The technology of knowledge base remote design of the smart fuzzy controllers with the application of the"Soft/quantum computing optimizer"toolkit software developed.The possibility of the transmission...The technology of knowledge base remote design of the smart fuzzy controllers with the application of the"Soft/quantum computing optimizer"toolkit software developed.The possibility of the transmission and communication the knowledge base using remote connection to the control object considered.Transmission and communication of the fuzzy controller’s knowledge bases implemented through the remote connection with the control object in the online mode apply the Bluetooth or WiFi technologies.Remote transmission of knowledge bases allows designing many different built-in intelligent controllers to implement a variety of control strategies under conditions of uncertainty and risk.As examples,two different models of robots described(mobile manipulator and(“cart-pole”system)inverted pendulum).A comparison of the control quality between fuzzy controllers and quantum fuzzy controller in various control modes is presented.The ability to connect and work with a physical model of control object without using than mathematical model demonstrated.The implemented technology of knowledge base design sharing in a swarm of intelligent robots with quantum controllers.It allows to achieve the goal of control and to gain additional knowledge by creating a new quantum hidden information source based on the synergetic effect of combining knowledge.Development and implementation of intelligent robust controller’s prototype for the intelligent quantum control system of mega-science project NICA(at the first stage for the cooling system of superconducted magnets)is discussed.The results of the experiments demonstrate the possibility of the ensured achievement of the control goal of a group of robots using soft/quantum computing technologies in the design of knowledge bases of smart fuzzy controllers in quantum intelligent control systems.The developed software toolkit allows to design and setup complex ill-defined and weakly formalized technical systems on line.展开更多
In order to improve machining accuracy and efficiency, a software-controlled system of ultra-precision machining for axisymmetric aspheric mirror, using techniques of error compensation, remote transmission and modul...In order to improve machining accuracy and efficiency, a software-controlled system of ultra-precision machining for axisymmetric aspheric mirror, using techniques of error compensation, remote transmission and modularization, is designed based on industrial PC, Windows 2000 work platform and Visual Basic 6.0. By experiments, this system realizes functions of ultra-precision machining, machining error compensation, remote data transmission and automatic data transformation among first machining, compensation machining and accuracy measurement. The actual application shows that error compensation improves machining accuracy, remote transmission improves machining efficiency while modularization avoids repeated work and improves design efficiency. Therefore, the system has met ultra-precision machining need for aspheric mirror.展开更多
A virtual instrument system is proposed to test the performance parameters of local-ventilator installed under coal mines,which can do ventilator parameter acquisition automatically,as well as plot and analyze the ven...A virtual instrument system is proposed to test the performance parameters of local-ventilator installed under coal mines,which can do ventilator parameter acquisition automatically,as well as plot and analyze the ventilator performance curve.The whole system is designed using the virtual instrument technology combined with network technology based on Labview platform.Experimental results show that it can monitor and evaluate ventilator’s performance parameters automatically and efficiently,which provides critical information for ventilator safety under coal mine.展开更多
This paper analysis the developing of expendable conductivity temperature depth measuring system(XCTD)and introduce its principle of measuring about temperature,salinity and depth of ocean.Some key techniques are put ...This paper analysis the developing of expendable conductivity temperature depth measuring system(XCTD)and introduce its principle of measuring about temperature,salinity and depth of ocean.Some key techniques are put forward.According to the real needs of XCTD,conductivity sensor with high sensitivity is designed by principle of electromagnetic induce,the ocean conductivity from induced electromotive force has been calculated.Adding temperature correction circuit would help to reduce error of conductivity measurement because of sharply changing temperature.Advanced temperature measuring circuit of high precision and the constant current source is used to weaken effect of self-heating of resistance and fluctuation of the source.On respect of remote data transmission,LVDS is a good choice for the purpose of guarantee the quality of data transmitted and the transmission distance is reaching to thousand meters in the seawater.Modular programming method is also brought into this research aimed at improve the stability,reliability and maintainability of the whole measuring system.In February,2015,the trials in South China Sea demonstrate that the developed XCTD realize effective measurement at a speed of 6 knots and detection depth at 800 m.The consistency coefficient of the acquired data is greater than 0.99 and the success rate of probe launching is above 90%.展开更多
10Gbit/s repeaterless transmission over 240km SSMF using CS-RZ format is reported. No Raman or remotely pumped amplifiers are used in this experiment. Effect of channel space in multi-channel application is also inves...10Gbit/s repeaterless transmission over 240km SSMF using CS-RZ format is reported. No Raman or remotely pumped amplifiers are used in this experiment. Effect of channel space in multi-channel application is also investigated.展开更多
文摘The technology of knowledge base remote design of the smart fuzzy controllers with the application of the"Soft/quantum computing optimizer"toolkit software developed.The possibility of the transmission and communication the knowledge base using remote connection to the control object considered.Transmission and communication of the fuzzy controller’s knowledge bases implemented through the remote connection with the control object in the online mode apply the Bluetooth or WiFi technologies.Remote transmission of knowledge bases allows designing many different built-in intelligent controllers to implement a variety of control strategies under conditions of uncertainty and risk.As examples,two different models of robots described(mobile manipulator and(“cart-pole”system)inverted pendulum).A comparison of the control quality between fuzzy controllers and quantum fuzzy controller in various control modes is presented.The ability to connect and work with a physical model of control object without using than mathematical model demonstrated.The implemented technology of knowledge base design sharing in a swarm of intelligent robots with quantum controllers.It allows to achieve the goal of control and to gain additional knowledge by creating a new quantum hidden information source based on the synergetic effect of combining knowledge.Development and implementation of intelligent robust controller’s prototype for the intelligent quantum control system of mega-science project NICA(at the first stage for the cooling system of superconducted magnets)is discussed.The results of the experiments demonstrate the possibility of the ensured achievement of the control goal of a group of robots using soft/quantum computing technologies in the design of knowledge bases of smart fuzzy controllers in quantum intelligent control systems.The developed software toolkit allows to design and setup complex ill-defined and weakly formalized technical systems on line.
基金This project is supported by National Hi-tech Research and Development Program of China(863 Program, No.2004AA8042111)Program for "IRTXMU".
文摘In order to improve machining accuracy and efficiency, a software-controlled system of ultra-precision machining for axisymmetric aspheric mirror, using techniques of error compensation, remote transmission and modularization, is designed based on industrial PC, Windows 2000 work platform and Visual Basic 6.0. By experiments, this system realizes functions of ultra-precision machining, machining error compensation, remote data transmission and automatic data transformation among first machining, compensation machining and accuracy measurement. The actual application shows that error compensation improves machining accuracy, remote transmission improves machining efficiency while modularization avoids repeated work and improves design efficiency. Therefore, the system has met ultra-precision machining need for aspheric mirror.
文摘A virtual instrument system is proposed to test the performance parameters of local-ventilator installed under coal mines,which can do ventilator parameter acquisition automatically,as well as plot and analyze the ventilator performance curve.The whole system is designed using the virtual instrument technology combined with network technology based on Labview platform.Experimental results show that it can monitor and evaluate ventilator’s performance parameters automatically and efficiently,which provides critical information for ventilator safety under coal mine.
文摘This paper analysis the developing of expendable conductivity temperature depth measuring system(XCTD)and introduce its principle of measuring about temperature,salinity and depth of ocean.Some key techniques are put forward.According to the real needs of XCTD,conductivity sensor with high sensitivity is designed by principle of electromagnetic induce,the ocean conductivity from induced electromotive force has been calculated.Adding temperature correction circuit would help to reduce error of conductivity measurement because of sharply changing temperature.Advanced temperature measuring circuit of high precision and the constant current source is used to weaken effect of self-heating of resistance and fluctuation of the source.On respect of remote data transmission,LVDS is a good choice for the purpose of guarantee the quality of data transmitted and the transmission distance is reaching to thousand meters in the seawater.Modular programming method is also brought into this research aimed at improve the stability,reliability and maintainability of the whole measuring system.In February,2015,the trials in South China Sea demonstrate that the developed XCTD realize effective measurement at a speed of 6 knots and detection depth at 800 m.The consistency coefficient of the acquired data is greater than 0.99 and the success rate of probe launching is above 90%.
文摘10Gbit/s repeaterless transmission over 240km SSMF using CS-RZ format is reported. No Raman or remotely pumped amplifiers are used in this experiment. Effect of channel space in multi-channel application is also investigated.