The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-n...The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs.展开更多
The advantages of using phase-coded pulse compression technique for radio fuze systems are evaluated. With building mathematical models a matched filter has been implemented successfully. Various simulations for pulse...The advantages of using phase-coded pulse compression technique for radio fuze systems are evaluated. With building mathematical models a matched filter has been implemented successfully. Various simulations for pulse compression waveform coding were done to evaluate the performance of fuze system under noisy environment. The results of the simulation and the data analysis show that the phase-coded pulse compression gets a good result in the signal identification of the radio fuze with matched filter. Simultaneously, a suitable sidelobe suppression filter is established by simulation, the suppressed sidelobe level is acceptable to radio fuze application.展开更多
The signal transceiver of the software radio fuze depends on the front-end radio frequency( RF) antenna. RF micro-electro-mechanical-system( MEMS) smart antennas have the capability of flexible beam rapid scanning...The signal transceiver of the software radio fuze depends on the front-end radio frequency( RF) antenna. RF micro-electro-mechanical-system( MEMS) smart antennas have the capability of flexible beam rapid scanning,multi-beam forming and so on,which can improve the ability of detecting,sensing and tracking multiple targets of the fuze. The small RF MEMS smart antenna consists of a 2 × 2 aperture coupled antenna array and six 1-bit MEMS phase shifters. Simulated results demonstrate that the antenna can complete beam steering angles of ± 30° in both X and Y plane at 17. 3 GHz. All components can be fabricated and monolithically integrated with MEMS technology which causes the system low cost and small volume. The RF MEMS smart antenna presents a good and important prospect for the development of the software radio fuze antenna.展开更多
In order to extract the feature information of ultra wide-band (UWB) radio fuze target and give full play to the warhead's strike ability, a method based on polar Hough transform for scattering centers extraction ...In order to extract the feature information of ultra wide-band (UWB) radio fuze target and give full play to the warhead's strike ability, a method based on polar Hough transform for scattering centers extraction of the target was proposed in this paper. It firstly utilized the fuze scanning to obtain the distance and azimuth information of the target's main scattering centers at different times, i.e. the track information of scattering centers under the polar coordinates, then used the polar Hough transform to transform the track into the parameter space in order to accumulate the dots and drew 3-D parameter space diagram, in which the peak points corresponded to the target's scattering centers. The simulation results indicate that the method can not only extract scattering centers efficiently and accurately, but also has strong anti-noise performance, and the algorithm is simple and easy to be implemented in engineering.展开更多
Stepped frequency radar waveform is put forward for improving the accuracy of radio fuze ranging. IFFT is adopted to synthesize one dimension high resolution range profile. Furthermore, the same range reject method an...Stepped frequency radar waveform is put forward for improving the accuracy of radio fuze ranging. IFFT is adopted to synthesize one dimension high resolution range profile. Furthermore, the same range reject method and selection maximum method are made use of removing target redundancy and the simulation results are given. Characters of the two methods are analyzed, and under the proposal of Weibull distribution clutter envelope, the CFAR same range selection maximum method is adopted and realizes the accurate profile and ranging.展开更多
To solve the problem of the low interference success rate of air defense missile radio fuzes due to the unified interference form of the traditional fuze interference system,an interference decision method based Q-lea...To solve the problem of the low interference success rate of air defense missile radio fuzes due to the unified interference form of the traditional fuze interference system,an interference decision method based Q-learning algorithm is proposed.First,dividing the distance between the missile and the target into multiple states to increase the quantity of state spaces.Second,a multidimensional motion space is utilized,and the search range of which changes with the distance of the projectile,to select parameters and minimize the amount of ineffective interference parameters.The interference effect is determined by detecting whether the fuze signal disappears.Finally,a weighted reward function is used to determine the reward value based on the range state,output power,and parameter quantity information of the interference form.The effectiveness of the proposed method in selecting the range of motion space parameters and designing the discrimination degree of the reward function has been verified through offline experiments involving full-range missile rendezvous.The optimal interference form for each distance state has been obtained.Compared with the single-interference decision method,the proposed decision method can effectively improve the success rate of interference.展开更多
According to the algorithm of the fuze antenna beamforming and the requirement for the realtime performenee, a fuze antenna beamformer based on digital signal processor (DSP) was designed. The program was written in...According to the algorithm of the fuze antenna beamforming and the requirement for the realtime performenee, a fuze antenna beamformer based on digital signal processor (DSP) was designed. The program was written in C, and in order to reduce the operation time of DSP, the key part of the matrix operation was written in simple algorithm. The precise and speediness of DSP calculation results were analyzed through Matlab and the Profiling tools in Code Composer Studio (CCS). The results show that the precise and the speediness both can satisfy the requirement for the fuze antennh beamforming.展开更多
基金National Natural Science Foundation of China under Grant No.61973037China Postdoctoral Science Foundation 2022M720419 to provide fund for conducting experiments。
文摘The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs.
文摘The advantages of using phase-coded pulse compression technique for radio fuze systems are evaluated. With building mathematical models a matched filter has been implemented successfully. Various simulations for pulse compression waveform coding were done to evaluate the performance of fuze system under noisy environment. The results of the simulation and the data analysis show that the phase-coded pulse compression gets a good result in the signal identification of the radio fuze with matched filter. Simultaneously, a suitable sidelobe suppression filter is established by simulation, the suppressed sidelobe level is acceptable to radio fuze application.
文摘The signal transceiver of the software radio fuze depends on the front-end radio frequency( RF) antenna. RF micro-electro-mechanical-system( MEMS) smart antennas have the capability of flexible beam rapid scanning,multi-beam forming and so on,which can improve the ability of detecting,sensing and tracking multiple targets of the fuze. The small RF MEMS smart antenna consists of a 2 × 2 aperture coupled antenna array and six 1-bit MEMS phase shifters. Simulated results demonstrate that the antenna can complete beam steering angles of ± 30° in both X and Y plane at 17. 3 GHz. All components can be fabricated and monolithically integrated with MEMS technology which causes the system low cost and small volume. The RF MEMS smart antenna presents a good and important prospect for the development of the software radio fuze antenna.
文摘In order to extract the feature information of ultra wide-band (UWB) radio fuze target and give full play to the warhead's strike ability, a method based on polar Hough transform for scattering centers extraction of the target was proposed in this paper. It firstly utilized the fuze scanning to obtain the distance and azimuth information of the target's main scattering centers at different times, i.e. the track information of scattering centers under the polar coordinates, then used the polar Hough transform to transform the track into the parameter space in order to accumulate the dots and drew 3-D parameter space diagram, in which the peak points corresponded to the target's scattering centers. The simulation results indicate that the method can not only extract scattering centers efficiently and accurately, but also has strong anti-noise performance, and the algorithm is simple and easy to be implemented in engineering.
文摘Stepped frequency radar waveform is put forward for improving the accuracy of radio fuze ranging. IFFT is adopted to synthesize one dimension high resolution range profile. Furthermore, the same range reject method and selection maximum method are made use of removing target redundancy and the simulation results are given. Characters of the two methods are analyzed, and under the proposal of Weibull distribution clutter envelope, the CFAR same range selection maximum method is adopted and realizes the accurate profile and ranging.
基金National Natural Science Foundation of China(61973037)National 173 Program Project(2019-JCJQ-ZD-324).
文摘To solve the problem of the low interference success rate of air defense missile radio fuzes due to the unified interference form of the traditional fuze interference system,an interference decision method based Q-learning algorithm is proposed.First,dividing the distance between the missile and the target into multiple states to increase the quantity of state spaces.Second,a multidimensional motion space is utilized,and the search range of which changes with the distance of the projectile,to select parameters and minimize the amount of ineffective interference parameters.The interference effect is determined by detecting whether the fuze signal disappears.Finally,a weighted reward function is used to determine the reward value based on the range state,output power,and parameter quantity information of the interference form.The effectiveness of the proposed method in selecting the range of motion space parameters and designing the discrimination degree of the reward function has been verified through offline experiments involving full-range missile rendezvous.The optimal interference form for each distance state has been obtained.Compared with the single-interference decision method,the proposed decision method can effectively improve the success rate of interference.
基金the Ministerial Level Advanced Research Foundation(51204BQ01)
文摘According to the algorithm of the fuze antenna beamforming and the requirement for the realtime performenee, a fuze antenna beamformer based on digital signal processor (DSP) was designed. The program was written in C, and in order to reduce the operation time of DSP, the key part of the matrix operation was written in simple algorithm. The precise and speediness of DSP calculation results were analyzed through Matlab and the Profiling tools in Code Composer Studio (CCS). The results show that the precise and the speediness both can satisfy the requirement for the fuze antennh beamforming.