this paper develops a real-time traffic signal timing model which is to be integrated into a single intersection for urban road, thereby solving the problem of traffic congestion. We analyze the current situation of t...this paper develops a real-time traffic signal timing model which is to be integrated into a single intersection for urban road, thereby solving the problem of traffic congestion. We analyze the current situation of the traffic flow with release matrix firstly, and then put forward the basic models to minimize total delay time of vehicles at the intersection. The optimal real-time signal timing model (non-fixed cycle and non-fixed split) is built with the Webster split optimal model. At last, the simulated results, which are compared with conventional model, manifest the promising properties of proposed model.展开更多
A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architectu...A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architecture with positive channel metal oxide semiconductor(PMOS) differential input transistors and sub-threshold technology are applied under the low supply voltage.Simulation results show that this amplifier has significantly low power,while maintaining almost the same gain,bandwidth and other key performances.The power required is only 0.12 mW,which is applicable to low-power and low-voltage real-time signal acquisition and processing system.展开更多
A discrete model reference adaptive controller of robot arm is obtained by integrating the reduced dynamic model of robot, model reference adaptive control (MRAC) and digital signal processing (DSP) computer syste...A discrete model reference adaptive controller of robot arm is obtained by integrating the reduced dynamic model of robot, model reference adaptive control (MRAC) and digital signal processing (DSP) computer system into an electromechanical system. With the DSP computer system, the control signal of each joint of the robot arm can be processed in real time and independently. The simulation and experiment results show that with the control strategy, the robot achieved a good trajectory following precision, a good decoupling performance and a high real-time adaptivity.展开更多
Stochastic resonance (SR) is studied in a gain-noise model of a single-mode laser driven by a coloured pump noise and a quantum noise with cross-correlation between real and imaginary parts under a direct signal mod...Stochastic resonance (SR) is studied in a gain-noise model of a single-mode laser driven by a coloured pump noise and a quantum noise with cross-correlation between real and imaginary parts under a direct signal modulation. By using a linear approximation method, we find that the SR appears during the variation of signal-to-noise ratio (SNR) separately with the pump noise self-correlation time τ, the noise correlation coefficient between the real part and the imaginary part of the quantum noise λq, the attenuation coefficient γ' and the deterministic steady-state intensity I0. In addition, it is found that the SR can be characterized not only by the dependence of SNR on the noise variables of and λq, but also by the dependence of SNR on the laser system variables of γ and I0. Thus our investigation extends the characteristic quantity of SR proposed before.展开更多
A multi-GPU system designed for high-speed,real-time signal processing of optical coherencetomography(OCT)is described herein.For the OCT data sampled in linear wave numbers,themaximum procesing rates reached 2.95 MHz...A multi-GPU system designed for high-speed,real-time signal processing of optical coherencetomography(OCT)is described herein.For the OCT data sampled in linear wave numbers,themaximum procesing rates reached 2.95 MHz for 1024-OCT and 1.96 MHz for 2048-OCT.Data sampled using linear wavelengths were re-sampled using a time-domain interpolation method and zero-padding interpolation method to improve image quality.The maximum processing rates for1024-OCT reached 2.16 MHz for the time-domain method and 1.26 MHz for the zero-paddingmethod.The maximum processing rates for 2048-0CT reached_1.58 MHz,and 0.68 MHz,respectively.This method is capable of high-speed,real-time processing for O CT systems.展开更多
The real-time measurement principle of high rotational projectile's angular velocity based on 2-axis acceleration sensor and the axial acceleration measurement error caused by the installation error are discussed.The...The real-time measurement principle of high rotational projectile's angular velocity based on 2-axis acceleration sensor and the axial acceleration measurement error caused by the installation error are discussed.The 2-axis acceleration sensor is applied to measure the high rotational projectile's angular velocity and the measurement value of axial acceleration,the axial acceleration of the high rotational projectile equals the measurement value of axial acceleration subtracting the centrifugal acceleration component,so that the high-accuracy real-time measurement of axial acceleration is realized.The memory test has confirmed the strike tally of the theoretical analysis and the test result.The measurement technique can satisfy the high-accuracy measurement of the high rotational projectile axial acceleration in the self-determination course correction fuze projectile.展开更多
An important issue of ground-penetrating radar (GPR) signals analysis is de-noising thai is the guarantee of acquiring good detecting effect. The paper illustrates a successful application of digital single process...An important issue of ground-penetrating radar (GPR) signals analysis is de-noising thai is the guarantee of acquiring good detecting effect. The paper illustrates a successful application of digital single processor (DSP) based on wavelet shrinkage algorithm. In order to realize real-time GPP, signals analysis, some key issues are discussed such as the realization of fast wavelet transformation, the selection of CPU chip and the optimization of data movement. Experimenial results show that the DSP based application not only basically meets the real-time requirement of GPP, signals analysis, but also assures the quality of the GPR signals analysis.展开更多
We propose a low complexity iterative algorithm for band limited signal extrapolation. The extrapolation method is based on the decomposition of finite segments of the signal via truncated series of real-valued linear...We propose a low complexity iterative algorithm for band limited signal extrapolation. The extrapolation method is based on the decomposition of finite segments of the signal via truncated series of real-valued linear prolate functions. Our theoretical derivation shows that given a truncated series (up to a selectable value) of prolate functions, it is possible to extrapolate the band limited function elsewhere if each extrapolated portion of the function is subject only to moderate truncation errors that we quantify in this paper. The effects of different sources of errors have been analyzed via extensive simulations. We have investigated a property of the signal decomposition formula based on linear prolate functions whereby the integration interval does not need to be symmetric with respect to the origin while time-shifted prolate functions are used in the series.展开更多
The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this metho...The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this method usually estimates L signal DOAs by finding roots that lie closest to the unit circle of a(2M-1)-order polynomial, where L 〈 M. A novel efficient root-MUSIC-based method for direction estimation is presented, in which the order of polynomial is efficiently reduced to 2L. Compared with the unitary root-MUSIC(U-root-MUSIC) approach which involves real-valued computations only in the subspace decomposition stage, both tasks of subspace decomposition and polynomial rooting are implemented with real-valued computations in the new technique,which hence shows a significant efficiency advantage over most state-of-the-art techniques. Numerical simulations are conducted to verify the correctness and efficiency of the new estimator.展开更多
A new method is presented to estimate two-dimensional (2-D) Direction-of-Arrival (DOA) angles of narrowband real-valued signals impinging on a L-shape Arrays(LA). The basic idea of the proposed method is to incr...A new method is presented to estimate two-dimensional (2-D) Direction-of-Arrival (DOA) angles of narrowband real-valued signals impinging on a L-shape Arrays(LA). The basic idea of the proposed method is to increase both the effective aperture size and the number of sensors by employing the conjugate invariance property of real-valued signals. Thus, the proposed method can provide a more precise DOA and detect more signals than the Cross-Correlation Matrix Method (CCMM). Numerical simulation results are presented to support the theory.展开更多
A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response anal...A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response analysis and signal generation tasks, and executed in two different target computers in real-time. One target computer implements the response analysis task, wherein a large time-step is used to solve the FE substructure, and another target computer implements the signal generation task, wherein an interpolation program is used to generate control signals in a small time-step to meet the input demand of the controller. By using this strategy, the scale of the FE numerical substructure simulation may be increased significantly. The proposed scheme is initially verified by two FE numerical substructure models with 98 and 1240 degrees of freedom (DOFs). Thereafter, RTDHTs of a single frame-foundation structure are implemented where the foundation, considered as the numerical substructure, is simulated by the FE model with 1240 DOFs. Good agreements between the results of the RTDHT and those from the FE analysis in ABAQUS are obtained.展开更多
Automatic maqam estimation is considered significant toward improving multimedia live music performances and automatic accompaniment. This contribution proposed a real-time maqam estimation model developed in the visu...Automatic maqam estimation is considered significant toward improving multimedia live music performances and automatic accompaniment. This contribution proposed a real-time maqam estimation model developed in the visual programming language MAX/MSP and configured for the nāydukah. The model’s design stood on basic formulas of Arab music maqamat as explained in theory and applied in practice. The model consisted of different layers of competition;the first was for the identification of the instant tonic of the melodic figure, and the second was for the recognition of its identifying E (E, E half-flat and E flat). Those two competitions were used to estimate the maqam in real-time. Then, accumulated estimation results were used to estimate the maqam in longer durations;five-second and full duration. The model was evaluated using professionally performed nāy improvisations. Results reflected a success in estimating all the studied maqamat when the full improvisation was considered. In addition, results were very good for real-time and five-second estimation where average estimation confidence was 75.98% and 80.04%, respectively.展开更多
Monitoring the thickness changes of channel siltation is paramount in safeguarding navigation and guiding dredging, This paper presents a novel method for realizing the field monitoring of channel siltation in real ti...Monitoring the thickness changes of channel siltation is paramount in safeguarding navigation and guiding dredging, This paper presents a novel method for realizing the field monitoring of channel siltation in real time. The method is based on the bistatic scattering theory and concerned more with the receiving and processing of multipath signal at high-frequency and small grazing angle. By use of the multipath propagation structure of underwater acoustic channel, the method obtains the silt thickness by calculating the relative time delay of acoustic signals between the direct and the shortest bottom reflected paths. Bistatic transducer pairs are employed to transmit and receive the acoustic signals, and the GPS time synchronization technology is introduced to synchronize the transmitter and receiver, The WRELAX (Weighted Fourier transforul and RELAX) algorithm is used to obtain the high resolution estimation of muhipath time delay. To examine the feasibility of the presented method and the accuracy and precision of the developed system, a series of sea trials are conducted in the southwest coast area of Dalian City, north of the Yellow Sea. The experimental results are compared with that using high-resolution dual echo sounder HydroBoxTM, and the uncertainty is smaller than + 0.06 m. Compared with the existing means for measuring the silt thickness, the present method is innovative, and the system is stable, efficient and provides a better real-time performance. It especially suits monitoring the narrow channel with rapid changes of siltation.展开更多
文摘this paper develops a real-time traffic signal timing model which is to be integrated into a single intersection for urban road, thereby solving the problem of traffic congestion. We analyze the current situation of the traffic flow with release matrix firstly, and then put forward the basic models to minimize total delay time of vehicles at the intersection. The optimal real-time signal timing model (non-fixed cycle and non-fixed split) is built with the Webster split optimal model. At last, the simulated results, which are compared with conventional model, manifest the promising properties of proposed model.
基金Sponsored by the National Natural Science Foundation of China (60843005)the Basic Research Foundation of Beijing Institute of Technology(20070142018)
文摘A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architecture with positive channel metal oxide semiconductor(PMOS) differential input transistors and sub-threshold technology are applied under the low supply voltage.Simulation results show that this amplifier has significantly low power,while maintaining almost the same gain,bandwidth and other key performances.The power required is only 0.12 mW,which is applicable to low-power and low-voltage real-time signal acquisition and processing system.
文摘A discrete model reference adaptive controller of robot arm is obtained by integrating the reduced dynamic model of robot, model reference adaptive control (MRAC) and digital signal processing (DSP) computer system into an electromechanical system. With the DSP computer system, the control signal of each joint of the robot arm can be processed in real time and independently. The simulation and experiment results show that with the control strategy, the robot achieved a good trajectory following precision, a good decoupling performance and a high real-time adaptivity.
基金Project supported by the National Natural Science Foundation of China (Grant No 10275025).
文摘Stochastic resonance (SR) is studied in a gain-noise model of a single-mode laser driven by a coloured pump noise and a quantum noise with cross-correlation between real and imaginary parts under a direct signal modulation. By using a linear approximation method, we find that the SR appears during the variation of signal-to-noise ratio (SNR) separately with the pump noise self-correlation time τ, the noise correlation coefficient between the real part and the imaginary part of the quantum noise λq, the attenuation coefficient γ' and the deterministic steady-state intensity I0. In addition, it is found that the SR can be characterized not only by the dependence of SNR on the noise variables of and λq, but also by the dependence of SNR on the laser system variables of γ and I0. Thus our investigation extends the characteristic quantity of SR proposed before.
基金the support from the union project of Peking University third hospital&Chinese Academy of Sciences(Grant No.7490-04,Grant No.KJZD-EW-TZ-L03)the Sichuan Youth Science&Technology Foundation(Grant No.13QNJJ0034)+1 种基金the West Light Foundation of the Chinese Academy of Sciences,the National Major Scientific Equipment program(Grant No.2012YQ120080)the National Science Foundation of China(Grant No.6118082).
文摘A multi-GPU system designed for high-speed,real-time signal processing of optical coherencetomography(OCT)is described herein.For the OCT data sampled in linear wave numbers,themaximum procesing rates reached 2.95 MHz for 1024-OCT and 1.96 MHz for 2048-OCT.Data sampled using linear wavelengths were re-sampled using a time-domain interpolation method and zero-padding interpolation method to improve image quality.The maximum processing rates for1024-OCT reached 2.16 MHz for the time-domain method and 1.26 MHz for the zero-paddingmethod.The maximum processing rates for 2048-0CT reached_1.58 MHz,and 0.68 MHz,respectively.This method is capable of high-speed,real-time processing for O CT systems.
基金Supported by the National Natural Science Foundation of China(10772029)
文摘The real-time measurement principle of high rotational projectile's angular velocity based on 2-axis acceleration sensor and the axial acceleration measurement error caused by the installation error are discussed.The 2-axis acceleration sensor is applied to measure the high rotational projectile's angular velocity and the measurement value of axial acceleration,the axial acceleration of the high rotational projectile equals the measurement value of axial acceleration subtracting the centrifugal acceleration component,so that the high-accuracy real-time measurement of axial acceleration is realized.The memory test has confirmed the strike tally of the theoretical analysis and the test result.The measurement technique can satisfy the high-accuracy measurement of the high rotational projectile axial acceleration in the self-determination course correction fuze projectile.
基金Supported by the National Natural Science Founda-tion of China (49984001)
文摘An important issue of ground-penetrating radar (GPR) signals analysis is de-noising thai is the guarantee of acquiring good detecting effect. The paper illustrates a successful application of digital single processor (DSP) based on wavelet shrinkage algorithm. In order to realize real-time GPP, signals analysis, some key issues are discussed such as the realization of fast wavelet transformation, the selection of CPU chip and the optimization of data movement. Experimenial results show that the DSP based application not only basically meets the real-time requirement of GPP, signals analysis, but also assures the quality of the GPR signals analysis.
文摘We propose a low complexity iterative algorithm for band limited signal extrapolation. The extrapolation method is based on the decomposition of finite segments of the signal via truncated series of real-valued linear prolate functions. Our theoretical derivation shows that given a truncated series (up to a selectable value) of prolate functions, it is possible to extrapolate the band limited function elsewhere if each extrapolated portion of the function is subject only to moderate truncation errors that we quantify in this paper. The effects of different sources of errors have been analyzed via extensive simulations. We have investigated a property of the signal decomposition formula based on linear prolate functions whereby the integration interval does not need to be symmetric with respect to the origin while time-shifted prolate functions are used in the series.
基金supported by the National Natural Science Foundation of China(61501142)the Shandong Provincial Natural Science Foundation(ZR2014FQ003)+1 种基金the Special Foundation of China Postdoctoral Science(2016T90289)the China Postdoctoral Science Foundation(2015M571414)
文摘The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this method usually estimates L signal DOAs by finding roots that lie closest to the unit circle of a(2M-1)-order polynomial, where L 〈 M. A novel efficient root-MUSIC-based method for direction estimation is presented, in which the order of polynomial is efficiently reduced to 2L. Compared with the unitary root-MUSIC(U-root-MUSIC) approach which involves real-valued computations only in the subspace decomposition stage, both tasks of subspace decomposition and polynomial rooting are implemented with real-valued computations in the new technique,which hence shows a significant efficiency advantage over most state-of-the-art techniques. Numerical simulations are conducted to verify the correctness and efficiency of the new estimator.
基金Supported by Program for New Century Excellent Talents in University
文摘A new method is presented to estimate two-dimensional (2-D) Direction-of-Arrival (DOA) angles of narrowband real-valued signals impinging on a L-shape Arrays(LA). The basic idea of the proposed method is to increase both the effective aperture size and the number of sensors by employing the conjugate invariance property of real-valued signals. Thus, the proposed method can provide a more precise DOA and detect more signals than the Cross-Correlation Matrix Method (CCMM). Numerical simulation results are presented to support the theory.
基金National Natural Science Foundation under Grant Nos.51179093,91215301 and 41274106the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20130002110032Tsinghua University Initiative Scientific Research Program under Grant No.20131089285
文摘A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response analysis and signal generation tasks, and executed in two different target computers in real-time. One target computer implements the response analysis task, wherein a large time-step is used to solve the FE substructure, and another target computer implements the signal generation task, wherein an interpolation program is used to generate control signals in a small time-step to meet the input demand of the controller. By using this strategy, the scale of the FE numerical substructure simulation may be increased significantly. The proposed scheme is initially verified by two FE numerical substructure models with 98 and 1240 degrees of freedom (DOFs). Thereafter, RTDHTs of a single frame-foundation structure are implemented where the foundation, considered as the numerical substructure, is simulated by the FE model with 1240 DOFs. Good agreements between the results of the RTDHT and those from the FE analysis in ABAQUS are obtained.
文摘Automatic maqam estimation is considered significant toward improving multimedia live music performances and automatic accompaniment. This contribution proposed a real-time maqam estimation model developed in the visual programming language MAX/MSP and configured for the nāydukah. The model’s design stood on basic formulas of Arab music maqamat as explained in theory and applied in practice. The model consisted of different layers of competition;the first was for the identification of the instant tonic of the melodic figure, and the second was for the recognition of its identifying E (E, E half-flat and E flat). Those two competitions were used to estimate the maqam in real-time. Then, accumulated estimation results were used to estimate the maqam in longer durations;five-second and full duration. The model was evaluated using professionally performed nāy improvisations. Results reflected a success in estimating all the studied maqamat when the full improvisation was considered. In addition, results were very good for real-time and five-second estimation where average estimation confidence was 75.98% and 80.04%, respectively.
基金supported by the National Key Technology Research and Development Program of China(863 Program, Grant No.2009BAG18B03)
文摘Monitoring the thickness changes of channel siltation is paramount in safeguarding navigation and guiding dredging, This paper presents a novel method for realizing the field monitoring of channel siltation in real time. The method is based on the bistatic scattering theory and concerned more with the receiving and processing of multipath signal at high-frequency and small grazing angle. By use of the multipath propagation structure of underwater acoustic channel, the method obtains the silt thickness by calculating the relative time delay of acoustic signals between the direct and the shortest bottom reflected paths. Bistatic transducer pairs are employed to transmit and receive the acoustic signals, and the GPS time synchronization technology is introduced to synchronize the transmitter and receiver, The WRELAX (Weighted Fourier transforul and RELAX) algorithm is used to obtain the high resolution estimation of muhipath time delay. To examine the feasibility of the presented method and the accuracy and precision of the developed system, a series of sea trials are conducted in the southwest coast area of Dalian City, north of the Yellow Sea. The experimental results are compared with that using high-resolution dual echo sounder HydroBoxTM, and the uncertainty is smaller than + 0.06 m. Compared with the existing means for measuring the silt thickness, the present method is innovative, and the system is stable, efficient and provides a better real-time performance. It especially suits monitoring the narrow channel with rapid changes of siltation.