The relationships between the selective laser melting(SLM)processing parameters including laser power,scanning speed and hatch space,the relative density,the microstructure,and resulting mechanical properties of Ti-6A...The relationships between the selective laser melting(SLM)processing parameters including laser power,scanning speed and hatch space,the relative density,the microstructure,and resulting mechanical properties of Ti-6Al-2Zr-1Mo-1V alloy were investigated in this work.The result shows that laser power acts a dominant role in determining the relative density in comparison with scanning speed and hatch space.The optimal SLM process window for fabricating relative density>99%samples is located in the energy density range of 34.72 J·mm^(-3)to 52.08 J·mm^(-3),where the laser power range is between 125 W and 175 W.An upward trend is found in the micro-hardness as the energy density is increased.The optimum SLM processing parameters of Ti-6Al-2Zr-1Mo-1V alloy are:laser power of 150 W,scanning speed of 1,600 mm·s^(-1),hatch space of 0.08 mm,and layer thickness of 0.03 mm.The highest ultimate tensile strength,yield strength,and ductility under the optimum processing parameter are achieved,which are 1,205 MPa,1,099 MPa,and 8%,respectively.The results of this study can be used to guide SLM production Ti-6Al-2Zr-1Mo-1V alloy parts.展开更多
The relative density of WC-Co cemented carbides during spark plasma sintering(SPS) was analyzed.Based on the change in displacement of the ram in the SPS system,the relative densities in the sintering process can be...The relative density of WC-Co cemented carbides during spark plasma sintering(SPS) was analyzed.Based on the change in displacement of the ram in the SPS system,the relative densities in the sintering process can be achieved at different temperatures.The results indicated that densification of the samples started at near 900°C,the density rapidly reached its maximum at the increasing temperature stage,in which the temperature was lower than the sintering temperature of 1200°C,and most of the densification took place in the stage.Besides,the theoretical values were consistent with the experimental results.展开更多
Cr-coated diamond/Cu composites were prepared by spark plasma sintering. The effects of sintering pressure, sintering temperature, sintering duration, and Cu powder particle size on the relative density and thermal co...Cr-coated diamond/Cu composites were prepared by spark plasma sintering. The effects of sintering pressure, sintering temperature, sintering duration, and Cu powder particle size on the relative density and thermal conductivity of the composites were investigated in this paper. The influence of these parameters on the properties and microstructures of the composites was also discussed. The results show that the relative density of Cr-coated diamond/Cu reaches ~100% when the composite is gradually compressed to 30 MPa during the heating process. The densification temperature increases from 880 to 915℃ when the diamond content is increased from 45vol% to 60vol%. The densification temperature does not increase further when the content reaches 65vol%. Cu powder particles in larger size are beneficial for increasing the relative density of the composite.展开更多
The exact analytic solution of the pure bending beam of metallic foams is given. The effects of relative density of the material on stresses and deformation are revealed with the Triantafillou and Gibson constitutive ...The exact analytic solution of the pure bending beam of metallic foams is given. The effects of relative density of the material on stresses and deformation are revealed with the Triantafillou and Gibson constitutive law (TG model) taken as the analysis basis. Several examples for individual foams are discussed, showing the importance of compressibility of the cellular materials. One of the objects of this study is to generalize Hill's solution for incompressible plasticity to the case of compressible plasticity, and a kinematics parameter is brought into the analysis so that the velocity field can be determined.展开更多
The influence of different relative density on the cyclic oxidation behaviors of MoSi2 at 1 273 K were studied. "Pesting" was not found in all MoSi2 materials after being oxidized for 480 h. All samples exhibited co...The influence of different relative density on the cyclic oxidation behaviors of MoSi2 at 1 273 K were studied. "Pesting" was not found in all MoSi2 materials after being oxidized for 480 h. All samples exhibited continuous mass gain during the oxidation process. The mass gains of MoSi2 with the lowest relative density (78.6%) and the highest relative density (94.8%) are increased by 8.15 mg·cm^-2 and 3.48 mg·cm^-2, respectively. The surface of the material with lower relative density formed a loose, porous and discontinuous oxidation scale, which accelerated oxygen diffusion and aggravated the oxidation process. However, a dense scale in the material with higher relative density is formed, which acts a diffusion barrier to the oxygen atoms penetrating into the matrix. The high temperature oxidation resistance of MoSi2 can be improved by increasing its relative density.展开更多
In order to solve the problem of substantial computational resources of lattice structure during optimization, a local relative density mapping(LRDM) method is proposed. The proposed method uses solid isotropic micros...In order to solve the problem of substantial computational resources of lattice structure during optimization, a local relative density mapping(LRDM) method is proposed. The proposed method uses solid isotropic microstructures with penalization to optimize a model at the macroscopic scale. The local relative density information is obtained from the topology optimization result. The contour lines of an optimized model are extracted using a density contour approach, and the triangular mesh is generated using a mesh generator. A local mapping relationship between the elements’ relative density and the struts’ relative cross?sectional area is established to automatically determine the diameter of each individual strut in the lattice structures. The proposed LRDM method can be applied to local finite element meshes and local density elements, but it is also suitable for global ones. In addition, some cases are con?sidered in order to test the e ectiveness of the LRDM method. The results show that the solution time of the LRDM is lower than the RDM method by approximately 50%. The proposed method provides instructions for the design of more complex lattice structures.展开更多
MoSi2 powders were fabricated respectively by mechanical alloying technique and sintering at different temperatures to prepare materials with different relative densities. The relative oxidation behavior of all MoSi2 ...MoSi2 powders were fabricated respectively by mechanical alloying technique and sintering at different temperatures to prepare materials with different relative densities. The relative oxidation behavior of all MoSi2 materials at 1 473 K was investigated by TGA,SEM and XRD. The results show that the "pesting" is not found in all materials after being oxidized for 480 h. The density has no essential relation to the "pesting". The oxidation curve of specimens with lower density shows two-step oxidation kinetics. Both the first stage (0-1 h) and the second stage (1-480 h) nearly obey linear kinetics,but the oxidation rates are obviously different. The oxidation kinetics of MoSi2 with higher relative density nearly follows parabolic law. The mass gains of MoSi2 with the lowest relative density (78.6%) and the highest relative density (94.8%) are increased by 10.390 and 0.135 mg/cm2,respectively. The oxide scale of materials with lower densities is non-protective and makes the oxygen diffusion easy. A dense scale in the material with higher density is formed,which acts as a diffusion barrier to the oxygen atoms to penetrate into the matrix,showing much better high temperature oxidation resistance. The phases distribution of oxidation scale from the outside to the inside is SiO2→Mo5Si3→MoSi2.展开更多
The setting of pre assessment criteria for soil compaction is hardly determined, especially, in case of undecided structure locations. Different design guidelines recommend achieving a specific value of relative densi...The setting of pre assessment criteria for soil compaction is hardly determined, especially, in case of undecided structure locations. Different design guidelines recommend achieving a specific value of relative density for the compaction of fill placement works. Alternatives were discussed through the literature to predict the value of relative density based on soil field tests (e.g. cone and standard penetration tests). This paper presents the weakness of using the Over Consolidation Ratio (OCR) as guidance to assess the value of cone tip resistance using the soil relative density. The variation of OCR (from 1 to 10) has a significant effect on the <i><span style="font-family:Verdana;">q</span><sub><span style="font-family:Verdana;">c</span></sub></i><span style="font-family:Verdana;"> value up to 110% when compared to the normally consolidated state. Then normally consolidated state can logically cover the compaction process with variation of 20%, 33%, and 4% for relative density values 85%, 70%, and 60%, respectively. A unified approach is recommended to predict the compaction </span><i><span style="font-family:Verdana;">q</span><sub><span style="font-family:Verdana;">c</span></sub></i><span style="font-family:Verdana;">-performance line using normally consolidated condition and sand relative density.</span>展开更多
Additive manufacturing of Al-Mg-Sc-Zr alloys is a promising technique for the fabrication of lightweight components with complex shapes.In this study,the effect of the process parameters of selective laser melting(SLM...Additive manufacturing of Al-Mg-Sc-Zr alloys is a promising technique for the fabrication of lightweight components with complex shapes.In this study,the effect of the process parameters of selective laser melting(SLM)on the surface morphology,relative density,microstructure,and mechanical properties of Al-Mg-Sc-Zr high-strength aluminum alloys with low Sc content was systematically investigated.The results show that the energy density has an important effect on the surface quality and densification behavior of the Al-Mg-Sc-Zr alloy during the SLM process.As the energy density increased,the surface quality and the number of internal pores increased.However,the area of the fine-grained region at the boundary of the molten pool gradually decreased.When the laser energy density was set to 151.52 J/mm3,a low-defect sample with a relative density of 99.2%was obtained.After heat treatment,the area of the fine grains at the boundary increased significantly,thereby contributing to the excellent mechanical properties.The microstructure was characterized by a unique“fan-shaped”heterogeneous structure.As the energy density increased,the microhardness first increased and then decreased,reaching a maximum value of 122 HV0.3.With the optimized process parameters,the yield strength(YS),ultimate tensile strength(UTS),and elongation of the as-built Al-Mg-Sc-Zr alloys were 346.8±3.0 MPa,451.1±5.2 MPa,14.6%±0.8%,respectively.After heat treatment at 325°C for 8 h,the hardness increased by 38.5%to 169 HV0.3,and the YS and UTS increased by 41.3%and 18.1%,respectively,to 490.0±9.0 MPa and 532.7±7.8 MPa,respectively,while the elongation slightly decreased to 13.1%±0.7%.展开更多
The present work mainly describes the technology for preparing indium-tin oxide (ITO) targets by cold isostatic pressing (CIP) and normal pressure sintering process. ITO powders were produced by chemical co-precip...The present work mainly describes the technology for preparing indium-tin oxide (ITO) targets by cold isostatic pressing (CIP) and normal pressure sintering process. ITO powders were produced by chemical co-precipitation and shaped into an ITO green compact with a relative density of 60% by CIP under 300 MPa. Then, an ITO target with a relative density larger than 99.6% was obtained by sintering this green compact at 1550℃ for 8 h. The effects of forming pressure, sintering temperature and sintering time on the density of the target were inves- tigated. Also, a discussion was made on the sintering atmosphere.展开更多
We investigated whether species richness, diversity and density of understory herbaceous plants differed along logging(gap) and grazing(primarily by cattle) disturbance gradients, and sought to identify drivers of ric...We investigated whether species richness, diversity and density of understory herbaceous plants differed along logging(gap) and grazing(primarily by cattle) disturbance gradients, and sought to identify drivers of richness, diversity and density of understory vegetation of logged sites. A factorial experiment was conducted in the mixed conifer forest of Gidakom in Western Bhutan. Levels of the logging treatment included small(0.15 – 0.24 ha), medium(0.25 – 0.35 ha) and large(0.36 – 1.31 ha) gaps. The grazing treatment included grazed(primarily by cattle) and ungrazed(where herbivores were excluded by a fence) plots nested within each gap. Data were collected from 12 gaps(4 replicates at each level of logging) using the point intercept method. Shannon Weaver Diversity and Margalef's indices were used to estimate species diversity and describe species richness, respectively. Soil samples were analyzed for pH and nutrients. The interaction effect of logging and grazing was significant(p≤0.001) only on species diversity. Relative to ungrazed areas, species diversity was significantly higher(0.01≤p≤0.05) in medium grazed gaps. Under grazed conditions, soil P was negatively correlated with gap size and species diversity. While species diversity was positivelycorrelated(0.01≤p≤0.05) with soil N in grazed plots species richness was positively correlated(0.001≤p≤0.01) with soil N in ungrazed plots. Relative density of Yushania microphylla and Carex nubigena were higher under ungrazed conditions. Our study suggests that the combined effect of cattle grazing and logging results in higher species diversity of understory vegetation in medium and grazed gaps in mixed conifer forests of Bhutan,whereas increase or decrease in relative density of major species is determined primarily by the independent effects of grazing and logging. From management perspective, forest managers must refrain from creating large gaps to avoid loss of nutrients(mainly P and N), which may eventually affect tree regeneration. Managers intending to maintain understory vegetation diversity must consider the combined effects of grazing and logging, ensuring low to moderate grazing pressure.展开更多
Objective. To research the relations between low- density lipoprotein receptor- related protein gene (LRP) polymorphism, butyrylcholinesterase gene (BchE) polymorphism and Alzheimer’s disease (AD) in Chinese. Methods...Objective. To research the relations between low- density lipoprotein receptor- related protein gene (LRP) polymorphism, butyrylcholinesterase gene (BchE) polymorphism and Alzheimer’s disease (AD) in Chinese. Methods. The gene polymorphisms of LRP and BchE were genotyped in 38 AD cases and 40 controls with polymerase chain reaction- restriction fragment length polymorphism (PCR- RFLP) methods. AD groups were classified according to the LRP C/C genotype and compared with matched controls. Results. AD group had higher frequencies of C/C homozygote (81.6% vs 60.0% , P< 0.05) and of C allele (89.5% vs 76.3% , P< 0.05),with no significant difference between any of these LRP genotypes classified AD groups and their respective control groups. Conclusions. A positive correlation was found between LRP gene polymorphism and AD, but not between BchE gene polymorphism and AD in Chinese AD cases.展开更多
Arsenic can diffuse into high-κ dielectrics during OaAs-based metal oxide semiconductor transistor process, which causes the degradation of gate dielectrics. To explore the origins of the degradation, we employ nonlo...Arsenic can diffuse into high-κ dielectrics during OaAs-based metal oxide semiconductor transistor process, which causes the degradation of gate dielectrics. To explore the origins of the degradation, we employ nonlocal B3LYP hybrid functional to study arsenic related defects in ZrO2. Via band alignments between the OaAs and ZrO2, we are able to determine the defect formation energy in the GaAs relative to the ZrO2 band gap and assess how they will affect the device performance. Arsenic at the interstitial site serves as a source of positive fixed charge while at the oxygen or zirconium substitutional site changes its charge state within the band gap of GaAs. Moreover, it is found that arsenic related defects produce conduction band offset reduction and gap states, which will increase the gate leakage current.展开更多
Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond we...Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond were successfully prepared by spark plasma sintering(SPS) method. The sintering temperatures and volume fractions(50%, 60% and 70%) of diamond were changed to investigate their effects on the relative density, homogeneity of the microstructure and thermal conductivity of the composites. The results show that the relative density, homogeneity of the microstructure and thermal conductivity of the composites increase with decreasing the diamond volume fraction; the relative density and thermal conductivity of the composites increase with increasing the sintering temperature. The thermal conductivity of the composites is a result of the combined effect of the volume fraction of diamond, the homogeneity and relative density of the composites.展开更多
Open-cell nickel foams with different relative densities and pre-stretching degrees were subjected to room temperature quasi-static compressive tests to explore their compressive properties. The compressive properties...Open-cell nickel foams with different relative densities and pre-stretching degrees were subjected to room temperature quasi-static compressive tests to explore their compressive properties. The compressive properties of the nickel foams including yield strength, elastic modulus, energy absorption density and energy absorption efficiency were calculated accurately. The results show that the compressive properties of yield strength, elastic modulus and energy absorption density increase with the increase of relative density of nickel foams. The compressive properties are sensitive to the pre-stretching degree, and the values of yield strength, elastic modulus and energy absorption density decrease with the increase of pre-stretching degree. However, the energy absorption efficiency at the densification strain state exhibits the independence of relative density and pre-stretching degree. The value of energy absorption efficiency reaches its peak when the strain is at the end of the collapse plateau region.展开更多
Ni0.4Zn0.6Fe2-xNdxO4(x = 0-0.07) ferrites doped with different amounts of Nd2O3 were prepared using standard ceramic technique. The samples were uniaxially pressed and sintered at 1250℃ for 4 h in air. The phase st...Ni0.4Zn0.6Fe2-xNdxO4(x = 0-0.07) ferrites doped with different amounts of Nd2O3 were prepared using standard ceramic technique. The samples were uniaxially pressed and sintered at 1250℃ for 4 h in air. The phase structure and microstructure of the samples were investigated using X-ray diffraction and scanning electron microscope, respectively. The complex permeability was measured using the impedance analyzer in the range of 1-100 MHz. The results indicate that with increasing Nd^3+ content, the relative density and lattice parameter a of the sintered samples increase, whereas the real part of permeability (μ′) and the magnetic loss tangent (tan δ) decrease. The substitution of Nd^3+ for Fe^3+ forms a secondary phase on the grain boundary of the matrix, which strongly restrains the grain growth of the matrix.展开更多
Review of the literature related to the mixture of shredded tire and sand shows that,despite of the increase in shear strength due to addition of tire chips,granulated rubber causes reduction in shear strength of sand...Review of the literature related to the mixture of shredded tire and sand shows that,despite of the increase in shear strength due to addition of tire chips,granulated rubber causes reduction in shear strength of sand.In this study,the shear behavior of mixtures of fine-grained sand and 1-5 mm granulated rubber is investigated.Sixty direct shear tests were conducted on sandegranulated rubber mixtures with various rubber contents(0%,5%,10%,20% and 30%) at different relative densities(50%,70% and 90%) and different normal stresses(34.5 kPa,54.5 kPa,74.5 kPa and 104.5 kPa).The obtained results show that the granulated rubber improves the shear strength of fine-grained sand at medium relative density and low normal stress.The degree of improvement in shear strength is a function of rubber content,relative density and normal stress.The results show that at relative density of 50%,by adding 5% granulated rubber,the internal friction angle of sand increases from 35.1° to 39.2°.However,at relative densities of 70% and 90%,addition of granulated rubber to sand decreases its internal friction angle.The results also indicate that the behavior of sand becomes more ductile with increasing granulated rubber content.Adding granulated rubber leads to greater yielding strain and less tangent stiffness of sand.The maximum dilation angle decreases with the decrease in granulated rubber content.The stress ratio of sample at critical state(ψ= 0°) decreases with increasing granulated rubber content.展开更多
Ground improvement has been used on many construction sites to densify granular materials, in other word, to improve soil properties and reduce potential settlement. This work presents a case study of ground improveme...Ground improvement has been used on many construction sites to densify granular materials, in other word, to improve soil properties and reduce potential settlement. This work presents a case study of ground improvement using rapid impact compaction (RIC). The research site comprises the construction of workshop and depots as part of railway development project at Batu Gajah-Ipoh, Malaysia. In-situ testing results show that the subsurface soil comprises mainly of sand and silty sand through the investigated depth extended to 10 m. Groundwater is approximately 0.5 m below the ground surface. Evaluation of improvement was based on the results of pre- and post-improvement cone penetration test (CPT). Interpretation software has been used to infer soil properties. Load test was conducted to estimate soil settlement. It is found that the technique succeeds in improving soil properties namely the relative density increases from 45% to 70%, the friction angle of soil is increased by an average of 3°, and the soil settlement is reduced by 50%: The technique succeeds in improving soil properties to approximately 5.0 m in depth depending on soil uniformity with depth.展开更多
Background: Tree demography is an essential indicator of various forest ecosystem services, and understanding its changes is critical for the sustainable management of forests. During the past four decades, China impl...Background: Tree demography is an essential indicator of various forest ecosystem services, and understanding its changes is critical for the sustainable management of forests. During the past four decades, China implemented unprecedented forest restoration projects, which altered tree demography by increasing the number of trees and introducing new species. However, it remains unclear how species composition has changed in China in response to the past forest restoration and demographical processes.Methods: We applied Forest Stability Index(FSI) and the relative change of FSI(%FSI) to describe the population dynamics of tree species and structure in China since 1998, using field-survey data collected from over 200,000plot-records from the 6th to 9th National Forest Inventories(NFIs).Results: The overall populations of both natural and planted forests have grown rapidly from 1998 to 2018, while the range of changes in the relative tree density was more variable for natural forests(ranging from-8.53% to42.46%) than for planted forests(ranging from-1.01% to 13.31%). The populations declined only in some of the tree species, including Betula platyphylla, Ulmus pumila, and Robinia pseudoacacia. In contrast, the populations of trees in the largest size-class either remained stable or expanded.Conclusions: Tree density of China?s forests(both natural and planted forests) generally expanded and the overall populations increased in most size classes, with greater increases occurred in planted forests. In contrasting to the global decline trends of large diameter trees, here we found no apparent decline for trees in the largest size-class in China, highlighting China?s success in improving forest health and forest adaptations to climate change. We advocate for more studies to reveal the mechanisms of the changes in tree demography, which will help to improve forest ecosystem services such as the carbon sequestration capacity.展开更多
The effects of temperature (0-500°C) on the compressive strength,hardness,average relative density,and microstructure of Ti6Al4V powder green compacts prepared by magnetic pulse compaction were investigated.The...The effects of temperature (0-500°C) on the compressive strength,hardness,average relative density,and microstructure of Ti6Al4V powder green compacts prepared by magnetic pulse compaction were investigated.The results show that with increasing heating temperature,the compressive strength first increases and then decreases with the maximum value of 976.74 MPa at 400°C.The average relative density and hardness constantly increase,and their values reach 96.11% and HRA 69.8 at 500°C,respectively.The increase of partial welding is found among the junctions of particles inside the compacts; there is no obvious grain growth inside the compacts within the temperature range.展开更多
基金supported by Liaoning Doctoral Research Start-up Fund project(Grant No.2023-BS-215).
文摘The relationships between the selective laser melting(SLM)processing parameters including laser power,scanning speed and hatch space,the relative density,the microstructure,and resulting mechanical properties of Ti-6Al-2Zr-1Mo-1V alloy were investigated in this work.The result shows that laser power acts a dominant role in determining the relative density in comparison with scanning speed and hatch space.The optimal SLM process window for fabricating relative density>99%samples is located in the energy density range of 34.72 J·mm^(-3)to 52.08 J·mm^(-3),where the laser power range is between 125 W and 175 W.An upward trend is found in the micro-hardness as the energy density is increased.The optimum SLM processing parameters of Ti-6Al-2Zr-1Mo-1V alloy are:laser power of 150 W,scanning speed of 1,600 mm·s^(-1),hatch space of 0.08 mm,and layer thickness of 0.03 mm.The highest ultimate tensile strength,yield strength,and ductility under the optimum processing parameter are achieved,which are 1,205 MPa,1,099 MPa,and 8%,respectively.The results of this study can be used to guide SLM production Ti-6Al-2Zr-1Mo-1V alloy parts.
文摘The relative density of WC-Co cemented carbides during spark plasma sintering(SPS) was analyzed.Based on the change in displacement of the ram in the SPS system,the relative densities in the sintering process can be achieved at different temperatures.The results indicated that densification of the samples started at near 900°C,the density rapidly reached its maximum at the increasing temperature stage,in which the temperature was lower than the sintering temperature of 1200°C,and most of the densification took place in the stage.Besides,the theoretical values were consistent with the experimental results.
基金financially supported by the National Natural Science Foundation of China (No. 51374028)
文摘Cr-coated diamond/Cu composites were prepared by spark plasma sintering. The effects of sintering pressure, sintering temperature, sintering duration, and Cu powder particle size on the relative density and thermal conductivity of the composites were investigated in this paper. The influence of these parameters on the properties and microstructures of the composites was also discussed. The results show that the relative density of Cr-coated diamond/Cu reaches ~100% when the composite is gradually compressed to 30 MPa during the heating process. The densification temperature increases from 880 to 915℃ when the diamond content is increased from 45vol% to 60vol%. The densification temperature does not increase further when the content reaches 65vol%. Cu powder particles in larger size are beneficial for increasing the relative density of the composite.
文摘The exact analytic solution of the pure bending beam of metallic foams is given. The effects of relative density of the material on stresses and deformation are revealed with the Triantafillou and Gibson constitutive law (TG model) taken as the analysis basis. Several examples for individual foams are discussed, showing the importance of compressibility of the cellular materials. One of the objects of this study is to generalize Hill's solution for incompressible plasticity to the case of compressible plasticity, and a kinematics parameter is brought into the analysis so that the velocity field can be determined.
基金the National Natural Science Foundation of China(No. 0405041)
文摘The influence of different relative density on the cyclic oxidation behaviors of MoSi2 at 1 273 K were studied. "Pesting" was not found in all MoSi2 materials after being oxidized for 480 h. All samples exhibited continuous mass gain during the oxidation process. The mass gains of MoSi2 with the lowest relative density (78.6%) and the highest relative density (94.8%) are increased by 8.15 mg·cm^-2 and 3.48 mg·cm^-2, respectively. The surface of the material with lower relative density formed a loose, porous and discontinuous oxidation scale, which accelerated oxygen diffusion and aggravated the oxidation process. However, a dense scale in the material with higher relative density is formed, which acts a diffusion barrier to the oxygen atoms penetrating into the matrix. The high temperature oxidation resistance of MoSi2 can be improved by increasing its relative density.
基金National Hi-tech Research and Development Program of China(863 Program,Grant No.2015BAF04B00)China Aerospace Science and Technology Corporation Program of China(CASIC Program,Grant No.461717)
文摘In order to solve the problem of substantial computational resources of lattice structure during optimization, a local relative density mapping(LRDM) method is proposed. The proposed method uses solid isotropic microstructures with penalization to optimize a model at the macroscopic scale. The local relative density information is obtained from the topology optimization result. The contour lines of an optimized model are extracted using a density contour approach, and the triangular mesh is generated using a mesh generator. A local mapping relationship between the elements’ relative density and the struts’ relative cross?sectional area is established to automatically determine the diameter of each individual strut in the lattice structures. The proposed LRDM method can be applied to local finite element meshes and local density elements, but it is also suitable for global ones. In addition, some cases are con?sidered in order to test the e ectiveness of the LRDM method. The results show that the solution time of the LRDM is lower than the RDM method by approximately 50%. The proposed method provides instructions for the design of more complex lattice structures.
基金Project(50405041) supported by the National Natural Science Foundation of ChinaProject(06C316) supported by the Scientific Research Fund of Hunan Provincial Education Deparment, China
文摘MoSi2 powders were fabricated respectively by mechanical alloying technique and sintering at different temperatures to prepare materials with different relative densities. The relative oxidation behavior of all MoSi2 materials at 1 473 K was investigated by TGA,SEM and XRD. The results show that the "pesting" is not found in all materials after being oxidized for 480 h. The density has no essential relation to the "pesting". The oxidation curve of specimens with lower density shows two-step oxidation kinetics. Both the first stage (0-1 h) and the second stage (1-480 h) nearly obey linear kinetics,but the oxidation rates are obviously different. The oxidation kinetics of MoSi2 with higher relative density nearly follows parabolic law. The mass gains of MoSi2 with the lowest relative density (78.6%) and the highest relative density (94.8%) are increased by 10.390 and 0.135 mg/cm2,respectively. The oxide scale of materials with lower densities is non-protective and makes the oxygen diffusion easy. A dense scale in the material with higher density is formed,which acts as a diffusion barrier to the oxygen atoms to penetrate into the matrix,showing much better high temperature oxidation resistance. The phases distribution of oxidation scale from the outside to the inside is SiO2→Mo5Si3→MoSi2.
文摘The setting of pre assessment criteria for soil compaction is hardly determined, especially, in case of undecided structure locations. Different design guidelines recommend achieving a specific value of relative density for the compaction of fill placement works. Alternatives were discussed through the literature to predict the value of relative density based on soil field tests (e.g. cone and standard penetration tests). This paper presents the weakness of using the Over Consolidation Ratio (OCR) as guidance to assess the value of cone tip resistance using the soil relative density. The variation of OCR (from 1 to 10) has a significant effect on the <i><span style="font-family:Verdana;">q</span><sub><span style="font-family:Verdana;">c</span></sub></i><span style="font-family:Verdana;"> value up to 110% when compared to the normally consolidated state. Then normally consolidated state can logically cover the compaction process with variation of 20%, 33%, and 4% for relative density values 85%, 70%, and 60%, respectively. A unified approach is recommended to predict the compaction </span><i><span style="font-family:Verdana;">q</span><sub><span style="font-family:Verdana;">c</span></sub></i><span style="font-family:Verdana;">-performance line using normally consolidated condition and sand relative density.</span>
基金Guangdong Provincial Key Field Research and Development Program Project of China(Grant No.2020B090922002)Guangdong Provincial Basic and Applied Basic Research Fund Project of China(Grant Nos.2019B1515120094,2022B1515020064)National Natural and Science Foundation of China(Grant No.51775196).
文摘Additive manufacturing of Al-Mg-Sc-Zr alloys is a promising technique for the fabrication of lightweight components with complex shapes.In this study,the effect of the process parameters of selective laser melting(SLM)on the surface morphology,relative density,microstructure,and mechanical properties of Al-Mg-Sc-Zr high-strength aluminum alloys with low Sc content was systematically investigated.The results show that the energy density has an important effect on the surface quality and densification behavior of the Al-Mg-Sc-Zr alloy during the SLM process.As the energy density increased,the surface quality and the number of internal pores increased.However,the area of the fine-grained region at the boundary of the molten pool gradually decreased.When the laser energy density was set to 151.52 J/mm3,a low-defect sample with a relative density of 99.2%was obtained.After heat treatment,the area of the fine grains at the boundary increased significantly,thereby contributing to the excellent mechanical properties.The microstructure was characterized by a unique“fan-shaped”heterogeneous structure.As the energy density increased,the microhardness first increased and then decreased,reaching a maximum value of 122 HV0.3.With the optimized process parameters,the yield strength(YS),ultimate tensile strength(UTS),and elongation of the as-built Al-Mg-Sc-Zr alloys were 346.8±3.0 MPa,451.1±5.2 MPa,14.6%±0.8%,respectively.After heat treatment at 325°C for 8 h,the hardness increased by 38.5%to 169 HV0.3,and the YS and UTS increased by 41.3%and 18.1%,respectively,to 490.0±9.0 MPa and 532.7±7.8 MPa,respectively,while the elongation slightly decreased to 13.1%±0.7%.
基金supported by the National High-Tech Research and Development Program of China(No. 2004AA303542)
文摘The present work mainly describes the technology for preparing indium-tin oxide (ITO) targets by cold isostatic pressing (CIP) and normal pressure sintering process. ITO powders were produced by chemical co-precipitation and shaped into an ITO green compact with a relative density of 60% by CIP under 300 MPa. Then, an ITO target with a relative density larger than 99.6% was obtained by sintering this green compact at 1550℃ for 8 h. The effects of forming pressure, sintering temperature and sintering time on the density of the target were inves- tigated. Also, a discussion was made on the sintering atmosphere.
基金support of the Government of Austria with funds routed through the sterreischer Austauschdienst(OeAD)
文摘We investigated whether species richness, diversity and density of understory herbaceous plants differed along logging(gap) and grazing(primarily by cattle) disturbance gradients, and sought to identify drivers of richness, diversity and density of understory vegetation of logged sites. A factorial experiment was conducted in the mixed conifer forest of Gidakom in Western Bhutan. Levels of the logging treatment included small(0.15 – 0.24 ha), medium(0.25 – 0.35 ha) and large(0.36 – 1.31 ha) gaps. The grazing treatment included grazed(primarily by cattle) and ungrazed(where herbivores were excluded by a fence) plots nested within each gap. Data were collected from 12 gaps(4 replicates at each level of logging) using the point intercept method. Shannon Weaver Diversity and Margalef's indices were used to estimate species diversity and describe species richness, respectively. Soil samples were analyzed for pH and nutrients. The interaction effect of logging and grazing was significant(p≤0.001) only on species diversity. Relative to ungrazed areas, species diversity was significantly higher(0.01≤p≤0.05) in medium grazed gaps. Under grazed conditions, soil P was negatively correlated with gap size and species diversity. While species diversity was positivelycorrelated(0.01≤p≤0.05) with soil N in grazed plots species richness was positively correlated(0.001≤p≤0.01) with soil N in ungrazed plots. Relative density of Yushania microphylla and Carex nubigena were higher under ungrazed conditions. Our study suggests that the combined effect of cattle grazing and logging results in higher species diversity of understory vegetation in medium and grazed gaps in mixed conifer forests of Bhutan,whereas increase or decrease in relative density of major species is determined primarily by the independent effects of grazing and logging. From management perspective, forest managers must refrain from creating large gaps to avoid loss of nutrients(mainly P and N), which may eventually affect tree regeneration. Managers intending to maintain understory vegetation diversity must consider the combined effects of grazing and logging, ensuring low to moderate grazing pressure.
文摘Objective. To research the relations between low- density lipoprotein receptor- related protein gene (LRP) polymorphism, butyrylcholinesterase gene (BchE) polymorphism and Alzheimer’s disease (AD) in Chinese. Methods. The gene polymorphisms of LRP and BchE were genotyped in 38 AD cases and 40 controls with polymerase chain reaction- restriction fragment length polymorphism (PCR- RFLP) methods. AD groups were classified according to the LRP C/C genotype and compared with matched controls. Results. AD group had higher frequencies of C/C homozygote (81.6% vs 60.0% , P< 0.05) and of C allele (89.5% vs 76.3% , P< 0.05),with no significant difference between any of these LRP genotypes classified AD groups and their respective control groups. Conclusions. A positive correlation was found between LRP gene polymorphism and AD, but not between BchE gene polymorphism and AD in Chinese AD cases.
基金Supported by the Key Project of Education Department of China under Grant No 211035the Science Foundation from Education Department of Liaoning Province under Grant No L2014445
文摘Arsenic can diffuse into high-κ dielectrics during OaAs-based metal oxide semiconductor transistor process, which causes the degradation of gate dielectrics. To explore the origins of the degradation, we employ nonlocal B3LYP hybrid functional to study arsenic related defects in ZrO2. Via band alignments between the OaAs and ZrO2, we are able to determine the defect formation energy in the GaAs relative to the ZrO2 band gap and assess how they will affect the device performance. Arsenic at the interstitial site serves as a source of positive fixed charge while at the oxygen or zirconium substitutional site changes its charge state within the band gap of GaAs. Moreover, it is found that arsenic related defects produce conduction band offset reduction and gap states, which will increase the gate leakage current.
文摘Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond were successfully prepared by spark plasma sintering(SPS) method. The sintering temperatures and volume fractions(50%, 60% and 70%) of diamond were changed to investigate their effects on the relative density, homogeneity of the microstructure and thermal conductivity of the composites. The results show that the relative density, homogeneity of the microstructure and thermal conductivity of the composites increase with decreasing the diamond volume fraction; the relative density and thermal conductivity of the composites increase with increasing the sintering temperature. The thermal conductivity of the composites is a result of the combined effect of the volume fraction of diamond, the homogeneity and relative density of the composites.
基金Project supported by the 2015 Shandong Province Project of Outstanding Subject Talent Group
文摘Open-cell nickel foams with different relative densities and pre-stretching degrees were subjected to room temperature quasi-static compressive tests to explore their compressive properties. The compressive properties of the nickel foams including yield strength, elastic modulus, energy absorption density and energy absorption efficiency were calculated accurately. The results show that the compressive properties of yield strength, elastic modulus and energy absorption density increase with the increase of relative density of nickel foams. The compressive properties are sensitive to the pre-stretching degree, and the values of yield strength, elastic modulus and energy absorption density decrease with the increase of pre-stretching degree. However, the energy absorption efficiency at the densification strain state exhibits the independence of relative density and pre-stretching degree. The value of energy absorption efficiency reaches its peak when the strain is at the end of the collapse plateau region.
文摘Ni0.4Zn0.6Fe2-xNdxO4(x = 0-0.07) ferrites doped with different amounts of Nd2O3 were prepared using standard ceramic technique. The samples were uniaxially pressed and sintered at 1250℃ for 4 h in air. The phase structure and microstructure of the samples were investigated using X-ray diffraction and scanning electron microscope, respectively. The complex permeability was measured using the impedance analyzer in the range of 1-100 MHz. The results indicate that with increasing Nd^3+ content, the relative density and lattice parameter a of the sintered samples increase, whereas the real part of permeability (μ′) and the magnetic loss tangent (tan δ) decrease. The substitution of Nd^3+ for Fe^3+ forms a secondary phase on the grain boundary of the matrix, which strongly restrains the grain growth of the matrix.
文摘Review of the literature related to the mixture of shredded tire and sand shows that,despite of the increase in shear strength due to addition of tire chips,granulated rubber causes reduction in shear strength of sand.In this study,the shear behavior of mixtures of fine-grained sand and 1-5 mm granulated rubber is investigated.Sixty direct shear tests were conducted on sandegranulated rubber mixtures with various rubber contents(0%,5%,10%,20% and 30%) at different relative densities(50%,70% and 90%) and different normal stresses(34.5 kPa,54.5 kPa,74.5 kPa and 104.5 kPa).The obtained results show that the granulated rubber improves the shear strength of fine-grained sand at medium relative density and low normal stress.The degree of improvement in shear strength is a function of rubber content,relative density and normal stress.The results show that at relative density of 50%,by adding 5% granulated rubber,the internal friction angle of sand increases from 35.1° to 39.2°.However,at relative densities of 70% and 90%,addition of granulated rubber to sand decreases its internal friction angle.The results also indicate that the behavior of sand becomes more ductile with increasing granulated rubber content.Adding granulated rubber leads to greater yielding strain and less tangent stiffness of sand.The maximum dilation angle decreases with the decrease in granulated rubber content.The stress ratio of sample at critical state(ψ= 0°) decreases with increasing granulated rubber content.
基金Projects(RG148/12AET,RG086/10AET) supported by the UMRG,MalaysiaProject(PS05812010B) supported by the Post Graduate Research Fund,Malaysia
文摘Ground improvement has been used on many construction sites to densify granular materials, in other word, to improve soil properties and reduce potential settlement. This work presents a case study of ground improvement using rapid impact compaction (RIC). The research site comprises the construction of workshop and depots as part of railway development project at Batu Gajah-Ipoh, Malaysia. In-situ testing results show that the subsurface soil comprises mainly of sand and silty sand through the investigated depth extended to 10 m. Groundwater is approximately 0.5 m below the ground surface. Evaluation of improvement was based on the results of pre- and post-improvement cone penetration test (CPT). Interpretation software has been used to infer soil properties. Load test was conducted to estimate soil settlement. It is found that the technique succeeds in improving soil properties namely the relative density increases from 45% to 70%, the friction angle of soil is increased by an average of 3°, and the soil settlement is reduced by 50%: The technique succeeds in improving soil properties to approximately 5.0 m in depth depending on soil uniformity with depth.
基金supported by China National Science Foundation(No.32001166)the National Key Research and Development Program of China(No.2021YFD2200405)+1 种基金the Startup Foundation for Introducing Talent of NUIST(Nos.2019r059 and 003080)support from the Jiangsu Distinguished Professor program of the People’s Government of Jiangsu Province。
文摘Background: Tree demography is an essential indicator of various forest ecosystem services, and understanding its changes is critical for the sustainable management of forests. During the past four decades, China implemented unprecedented forest restoration projects, which altered tree demography by increasing the number of trees and introducing new species. However, it remains unclear how species composition has changed in China in response to the past forest restoration and demographical processes.Methods: We applied Forest Stability Index(FSI) and the relative change of FSI(%FSI) to describe the population dynamics of tree species and structure in China since 1998, using field-survey data collected from over 200,000plot-records from the 6th to 9th National Forest Inventories(NFIs).Results: The overall populations of both natural and planted forests have grown rapidly from 1998 to 2018, while the range of changes in the relative tree density was more variable for natural forests(ranging from-8.53% to42.46%) than for planted forests(ranging from-1.01% to 13.31%). The populations declined only in some of the tree species, including Betula platyphylla, Ulmus pumila, and Robinia pseudoacacia. In contrast, the populations of trees in the largest size-class either remained stable or expanded.Conclusions: Tree density of China?s forests(both natural and planted forests) generally expanded and the overall populations increased in most size classes, with greater increases occurred in planted forests. In contrasting to the global decline trends of large diameter trees, here we found no apparent decline for trees in the largest size-class in China, highlighting China?s success in improving forest health and forest adaptations to climate change. We advocate for more studies to reveal the mechanisms of the changes in tree demography, which will help to improve forest ecosystem services such as the carbon sequestration capacity.
文摘The effects of temperature (0-500°C) on the compressive strength,hardness,average relative density,and microstructure of Ti6Al4V powder green compacts prepared by magnetic pulse compaction were investigated.The results show that with increasing heating temperature,the compressive strength first increases and then decreases with the maximum value of 976.74 MPa at 400°C.The average relative density and hardness constantly increase,and their values reach 96.11% and HRA 69.8 at 500°C,respectively.The increase of partial welding is found among the junctions of particles inside the compacts; there is no obvious grain growth inside the compacts within the temperature range.