculated threat score is reduced. The method is tested with the forecasts of a tropical storm that re-intensified after making landfall and caused heavy flooding. The forecasts are produced with and without radar data assimilation. The forecast with assimilation of both radial velocity and reflectivity produce precipitation patterns that better match observations but have large positive intensity bias. When using fixed thresholds, the neighborhood threat scores fail to yield high scores for forecasts that have good pattern match with observations, due to large intensity bias. In contrast, the percentile-based neighborhood method yields the highest score for the forecast with the best pattern match and the smallest position error. The percentile-based method also yields scores that are more consistent with object-based verifications, which are less sensitive to intensity bias, demonstrating the potential value of percentile-based verification.
基金supported by the Korea Meteorological Administration Research and Development Program under Grant CATER 2006–2303 and by the Brain Korea 21 Project in 2007
文摘A heavy rainfall case related to Mesoscale Convective Systems (MCSs) over the Korean Peninsula was selected to investigate the impact of radar data assimilation on a heavy rainfall forecast. The Weather Research and Forecasting (WRF) three-dimensional variational (3DVAR) data assimilation system with tuning of the length scale of the background error covariance and observation error parameters was used to assimilate radar radial velocity and reffectivity data. The radar data used in the assimilation experiments were preprocessed using quality-control procedures and interpolated/thinned into Cartesian coordinates by the SPRINT/CEDRIC packages. Sensitivity experiments were carried out in order to determine the optimal values of the assimilation window length and the update frequency used for the rapid update cycle and incremental analysis update experiments. The assimilation of radar data has a positive influence on the heavy rainfall forecast. Quantitative features of the heavy rainfall case, such as the maximum rainfall amount and Root Mean Squared Differences (RMSDs) of zonal/meridional wind components, were improved by tuning of the length scale and observation error parameters. Qualitative features of the case, such as the maximum rainfall position and time series of hourly rainfall, were enhanced by an incremental analysis update technique. The positive effects of the radar data assimilation and the tuning of the length scale and observation error parameters were clearly shown by the 3DVAR increment.
基金the University of Oklahoma(OU)Supercomputing Center for Education&Research(OSCER).
文摘Many weather radar networks in the world have now provided polarimetric radar data(PRD)that have the potential to improve our understanding of cloud and precipitation microphysics,and numerical weather prediction(NWP).To realize this potential,an accurate and efficient set of polarimetric observation operators are needed to simulate and assimilate the PRD with an NWP model for an accurate analysis of the model state variables.For this purpose,a set of parameterized observation operators are developed to simulate and assimilate polarimetric radar data from NWP model-predicted hydrometeor mixing ratios and number concentrations of rain,snow,hail,and graupel.The polarimetric radar variables are calculated based on the T-matrix calculation of wave scattering and integrations of the scattering weighted by the particle size distribution.The calculated polarimetric variables are then fitted to simple functions of water content and volumeweighted mean diameter of the hydrometeor particle size distribution.The parameterized PRD operators are applied to an ideal case and a real case predicted by the Weather Research and Forecasting(WRF)model to have simulated PRD,which are compared with existing operators and real observations to show their validity and applicability.The new PRD operators use less than one percent of the computing time of the old operators to complete the same simulations,making it efficient in PRD simulation and assimilation usage.
基金Supported by the National High Technology Research and Development Program of China (No. 2011AA040202)the National Natural Science Foundation of China (No. 40976114)
文摘Due to the demand of data processing for polar ice radar in our laboratory, a Curvelet Thresholding Neural Network (TNN) noise reduction method is proposed, and a new threshold function with infinite-order continuous derivative is constructed. The method is based on TNN model. In the learning process of TNN, the gradient descent method is adopted to solve the adaptive optimal thresholds of different scales and directions in Curvelet domain, and to achieve an optimal mean square error performance. In this paper, the specific implementation steps are presented, and the superiority of this method is verified by simulation. Finally, the proposed method is used to process the ice radar data obtained during the 28th Chinese National Antarctic Research Expedition in the region of Zhongshan Station, Antarctica. Experimental results show that the proposed method can reduce the noise effectively, while preserving the edge of the ice layers.
基金Technical Plan Key Project of Zhejiang Province (2006C13025)Key Subsidiary Project for Meteorological Science of Wenzhou (S200601)Technical Plan Key Project of Wenzhou (S2003A011)
文摘Typhoon Rananim (0414) has been simulated by using the non-hydrostatic Advanced Regional Prediction System (ARPS) from Center of Analysis and Prediction of Storms (CAPS). The prediction of Rananim has generally been improved with ARPS using the new generation CINRAD Doppler radar data. Numerical experiments with or without using the radar data have shown that model initial fields with the assimilated radar radial velocity data in ARPS can change the wind field at the middle and high levels of the troposphere; fine characteristics of the tropical cyclone (TC) are introduced into the initial wind, the x component of wind speed south of the TC is increased and so is the y component west of it. They lead to improved forecasting of TC tracks for the time after landfall. The field of water vapor mixing ratio, temperature, cloud water mixing ratio and rainwater mixing ratio have also been improved by using radar refiectivity data. The model's initial response to the introduction of hydrometeors has been increased. It is shown that horizontal model resolution has a significant impact on intensity forecasts, by greatly improving the forecasting of TC rainfall, and heavy rainstorm of the TC specially, as well as its distribution and variation with time.
基金This research was supported by the Startup Foundation for Introducing Talent of Shenyang Agricultural University(Grant No.8804-880418054)the National Agricultural Research System of China(Grant No.CARS-13)the National Key Research and Development Program of China(Grant No.2017YFC1502102).
文摘An ensemble three-dimensional ensemble-variational(3DEnVar)data assimilation(E3DA)system was developed within the Weather Research and Forecasting model’s 3DVar framework to assimilate radar data to improve convective forecasting.In this system,ensemble perturbations are updated by an ensemble of 3DEnVar and the ensemble forecasts are used to generate the flow-dependent background error covariance.The performance of the E3DA system was first evaluated against one experiment without radar DA and one radar DA experiment with 3DVar,using a severe storm case over southeastern China on 5 June 2009.Results indicated that E3DA improved the quantitative forecast skills of reflectivity and precipitation,as well as their spatial distributions in terms of both intensity and coverage over 3DVar.The root-mean-square error of radial velocity from 3DVar was reduced by E3DA,with stronger low-level wind closer to observation.It was also found that E3DA improved the wind,temperature and water vapor mixing ratio,with the lowest errors at the surface and upper levels.3DVar showed moderate improvements in comparison with forecasts without radar DA.A diagnosis of the analysis revealed that E3DA increased vertical velocity,temperature,and humidity corresponding to the added reflectivity,while 3DVar failed to produce these adjustments,because of the lack of reasonable cross-variable correlations.The performance of E3DA was further verified using two convective cases over southern and southeastern China,and the reflectivity forecast skill was also improved over 3DVar.
文摘[Objective] The Doppler radar data about a super monomer hailstorms in the northeastern Qinghai-Tibet Plateau in the Zhongchuan Airport in the Lanzhou City on September 6,2010 was studied.[Method] By dint of routine data and radar data,the low vortex shear line type and the super monomer hailstorm around the Zhongchuan Airport in the Lanzhou City on September 6,2010 were expounded.Basic product and secondary product of Doppler radar were used in this process to reflect the characteristics of strong convection weather.Some characteristics of this process shall be explored.[Result] A small gush of cold air from the cold vortex of 500 hPa in the middle and high layer provided impacts.The warm shear line provided water vapor and energy in the 700 hPa.There was strong convective weather in the upper air.Such 10 minutes of hailstorm was rarely seen in the drought land in the northwest.The characteristics of the strong convection were distinct and typical.The front showed no echo form.However,it can not be reflected in 'strong wedge' in another form.In this process,characteristics of BWER and middle scale cyclone were distinct.And this was a typical hailstorm process caused by super monomer.[Conclusion] The study provided some helpful references for the forecast of strong convection weather in the Zhongchuan Airport in Lanzhou City.
基金supported by the National Key R&D Program of China (Grant No.2017YFC1502104)the National Natural Science Foundation of China (Grant Nos.41775099 and 41605026)Grant No.NJCAR2016ZD02,and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘Assimilation configurations have significant impacts on analysis results and subsequent forecasts. A squall line system that occurred on 23 April 2007 over southern China was used to investigate the impacts of the data assimilation frequency of radar data on analyses and forecasts. A three-dimensional variational system was used to assimilate radial velocity data,and a cloud analysis system was used for reflectivity assimilation with a 2-h assimilation window covering the initial stage of the squall line. Two operators of radar reflectivity for cloud analyses corresponding to single-and double-moment schemes were used. In this study, we examined the sensitivity of assimilation frequency using 10-, 20-, 30-, and 60-min assimilation intervals. The results showed that analysis fields were not consistent with model dynamics and microphysics in general;thus, model states, including dynamic and microphysical variables, required approximately 20 min to reach a new balance after data assimilation in all experiments. Moreover, a 20-min data assimilation interval generally produced better forecasts for both single-and double-moment schemes in terms of equitable threat and bias scores. We conclude that a higher data assimilation frequency can produce a more intense cold pool and rear inflow jets but does not necessarily lead to a better forecast.
基金Beijige Fund of Jiangsu Institute of Meteorological Sciences(BJG201512)Natural Science Foundation of Jiangsu Province(BK20161074,BK20130990)+1 种基金Key Scientific Research Projects of Jiangsu Provincial Meteorological Bureau(KZ201605)Young Meteorological Research of Jiangsu Provincial Meteorological Bureau(Q201611)
文摘The present study designs experiments on the direct assimilation of radial velocity and reflectivity data collected by an S-band Doppler weather radar(CINRAD WSR-98D) at the Hefei Station and the reanalysis data produced by the United States National Centers for Environmental Prediction using the Weather Research and Forecasting(WRF) model,the WRF model with a three-dimensional variational(3DVAR) data assimilation system and the WRF model with an ensemble square root filter(EnSRF) data assimilation system.In addition,the present study analyzes a Meiyu front heavy rainfall process that occurred in the Yangtze-Huaihe River Basin from July 4 to July 5,2003,through numerical simulation.The results show the following.(1) The assimilation of the radar radial velocity data can increase the perturbations in the low-altitude atmosphere over the heavy rainfall region,enhance the convective activities and reduce excessive simulated precipitation.(2) The 3DVAR assimilation method significantly adjusts the horizontal wind field.The assimilation of the reflectivity data improves the microphysical quantities and dynamic fields in the model.In addition,the assimilation of the radial velocity and reflectivity data can better adjust the wind fields and improve the intensity and location of the simulated radar echo bands.(3) The EnSRF assimilation method can assimilate more small-scale wind field information into the model.The assimilation of the reflectivity data alone can relatively accurately forecast the rainfall centers.In addition,the assimilation of the radial velocity and reflectivity data can improve the location of the simulated radar echo bands.(4) The use of the 3DVAR and EnSRF assimilation methods to assimilate the radar radial velocity and reflectivity data can improve the forecast of precipitation,rain-band areal coverage and the center location and intensity of precipitation.
文摘3D image reconstruction for weather radar data can not only help the weatherman to improve the forecast efficiency and accuracy, but also help people to understand the weather conditions easily and quickly. Marching Cubes (MC) algorithm in the surface rendering has more excellent applicability in 3D reconstruction for the slice images;it may shorten the time to find and calculate the isosurface from raw volume data, reflect the shape structure more accurately. In this paper, we discuss a method to reconstruct the 3D weather cloud image by using the proposed Cube Weighting Interpolation (CWI) and MC algorithm. Firstly, we detail the steps of CWI, apply it to project the raw radar data into the cubes and obtain the equally spaced cloud slice images, then employ MC algorithm to draw the isosurface. Some experiments show that our method has a good effect and simple operation, which may provide an intuitive and effective reference for realizing the 3D surface reconstruction and meteorological image stereo visualization.
基金This work was supported by US NSF ATM-0129892,ATM-0331756,ATM-0331594 and EEC-0313747,and D0T-FAA grant NA17RJ1227-01The first author was also partly supported by the National Natural Science Foundation of China for young investigators(Grant No.40505022)+1 种基金Ming Xue was also supported by the 0utstanding 0verseas Scholars Award of the Chinese Academy of Sciences(Grant No.2004-2-7)Graphic plots were generated by the GNUPL0T graphics package.
文摘The radar ray path equations are used to determine the physical location of each radar measurement. These equations are necessary for mapping radar data to computational grids for diagnosis, display and numerical weather prediction (NWP). They are also used to determine the forward operators for assimilation of radar data into forecast models. In this paper, a stepwise ray tracing method is developed. The influence of the atmospheric refractive index on the ray path equations at different locations related to an intense cold front is examined against the ray path derived from the new tracing method. It is shown that the radar ray path is not very sensitive to sharp vertical gradients of refractive index caused by the strong temperature inversion and large moisture gradient in this case. In the paper, the errors caused by using the simplified straight ray path equations are also examined. It is found that there will be significant errors in the physical location of radar measurements if the earth's curvature is not considered, especially at lower elevation angles. A reduced form of the equation for beam height calculation is derived using Taylor series expansion. It is computationally more efficient and also avoids the need to use double precision variables to mitigate the small difference between two large terms in the original form. The accuracy of this reduced form is found to be sufficient for modeling use.
文摘In this paper, by using the biorthogonal quadrature filters, the biorthogonal mul-tiresolution analysis of finite dimension space equipped with inner product and the fast discrete wavelet transform (FDWT) are constructed. The dual transform method is proposed and the radar data storage is reduced by it. The method of choosing the wavelet coefficients, and the methods of correlation and nearest neighbor classification in wavelet domain based on the compressed data, are presented. The experimental results of the classification, using the high resolution range returns from six kinds of aircrafts, show that the methods of transform, compression and recognition are efficient.
基金jointly supported by the National Fundamental Research(973)Program of China(Grant Nos.2015CB452801 and 2013CB430100)the Jiangsu Meteorological Bureau Research Fund Project for the Youth(Grant Nos.Q201514 and Q201407)+3 种基金the Shandong Institute of Meteorological Sciences Research Fund Project(Grant No.SDQXKF2015M10)the Jiangsu Provincial Key Technology R&D Program(Grant No.BE2013730)the Jiangsu Meteorological Bureau Key Research Fund Project(Grant No.KZ201502)the National Key Technology R&D Program(Grant No.2014BAG01B01)
文摘Different choices of control variables in variational assimilation can bring about different influences on the analyzed atmospheric state. Based on the WRF model's three-dimensional variational assimilation system, this study compares the be- havior of two momentum control variable options-streamfunction velocity potential (ψ-χ) and horizontal wind components (U-V)-in radar wind data assimilation for a squall line case that occurred in Jiangsu Province on 24 August 2014. The wind increment from the single observation test shows that the ψ-χ control variable scheme produces negative increments in the neighborhood around the observation point because streamfunction and velocity potential preserve integrals of velocity. On the contrary, the U-V control variable scheme objectively reflects the information of the observation itself. Furthermore, radial velocity data from 17 Doppler radars in eastern China are assimilated. As compared to the impact of conventional observation, the assimilation of radar radial velocity based on the U-V control variable scheme significantly improves the mesoscale dynamic field in the initial condition. The enhanced low-level jet stream, water vapor convergence and low-level wind shear result in better squall line forecasting. However, the ψ-χ control variable scheme generates a discontinuous wind field and unrealistic convergence/divergence in the analyzed field, which lead to a degraded precipitation forecast.
基金Supported by Research on Innovative Meteorological NWP Techniques in China (2001BA607B)Research on Monitoring and Forecasting Techniques of Landfall Typhoon in China (2001DIA20026).
文摘This paper introduces a variational assimilation technique for the retrieval of wind fields from Doppler radar data. The assimilated information included both the radial velocity (RV) and the movement of radar echo. In this assimilation technique, the key is transforming the movement of radar echo to a new radar measuring variable- "apparent velocity" (AV). Thus, the information of wind is added, and the indeterminacy of recovering two-dimensional wind only by AV was overcome effectively by combining RV with AV. By means of CMA GRAPES-3Dvar and CINRAD data, some experiments were performed. The results show that the method of retrieval of wind fields is useful in obtaining the construction of the weather system.
基金supported by a grant to CAPS from Shenzhen Meteorological Bureau (SZMB) and Shenzhen Key Laboratory of Severe Weather in South ChinaSupport was jointly provided by the National Basic Research Program of China (973 Program, Grant No. 2013CB430105)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05100300)the National Natural Science Foundation of China (Grant No. 41105095)
文摘To improve the accuracy of short-term (0-12 h) forecasts of severe weather in southern China, a real-time storm-scale forecasting system, the Hourly Assimilation and Prediction System (HAPS), has been implemented in Shenzhen, China. The forecasting system is characterized by combining the Advanced Research Weather Research and Forecasting (WRF-ARW) model and the Advanced Regional Prediction System (ARPS) three-dimensional variational data assimilation (3DVAR) pack- age. It is capable of assimilating radar reflectivity and radial velocity data from multiple Doppler radars as well as surface automatic weather station (AWS) data. Experiments are designed to evaluate the impacts of data assimilation on quantitative precipitation forecasting (QPF) by studying a heavy rainfall event in southern China. The forecasts from these experiments are verified against radar, surface, and precipitation observations. Comparison of echo structure and accumulated precipitation suggests that radar data assimilation is useful in improving the short-term forecast by capturing the location and orientation of the band of accumulated rainfall. The assimilation of radar data improves the short-term precipitation forecast skill by up to 9 hours by producing more convection. The slight but generally positive impact that surface AWS data has on the forecast of near-surface variables can last up to 6-9 hours. The assimilation of AWS observations alone has some benefit for improving the Fractions Skill Score (FSS) and bias scores; when radar data are assimilated, the additional AWS data may increase the degree of rainfall overprediction.
基金Item Sponsored by Fundamental Research Funds for Central Universities of China ( FRF-TP-12-103A , FRF-AS-11-004B , FRF-SD-12-016A )Doctoral Program Foundation of Institutions of Higher Education of China ( 20110006120034 )
文摘The burden distribution real-time estimation problem of multi-loop charging based on the real multi-radar data is resolved.Firstly , an iterative algorithm is introduced to calculate the radial coordinate of the pile-top.Then , based on the multi-radar data , the burden profile is estimated by a cubic-curve equation at the end of the multi-loop charging.Furthermore , the burden profile before the next multi-loop charging is calculated based on multi-radar data by considering the impact of burden descent.On the basis of these burden profiles , a more accurate thickness ratio of ore to coke ( RO/C ) at the radial direction of blast furnace can be obtained.Finally , an example is given to calculate the burden profiles and RO/C by using the real multi-radar data sampled from Baosteel , which shows the effectiveness of the method introduced.