We demonstrated a monolithic, compact, diode-pumped gain-switched Nd:YVO4 laser at 1.064 μm wavelength with controllable repetition rate of 1 Hz to 25 kHz. Stable gain-switched pulse train with maximum repetition rat...We demonstrated a monolithic, compact, diode-pumped gain-switched Nd:YVO4 laser at 1.064 μm wavelength with controllable repetition rate of 1 Hz to 25 kHz. Stable gain-switched pulse train with maximum repetition rate of 25 kHz and pulse width of 16 ns was obtained.展开更多
We demonstrate a diode pumped Yb:LuVO4 laser that can be passively Q-switched by a Cr^(4+):YAG saturable absorber having an initial transmission as high as 99.3%.A maximum pulsed output power of 2.35 W is generat...We demonstrate a diode pumped Yb:LuVO4 laser that can be passively Q-switched by a Cr^(4+):YAG saturable absorber having an initial transmission as high as 99.3%.A maximum pulsed output power of 2.35 W is generated at a repetition rate of 285.7 kHz,approaching or very near the intrinsic upper limit imposed by the recovery time of the Cr^(4+):YAG saturable absorber,and the resulting pulse energy,duration and peak power are,respectively,8.2μJ,39.2ns and 0.209kW.展开更多
We report on a compact, stable, all-fiberized narrow-linewidth(0.045 nm) pulsed laser source emitting laser beam with a wavelength of 266 nm, and tunable pulse width and repetition rate. The system is based on all-fib...We report on a compact, stable, all-fiberized narrow-linewidth(0.045 nm) pulsed laser source emitting laser beam with a wavelength of 266 nm, and tunable pulse width and repetition rate. The system is based on all-fiberized nanosecond amplifier architecture, which consists of Yb-doped fiber preamplifiers and a super-large-mode-area Yb-doped fiber power amplifier. The fiber amplifier with a core of 50 μm is used to raise the threshold of the stimulated Brillouin scattering(SBS) effect and to obtain high output power and single pulse energy. Using lithium triborate(LBO) crystal and betabarium borate(BBO) crystal for realizing the second-harmonic generation(SHG) and fourth-harmonic generation(FHG),we achieve 17 μJ(1.73 W) and 0.66 μJ(66 mW), respectively, at wavelengths of 532 nm and 266 nm and a repetition rate of 100 kHz with pulse width of 4 ns. This source has great potential applications in fluorescence research and solar-blind ultraviolet optical communication.展开更多
We propose and demonstrate a Q-switched erbium-doped fiber laser (EDFL) using an erbium-doped zirconia-alumina silica glass-based fiber (Zr-EDF) as a saturable absorber. As a 16-cm-long Zr-EDF is incorporated into...We propose and demonstrate a Q-switched erbium-doped fiber laser (EDFL) using an erbium-doped zirconia-alumina silica glass-based fiber (Zr-EDF) as a saturable absorber. As a 16-cm-long Zr-EDF is incorporated into a ring EDFL cavity, a stable Q-switching pulse train operating at 1565?nm wavelength is successfully obtained. The repetition rate is tunable from 33.97?kHz to 71.23?kHz by increasing the pump power from the threshold of 26?mW to the maximum of 74?mW. The highest pulse energy of 26.67?nJ is obtained at the maximum pump power.展开更多
This paper presents a Kerr-lens mode-locked Ti:sapphire laser at the repetition rate of 525 MHz, stable laser pulse as short as 10 fs with average output power of 480 mW is obtained. By injecting the pulse into photo...This paper presents a Kerr-lens mode-locked Ti:sapphire laser at the repetition rate of 525 MHz, stable laser pulse as short as 10 fs with average output power of 480 mW is obtained. By injecting the pulse into photonics crystal fibre, octave-spanning spectrum covered from 500 to 1050 nm is generated, carrier-envelope phase frequency with signal-to- noise ratio of 31dB is measured, which paves the way for the generation of a compact frequency comb.展开更多
The generation of high-energy dual-wavelength domain wall pulse with a low repetition rate is demonstrated in a highly nonlinear fiber (HNLF)-based fiber ring laser. By introducing the intracavity birefringence-indu...The generation of high-energy dual-wavelength domain wall pulse with a low repetition rate is demonstrated in a highly nonlinear fiber (HNLF)-based fiber ring laser. By introducing the intracavity birefringence-induced spectral filtering effect, the dual-wavelength lasing operation can be achieved. In order to enhance the cross coupling effect between the two lasing beams for domain wall pulse formation, a 215-m HNLF is incorporated into the laser cavity. Experimentally, it is found that the dual-wavelength domain wall pulse with a repetition rate of 77.67 kHz could be efficiently obtained through simply rotating the polarization controller (PC). At a maximum pump power of 322 mW, the 655-nJ single pulse energy in cavity is obtained. The proposed configuration provides a simpler and more efficient way to generate high energy pulse with a low repetition rate.展开更多
The self-absorption effect in laser-induced breakdown spectroscopy(LIBS)reduces the accuracy of quantitative measurement results.The self-absorption-free LIBS(SAF-LIBS)has been proved to directly capture the optically...The self-absorption effect in laser-induced breakdown spectroscopy(LIBS)reduces the accuracy of quantitative measurement results.The self-absorption-free LIBS(SAF-LIBS)has been proved to directly capture the optically thin plasma spectra by setting an appropriate exposure time.In this work,a novel SAF-LIBS technique with high repetition rate acousto-optic gating is developed,in which an acousto-optic modulator is used as the shutter to diffract the optically thin fluorescence,and a high repetition rate laser is used to produce quasi-continuous plasmas to enhance the integral spectral intensity,so that the CCD spectrometer can replace an intensified CCD(ICCD)and echelle spectrometer in SAF-LIBS.Experimental results show that the average absolute prediction error of aluminum is reduced to 0.18%,which is equivalent to that of traditional SAF-LIBS.This technique not only effectively shields continuous background radiation and broadened spectral lines in optically thick plasma,but also has advantages of miniaturization,low cost,convenience and reliability.展开更多
We demonstrate an all-fiberized narrow-linewidth nanosecond amplifier with high peak power,tunable pulse width,and repetition rate.A fiber-coupled narrow-linewidth laser diode operating at 1064.1 nm is employed as the...We demonstrate an all-fiberized narrow-linewidth nanosecond amplifier with high peak power,tunable pulse width,and repetition rate.A fiber-coupled narrow-linewidth laser diode operating at 1064.1 nm is employed as the seed source,which is gain-switched to generate nanosecond pulses with tunable pulse widths of 1-200 ns and tunable repetition rates of10 Hz-100 kHz.By utilizing a very-large-mode-area Yb-doped fiber with a core diameter of 50 μm in the power amplifier,thresholds of the stimulated Brillouin scattering at different pulse widths and repetition rates are increased.The maximum average power reaches 30.8 W at the pulse width of 4 ns and a repetition rate of 100 kHz,corresponding to an optical-tooptical conversion efficiency of ~55.2%.Pulse energy and peak power are calculated to be 0.2 mJ and 50 kW,respectively,which are limited by stimulated Brillouin scattering.The 3-dB spectral linewidth remains around 0.05 nm during the power scaling process.The stimulated Brillouin scattering limited output powers at different pulse widths and repetition rates are investigated.Peak power of 47.5 kW(0.19 mJ) is obtained for the 4 ns pulses at a repetition rate of 50 kHz,which is nearly the same as that of 4 ns pulses at 100 kHz.When the pulse width of the seed source is increased to 8 ns,peak powers/pulse energies are decreased to 19.6 kW/0.11 mJ and 13.3 kW/0.08 mJ at repetition rates of 50 kHz and 100 kHz,respectively.展开更多
Simultaneous metabolic and oxygen imaging is promising to follow up therapy response,dis-ease development and to determine prognostic factors.FLIM of metabolic coenzymes is now widely accepted to be the most reliable ...Simultaneous metabolic and oxygen imaging is promising to follow up therapy response,dis-ease development and to determine prognostic factors.FLIM of metabolic coenzymes is now widely accepted to be the most reliable method to determine cellular bioenergetics.Also,oxygen consumption has to be taken into account to understand treatment responses.The phosphorescence lifetimne of oxygen sensors is able to indicate local oxygen changes.For phosphorescence lifetime imaging(PLIM)dyes based on ruthenium(I)coordination com-plexes are useful,in detaill TLD1433 which possesses a variety of different triplet states,enables complex photochemistry and redox reactions.PLIM is usally reached by two photon exci-tation of the drug with a femtosecond(fs)pulsed Ti:Sapphire laser working at 80 MHz repe-tition rate and(time-correlated single photon counting)(TCSPC)detection electronics.The interesting question was whether it is possible to follow up PLIM 1using faster repetition rates.Faster repetition rates could be advantageous for the induction of specific photochemical reactions because of similar light doses used normally in standard CW light treatments.For this,a default 2p-FLIM-PLIM system was expanded by adding a second fs pulsed laser("helixx")which provides 50 fs pulses at a repetition rate of 250 MHz,more than 2.3 w average power and tunable from 720 nm to 920 nm.The laser beam was coupled into the AOM instead of the default 80 MHz laser.We demonstrated siuccessful applications of the 250 MHz laser for PLIM which correlates well with measurements done by excitation with the conventional 80MHx laser source.展开更多
Satellite laser ranging(SLR)with higher repetition rate is the recent trend for its various advantages.Laser backscatter(coincidence between recently transmitted pulses and received pulses near the detector)is found t...Satellite laser ranging(SLR)with higher repetition rate is the recent trend for its various advantages.Laser backscatter(coincidence between recently transmitted pulses and received pulses near the detector)is found to be a constraint for the repetition rates higher than 20 kHz,due to,overlapping with photons returning from a satellite with the present constellation of most of the SLR systems.Such an overlap occurs at every 75 km satellite distance change at 2 kHz repetition rate,and remains for about 7.5 km;for a 20 kHz system however,it will occur after every 7.5 km and remains for 7.5 km,resulting in constant backscatter overlap e leaving no chance to avoid it.The resulting noise is 5 times more than before causing a serious problem in detection and lowers the signal to noise ratio of the overall SLR system.However,decreasing energy per shot at higher repetition rates e assuming a constant power laser e the resulting backscatter may decrease fractionally.展开更多
Laser processing with high-power ultrashort pulses,which promises high precision and efficiency,is an emerging new tool for material structuring.High repetition rate ultrafast laser highlighting with a higher degree o...Laser processing with high-power ultrashort pulses,which promises high precision and efficiency,is an emerging new tool for material structuring.High repetition rate ultrafast laser highlighting with a higher degree of freedom in its burst mode is believed to be able to create micro/nanostructures with even more variety,which is promising for electrochemical applications.We employ a homemade high repetition rate ultrafast fiber laser for structuring metal nickel(Ni)and thus preparing electrocatalysts for hydrogen evolution reaction(HER)for the first time,we believe.Different processing parameters are designed to create three groups of samples with different micro/nanostructures.The various micro/nanostructures not only increase the surface area of the Ni electrode but also regulate local electric field and help discharge hydrogen bubbles,which offer more favorable conditions for HER.All groups of the laser-structured Ni exhibit enhanced electrocatalytic activity for HER in the alkaline solution.Electrochemical measurements demonstrate that the overpotential at 10 mAcm−2 can be decreased as much as 182 mV compared with the overpotential of the untreated Ni(−457 mV versus RHE).展开更多
Ultrashort pulses at 920 nm are a highly desired light source in two-photon microscopy for the efficient excitation of green fluorescence protein.Although Nd3þ-doped fibers have been utilized for 920-nm ultrashor...Ultrashort pulses at 920 nm are a highly desired light source in two-photon microscopy for the efficient excitation of green fluorescence protein.Although Nd3þ-doped fibers have been utilized for 920-nm ultrashort pulse generation,the competitive amplified spontaneous emission(ASE)at 1.06μm remains a significant challenge in improving their performance.Here,we demonstrate a coordination engineering strategy to tailor the properties of Nd3þ-doped silica glass and fiber.By elevating the covalency between Nd3þand bonded anions via sulfur incorporation,the fiber gain performance at 920 nm is enhanced,and 1.06-μm ASE intensity is suppressed simultaneously.As a result,the continuous-wave laser efficiencies and signal-to-noise ratio at 920 nm by this fiber are significantly enhanced.Importantly,the stable picosecond pulses at 920 nm are produced by a passive mode-locking technique with a fundamental repetition rate up to 207 MHz,which,to the best of our knowledge,is the highest reported repetition rate realized by Nd3þ-doped silica fibers.The presented strategy enriches the capacity of Nd3þ-doped silica fiber in generating 920-nm ultrashort pulses for application in biophotonics,and it also provides a promising way to tune the properties of rare-earth ion-doped silica glasses and fibers toward ultrafast lasers.展开更多
The Shanghai high-repetition-rate X-ray free-electron laser and extreme light facility(SHINE)operates at a maximum repetition rate of 1 MHz.Kicker magnets are key components that distribute electron bunches into three...The Shanghai high-repetition-rate X-ray free-electron laser and extreme light facility(SHINE)operates at a maximum repetition rate of 1 MHz.Kicker magnets are key components that distribute electron bunches into three different undulator lines in a bunch-by-bunch mode.The kicker field width must be less than the time interval between bunches.A lumpedinductance kicker prototype was developed using a vacuum chamber with a single-turn coil.The full magnetic field strength was 0.005 T.This paper presents the requirements,design considerations,design parameters,magnetic field calculations,and measurements of the kicker magnets.The relevant experimental results are also presented.The pulse width of the magnetic field was approximately 600 ns,and the maximum operation repetition rate was 1 MHz.The developed kicker satisfies the requirements for the SHINE project.Finally,numerous recommendations for the future optimization of kicker magnets are provided.展开更多
The stimulated Brillouin scattering phase conjugation mirror (SBS-PCM) based on liquid media is widely used in high-power laser systems due to its robust thermal load capacity, high energy conversion efficiency and im...The stimulated Brillouin scattering phase conjugation mirror (SBS-PCM) based on liquid media is widely used in high-power laser systems due to its robust thermal load capacity, high energy conversion efficiency and improved beam quality. Nevertheless, with an increase in the pump repetition rate, thermally-induced blooming and optical breakdown can emerge, leading to distortions in the Stokes beam. In this study, we delved into the thermal effects in liquid SBS-PCMs employing hydrodynamic analysis, establishing a relationship between beam profile distortion and the thermal convection field. We calculated the temperature and convection velocity distribution based on the pump light parameters and recorded the corresponding beam profiles. The intensities of the beam profiles were modulated in alignment with the convection directions, reaching a velocity peak of 2.85 mm/s at a pump pulse repetition rate of 250 Hz. The residual sum of squares (RSS) was employed to quantify the extent of beam profile distortion relative to a Gaussian distribution. The RSS escalated to 7.8, in contrast to 0.7 of the pump light at a pump pulse repetition rate of 500 Hz. By suppressing thermal convection using a high-viscosity medium, we effectively mitigated beam distortion. The RSS was reduced to 0.7 at a pump pulse repetition rate of 500 Hz, coinciding with a twentyfold increase in viscosity, thereby enhancing the beam quality. By integrating hydrodynamic analysis, we elucidated and mitigated distortion with targeted solutions. Our research offers an interdisciplinary perspective on studying thermal effects and contributes to the application of SBS-PCMs in high-repetition-rate laser systems by unveiling the mechanism of photothermal effects.展开更多
Satellite laser ranging (SLR) is one of the major space geodetic instruments, which has various applications in earth science. In this paper, we introduce several issues regarding the key technology implementation o...Satellite laser ranging (SLR) is one of the major space geodetic instruments, which has various applications in earth science. In this paper, we introduce several issues regarding the key technology implementation of high-repetition-rate SLR system. Compared with traditional technology, using kHz and 8ps pulse width laser component, the data quantity and quality of high-repetition-rate satellite laser ranging (SLR) can be significantly improved. The characteristics of high-repetition-rate laser ranging and the key technologies are presented, including the event timer with the precision of picosecond, the generation of range gate signal, and so on. All of them are based on the Field Programmable Gate Arrays (FPGA) and tested on China mobile SLR system-TROS1000. Finally, the observations of satellite Beacon-C are given.展开更多
We present a scintillator-based detector able to measure the proton energy and the spatial distribution with a relatively simple design.It has been designed and built at the Spanish Center for Pulsed Lasers(CLPU)in Sa...We present a scintillator-based detector able to measure the proton energy and the spatial distribution with a relatively simple design.It has been designed and built at the Spanish Center for Pulsed Lasers(CLPU)in Salamanca and tested in the proton accelerator at the Centro de Micro-Análisis de Materiales(CMAM)in Madrid.The detector is capable of being set in the high repetition rate(HRR)mode and reproduces the performance of the radiochromic film detector.It represents a new class of online detectors for laser-plasma physics experiments in the newly emerging high power laser laboratories working at HRR.展开更多
An actively mode-locked fiber laser with controllable pulse repetition rate and tunable pulse duration is presented,in which an optical delay line(ODL)is used to adjust the cavity length precisely for regulating the r...An actively mode-locked fiber laser with controllable pulse repetition rate and tunable pulse duration is presented,in which an optical delay line(ODL)is used to adjust the cavity length precisely for regulating the repetition rate,and a semiconductor optical amplifier(SOA)is introduced for enabling the pulse duration control.Experimentally,continuous tuning of the repetition rate from 2 GHz to 6 GHz is realized,which is limited by the availability of an even higher repetition rate radiofrequency(RF)source.Specifically,when the repetition rate is fixed at 2.5 GHz,the pulse duration can be tuned from 4 ps to30 ps,which is,to the best of our knowledge,the widest tuning range of pulse duration ever achieved in a gigahertz(GHz)repetition rate actively mode-locked 1.5μm fiber laser oscillator.展开更多
We demonstrated stable midinfrared(MIR) optical frequency comb at the 3.0 μm region with difference frequency generation pumped by a high power, Er-doped, ultrashort pulse fiber laser system. A soliton mode-locked161...We demonstrated stable midinfrared(MIR) optical frequency comb at the 3.0 μm region with difference frequency generation pumped by a high power, Er-doped, ultrashort pulse fiber laser system. A soliton mode-locked161 MHz high repetition rate fiber laser using a single wall carbon nanotube was fabricated. The output pulse was amplified in an Er-doped single mode fiber amplifier, and a 1.1–2.2 μm wideband supercontinuum(SC) with an average power of 205 m W was generated in highly nonlinear fiber. The spectrogram of the generated SC was examined both experimentally and numerically. The generated SC was focused into a nonlinear crystal, and stable generation of MIR comb around the 3 μm wavelength region was realized.展开更多
By overcoming fabrication limitations, we have successfully fabricated silica toroid microcavities with both large diameter(of 1.88 mm) and ultra-high-Q factor(of 3.3 × 10~8) for the first time, to the best of ou...By overcoming fabrication limitations, we have successfully fabricated silica toroid microcavities with both large diameter(of 1.88 mm) and ultra-high-Q factor(of 3.3 × 10~8) for the first time, to the best of our knowledge. By employing these resonators, we have further demonstrated low-threshold Kerr frequency combs on a silicon chip,which allow us to obtain a repetition rate as low as 36 GHz. Such a low repetition rate frequency comb can now bedirectly measured through a commercialized optical-electronic detector.展开更多
A laser-diode-pumped high-pulse-energy Nd:LiYF4 master oscillator power amplifier 1053 nm laser system is demonstrated. We design a home-made pump module to homogenize the pump intensity through the ray tracing metho...A laser-diode-pumped high-pulse-energy Nd:LiYF4 master oscillator power amplifier 1053 nm laser system is demonstrated. We design a home-made pump module to homogenize the pump intensity through the ray tracing method. To increase the extraction efficiency, the pre-amplifier adopts a double-pass amplification structure. At a repetition rate of 50 Hz, 655 mJ pulse energy and 12.9 ns pulse width of 1053 nm laser is obtained from the master oscillator power amplifier system. The corresponding peak power is 51 MW. The optical-to-optical efficiency of the system is about 9.7%.展开更多
文摘We demonstrated a monolithic, compact, diode-pumped gain-switched Nd:YVO4 laser at 1.064 μm wavelength with controllable repetition rate of 1 Hz to 25 kHz. Stable gain-switched pulse train with maximum repetition rate of 25 kHz and pulse width of 16 ns was obtained.
基金Supported by the National Natural Science Foundation of China under Grant No 11574170
文摘We demonstrate a diode pumped Yb:LuVO4 laser that can be passively Q-switched by a Cr^(4+):YAG saturable absorber having an initial transmission as high as 99.3%.A maximum pulsed output power of 2.35 W is generated at a repetition rate of 285.7 kHz,approaching or very near the intrinsic upper limit imposed by the recovery time of the Cr^(4+):YAG saturable absorber,and the resulting pulse energy,duration and peak power are,respectively,8.2μJ,39.2ns and 0.209kW.
基金Project supported by the Key Program of Beijing Municipal Natural Science Foundation, China (Grant No. KZ201910005006)the National Nature Science Foundation of China (Grant No. 62005004)+1 种基金the Natural Science Foundation of Beijing Municipality, China (Grant No. 4204091)the National Science Foundation for Postdoctor Scientists of China (Grant No. 212423)。
文摘We report on a compact, stable, all-fiberized narrow-linewidth(0.045 nm) pulsed laser source emitting laser beam with a wavelength of 266 nm, and tunable pulse width and repetition rate. The system is based on all-fiberized nanosecond amplifier architecture, which consists of Yb-doped fiber preamplifiers and a super-large-mode-area Yb-doped fiber power amplifier. The fiber amplifier with a core of 50 μm is used to raise the threshold of the stimulated Brillouin scattering(SBS) effect and to obtain high output power and single pulse energy. Using lithium triborate(LBO) crystal and betabarium borate(BBO) crystal for realizing the second-harmonic generation(SHG) and fourth-harmonic generation(FHG),we achieve 17 μJ(1.73 W) and 0.66 μJ(66 mW), respectively, at wavelengths of 532 nm and 266 nm and a repetition rate of 100 kHz with pulse width of 4 ns. This source has great potential applications in fluorescence research and solar-blind ultraviolet optical communication.
基金Supported by the Postgraduate Research of Malaysia under Grant No PG098-2014Bthe CSIR of Government of India
文摘We propose and demonstrate a Q-switched erbium-doped fiber laser (EDFL) using an erbium-doped zirconia-alumina silica glass-based fiber (Zr-EDF) as a saturable absorber. As a 16-cm-long Zr-EDF is incorporated into a ring EDFL cavity, a stable Q-switching pulse train operating at 1565?nm wavelength is successfully obtained. The repetition rate is tunable from 33.97?kHz to 71.23?kHz by increasing the pump power from the threshold of 26?mW to the maximum of 74?mW. The highest pulse energy of 26.67?nJ is obtained at the maximum pump power.
基金supported by National Natural Science Foundation of China (Grant Nos 60490281 and 60621063)National Basic Research Program of China (Grant No 2007CB815104)
文摘This paper presents a Kerr-lens mode-locked Ti:sapphire laser at the repetition rate of 525 MHz, stable laser pulse as short as 10 fs with average output power of 480 mW is obtained. By injecting the pulse into photonics crystal fibre, octave-spanning spectrum covered from 500 to 1050 nm is generated, carrier-envelope phase frequency with signal-to- noise ratio of 31dB is measured, which paves the way for the generation of a compact frequency comb.
基金supported by the National Natural Science Foundation of China(Grant Nos.11074078,61378036,61307058,11304101,and 61177077)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20094407110002)the Ph.D.Start-up Fund of the Natural Science Foundation of Guangdong Province,China(Grant No.S2013040016320)
文摘The generation of high-energy dual-wavelength domain wall pulse with a low repetition rate is demonstrated in a highly nonlinear fiber (HNLF)-based fiber ring laser. By introducing the intracavity birefringence-induced spectral filtering effect, the dual-wavelength lasing operation can be achieved. In order to enhance the cross coupling effect between the two lasing beams for domain wall pulse formation, a 215-m HNLF is incorporated into the laser cavity. Experimentally, it is found that the dual-wavelength domain wall pulse with a repetition rate of 77.67 kHz could be efficiently obtained through simply rotating the polarization controller (PC). At a maximum pump power of 322 mW, the 655-nJ single pulse energy in cavity is obtained. The proposed configuration provides a simpler and more efficient way to generate high energy pulse with a low repetition rate.
基金National Key R&D Program of China(No.2017YFA0304203)National Energy R&D Center of Petroleum Refining Technology(RIPP,SINOPEC),Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(IRT_17R70)+3 种基金National Natural Science Foundation of China(Nos.61975103,61875108,61775125 and 11434007)Major Special Science and Technology Projects in Shanxi(No.201804D131036)111 Project(No.D18001)Fund for Shanxi’1331KSC’。
文摘The self-absorption effect in laser-induced breakdown spectroscopy(LIBS)reduces the accuracy of quantitative measurement results.The self-absorption-free LIBS(SAF-LIBS)has been proved to directly capture the optically thin plasma spectra by setting an appropriate exposure time.In this work,a novel SAF-LIBS technique with high repetition rate acousto-optic gating is developed,in which an acousto-optic modulator is used as the shutter to diffract the optically thin fluorescence,and a high repetition rate laser is used to produce quasi-continuous plasmas to enhance the integral spectral intensity,so that the CCD spectrometer can replace an intensified CCD(ICCD)and echelle spectrometer in SAF-LIBS.Experimental results show that the average absolute prediction error of aluminum is reduced to 0.18%,which is equivalent to that of traditional SAF-LIBS.This technique not only effectively shields continuous background radiation and broadened spectral lines in optically thick plasma,but also has advantages of miniaturization,low cost,convenience and reliability.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61675009)the Beijing Natural Science Foundation Program, China,Scientific Research Key Program of Beijing Municipal Education Commission, China (Grant No. KZ201910005006)
文摘We demonstrate an all-fiberized narrow-linewidth nanosecond amplifier with high peak power,tunable pulse width,and repetition rate.A fiber-coupled narrow-linewidth laser diode operating at 1064.1 nm is employed as the seed source,which is gain-switched to generate nanosecond pulses with tunable pulse widths of 1-200 ns and tunable repetition rates of10 Hz-100 kHz.By utilizing a very-large-mode-area Yb-doped fiber with a core diameter of 50 μm in the power amplifier,thresholds of the stimulated Brillouin scattering at different pulse widths and repetition rates are increased.The maximum average power reaches 30.8 W at the pulse width of 4 ns and a repetition rate of 100 kHz,corresponding to an optical-tooptical conversion efficiency of ~55.2%.Pulse energy and peak power are calculated to be 0.2 mJ and 50 kW,respectively,which are limited by stimulated Brillouin scattering.The 3-dB spectral linewidth remains around 0.05 nm during the power scaling process.The stimulated Brillouin scattering limited output powers at different pulse widths and repetition rates are investigated.Peak power of 47.5 kW(0.19 mJ) is obtained for the 4 ns pulses at a repetition rate of 50 kHz,which is nearly the same as that of 4 ns pulses at 100 kHz.When the pulse width of the seed source is increased to 8 ns,peak powers/pulse energies are decreased to 19.6 kW/0.11 mJ and 13.3 kW/0.08 mJ at repetition rates of 50 kHz and 100 kHz,respectively.
基金supported by the Ministry of Research and Development,FKZ order:13N14508("OMOXI")by the Ministry of Economics,ZIM-Project,FKZ:ZF4322901RE6("UFEMPU").
文摘Simultaneous metabolic and oxygen imaging is promising to follow up therapy response,dis-ease development and to determine prognostic factors.FLIM of metabolic coenzymes is now widely accepted to be the most reliable method to determine cellular bioenergetics.Also,oxygen consumption has to be taken into account to understand treatment responses.The phosphorescence lifetimne of oxygen sensors is able to indicate local oxygen changes.For phosphorescence lifetime imaging(PLIM)dyes based on ruthenium(I)coordination com-plexes are useful,in detaill TLD1433 which possesses a variety of different triplet states,enables complex photochemistry and redox reactions.PLIM is usally reached by two photon exci-tation of the drug with a femtosecond(fs)pulsed Ti:Sapphire laser working at 80 MHz repe-tition rate and(time-correlated single photon counting)(TCSPC)detection electronics.The interesting question was whether it is possible to follow up PLIM 1using faster repetition rates.Faster repetition rates could be advantageous for the induction of specific photochemical reactions because of similar light doses used normally in standard CW light treatments.For this,a default 2p-FLIM-PLIM system was expanded by adding a second fs pulsed laser("helixx")which provides 50 fs pulses at a repetition rate of 250 MHz,more than 2.3 w average power and tunable from 720 nm to 920 nm.The laser beam was coupled into the AOM instead of the default 80 MHz laser.We demonstrated siuccessful applications of the 250 MHz laser for PLIM which correlates well with measurements done by excitation with the conventional 80MHx laser source.
基金the Austrian Academy of Science for providing a placement and Higher education commission of Pakistan to fund this study
文摘Satellite laser ranging(SLR)with higher repetition rate is the recent trend for its various advantages.Laser backscatter(coincidence between recently transmitted pulses and received pulses near the detector)is found to be a constraint for the repetition rates higher than 20 kHz,due to,overlapping with photons returning from a satellite with the present constellation of most of the SLR systems.Such an overlap occurs at every 75 km satellite distance change at 2 kHz repetition rate,and remains for about 7.5 km;for a 20 kHz system however,it will occur after every 7.5 km and remains for 7.5 km,resulting in constant backscatter overlap e leaving no chance to avoid it.The resulting noise is 5 times more than before causing a serious problem in detection and lowers the signal to noise ratio of the overall SLR system.However,decreasing energy per shot at higher repetition rates e assuming a constant power laser e the resulting backscatter may decrease fractionally.
基金supported by the National Natural Science Foundation of China(Grant Nos.62375087,12374304,and 62235014)the NSFC Development of National Major Scientific Research Instrument(Grant No.61927816)+3 种基金the Mobility Programme of the Sino-German(Grant No.M-0296)the Introduced Innovative Team Project of Guangdong Pearl River Talents Program(Grant No.2021ZT09Z109)the Natural Science Foundation of Guangdong Province(Grant No.2021B1515020074)the Science and Technology Project of Guangdong(Grant No.2020B1212060002).
文摘Laser processing with high-power ultrashort pulses,which promises high precision and efficiency,is an emerging new tool for material structuring.High repetition rate ultrafast laser highlighting with a higher degree of freedom in its burst mode is believed to be able to create micro/nanostructures with even more variety,which is promising for electrochemical applications.We employ a homemade high repetition rate ultrafast fiber laser for structuring metal nickel(Ni)and thus preparing electrocatalysts for hydrogen evolution reaction(HER)for the first time,we believe.Different processing parameters are designed to create three groups of samples with different micro/nanostructures.The various micro/nanostructures not only increase the surface area of the Ni electrode but also regulate local electric field and help discharge hydrogen bubbles,which offer more favorable conditions for HER.All groups of the laser-structured Ni exhibit enhanced electrocatalytic activity for HER in the alkaline solution.Electrochemical measurements demonstrate that the overpotential at 10 mAcm−2 can be decreased as much as 182 mV compared with the overpotential of the untreated Ni(−457 mV versus RHE).
基金supported by the International Partnership Program of Chinese Academy of Sciences(Grant No.20XH1217)the National Natural Science Foundation of China(Grant Nos.61975216 and 62205356)the STCSM(Grant No.SKLSFO2022-02)。
文摘Ultrashort pulses at 920 nm are a highly desired light source in two-photon microscopy for the efficient excitation of green fluorescence protein.Although Nd3þ-doped fibers have been utilized for 920-nm ultrashort pulse generation,the competitive amplified spontaneous emission(ASE)at 1.06μm remains a significant challenge in improving their performance.Here,we demonstrate a coordination engineering strategy to tailor the properties of Nd3þ-doped silica glass and fiber.By elevating the covalency between Nd3þand bonded anions via sulfur incorporation,the fiber gain performance at 920 nm is enhanced,and 1.06-μm ASE intensity is suppressed simultaneously.As a result,the continuous-wave laser efficiencies and signal-to-noise ratio at 920 nm by this fiber are significantly enhanced.Importantly,the stable picosecond pulses at 920 nm are produced by a passive mode-locking technique with a fundamental repetition rate up to 207 MHz,which,to the best of our knowledge,is the highest reported repetition rate realized by Nd3þ-doped silica fibers.The presented strategy enriches the capacity of Nd3þ-doped silica fiber in generating 920-nm ultrashort pulses for application in biophotonics,and it also provides a promising way to tune the properties of rare-earth ion-doped silica glasses and fibers toward ultrafast lasers.
基金This work was supported by the Shanghai Municipal Science and Technology Major Project(No.2017SHZDZX02)the National Natural Science Foundation of China(No.12005282)+1 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2021283)the Shanghai Pilot Program for Basic Research—Chinese Academy of Science,Shanghai Branch(JCYJSHFY-2021-010).
文摘The Shanghai high-repetition-rate X-ray free-electron laser and extreme light facility(SHINE)operates at a maximum repetition rate of 1 MHz.Kicker magnets are key components that distribute electron bunches into three different undulator lines in a bunch-by-bunch mode.The kicker field width must be less than the time interval between bunches.A lumpedinductance kicker prototype was developed using a vacuum chamber with a single-turn coil.The full magnetic field strength was 0.005 T.This paper presents the requirements,design considerations,design parameters,magnetic field calculations,and measurements of the kicker magnets.The relevant experimental results are also presented.The pulse width of the magnetic field was approximately 600 ns,and the maximum operation repetition rate was 1 MHz.The developed kicker satisfies the requirements for the SHINE project.Finally,numerous recommendations for the future optimization of kicker magnets are provided.
基金supported by the National Natural Science Foundation of China (Nos. 61927815 and 62075056)the Natural Science Foundation of Tianjin City (No. 22JCYBJC01100)+2 种基金the Natural Science Foundation of Hebei Province (No. F2023202063)the Funds for Basic Scientific Research of Hebei University of Technology (No. JBKYTD2201)support from the Shijiazhuang Overseas Talents Introduction Project (No. 20230004)
文摘The stimulated Brillouin scattering phase conjugation mirror (SBS-PCM) based on liquid media is widely used in high-power laser systems due to its robust thermal load capacity, high energy conversion efficiency and improved beam quality. Nevertheless, with an increase in the pump repetition rate, thermally-induced blooming and optical breakdown can emerge, leading to distortions in the Stokes beam. In this study, we delved into the thermal effects in liquid SBS-PCMs employing hydrodynamic analysis, establishing a relationship between beam profile distortion and the thermal convection field. We calculated the temperature and convection velocity distribution based on the pump light parameters and recorded the corresponding beam profiles. The intensities of the beam profiles were modulated in alignment with the convection directions, reaching a velocity peak of 2.85 mm/s at a pump pulse repetition rate of 250 Hz. The residual sum of squares (RSS) was employed to quantify the extent of beam profile distortion relative to a Gaussian distribution. The RSS escalated to 7.8, in contrast to 0.7 of the pump light at a pump pulse repetition rate of 500 Hz. By suppressing thermal convection using a high-viscosity medium, we effectively mitigated beam distortion. The RSS was reduced to 0.7 at a pump pulse repetition rate of 500 Hz, coinciding with a twentyfold increase in viscosity, thereby enhancing the beam quality. By integrating hydrodynamic analysis, we elucidated and mitigated distortion with targeted solutions. Our research offers an interdisciplinary perspective on studying thermal effects and contributes to the application of SBS-PCMs in high-repetition-rate laser systems by unveiling the mechanism of photothermal effects.
基金supported by the National Natural Science Foundation of China(40774013)
文摘Satellite laser ranging (SLR) is one of the major space geodetic instruments, which has various applications in earth science. In this paper, we introduce several issues regarding the key technology implementation of high-repetition-rate SLR system. Compared with traditional technology, using kHz and 8ps pulse width laser component, the data quantity and quality of high-repetition-rate satellite laser ranging (SLR) can be significantly improved. The characteristics of high-repetition-rate laser ranging and the key technologies are presented, including the event timer with the precision of picosecond, the generation of range gate signal, and so on. All of them are based on the Field Programmable Gate Arrays (FPGA) and tested on China mobile SLR system-TROS1000. Finally, the observations of satellite Beacon-C are given.
基金the FURIAM project FIS20134774-RPALMA project FIS2016-81056-R+2 种基金LaserLab Europe Ⅳ Grant No.654148Junta de Castilla y León Grant No.CLP087U16Unidad de Investigación Consolidada(UIC)167 from Junta de Castilla y León。
文摘We present a scintillator-based detector able to measure the proton energy and the spatial distribution with a relatively simple design.It has been designed and built at the Spanish Center for Pulsed Lasers(CLPU)in Salamanca and tested in the proton accelerator at the Centro de Micro-Análisis de Materiales(CMAM)in Madrid.The detector is capable of being set in the high repetition rate(HRR)mode and reproduces the performance of the radiochromic film detector.It represents a new class of online detectors for laser-plasma physics experiments in the newly emerging high power laser laboratories working at HRR.
基金supported in part by the National Natural Science Foundation of China(Nos.62075116 and 62075117)Natural Science Foundation of Shandong Province(Nos.ZR2019MF039 and ZR2020MF114)+1 种基金Qilu Young Scholars from Shandong UniversityDistinguished Young Scholars from Shandong University。
文摘An actively mode-locked fiber laser with controllable pulse repetition rate and tunable pulse duration is presented,in which an optical delay line(ODL)is used to adjust the cavity length precisely for regulating the repetition rate,and a semiconductor optical amplifier(SOA)is introduced for enabling the pulse duration control.Experimentally,continuous tuning of the repetition rate from 2 GHz to 6 GHz is realized,which is limited by the availability of an even higher repetition rate radiofrequency(RF)source.Specifically,when the repetition rate is fixed at 2.5 GHz,the pulse duration can be tuned from 4 ps to30 ps,which is,to the best of our knowledge,the widest tuning range of pulse duration ever achieved in a gigahertz(GHz)repetition rate actively mode-locked 1.5μm fiber laser oscillator.
基金Japan Science and Technology Agency(JST)Japan Agency for Medical Research and Development(AMED)
文摘We demonstrated stable midinfrared(MIR) optical frequency comb at the 3.0 μm region with difference frequency generation pumped by a high power, Er-doped, ultrashort pulse fiber laser system. A soliton mode-locked161 MHz high repetition rate fiber laser using a single wall carbon nanotube was fabricated. The output pulse was amplified in an Er-doped single mode fiber amplifier, and a 1.1–2.2 μm wideband supercontinuum(SC) with an average power of 205 m W was generated in highly nonlinear fiber. The spectrogram of the generated SC was examined both experimentally and numerically. The generated SC was focused into a nonlinear crystal, and stable generation of MIR comb around the 3 μm wavelength region was realized.
基金National Key R&D Program of China(2017YFA0303703,2016YFA0302500)National Natural Science Foundation of China(NSFC)(61435007,11574144,61475099)+1 种基金Natural Science Foundation of Jiangsu Province,China(BK20150015)Fundamental Research Funds for the Central Universities(021314380086)
文摘By overcoming fabrication limitations, we have successfully fabricated silica toroid microcavities with both large diameter(of 1.88 mm) and ultra-high-Q factor(of 3.3 × 10~8) for the first time, to the best of our knowledge. By employing these resonators, we have further demonstrated low-threshold Kerr frequency combs on a silicon chip,which allow us to obtain a repetition rate as low as 36 GHz. Such a low repetition rate frequency comb can now bedirectly measured through a commercialized optical-electronic detector.
文摘A laser-diode-pumped high-pulse-energy Nd:LiYF4 master oscillator power amplifier 1053 nm laser system is demonstrated. We design a home-made pump module to homogenize the pump intensity through the ray tracing method. To increase the extraction efficiency, the pre-amplifier adopts a double-pass amplification structure. At a repetition rate of 50 Hz, 655 mJ pulse energy and 12.9 ns pulse width of 1053 nm laser is obtained from the master oscillator power amplifier system. The corresponding peak power is 51 MW. The optical-to-optical efficiency of the system is about 9.7%.