The(2+1)-dimensional elliptic Toda equation is a high-dimensional generalization of the Toda lattice and a semidiscrete Kadomtsev–Petviashvili I equation.This paper focuses on investigating the resonant interactions ...The(2+1)-dimensional elliptic Toda equation is a high-dimensional generalization of the Toda lattice and a semidiscrete Kadomtsev–Petviashvili I equation.This paper focuses on investigating the resonant interactions between two breathers,a breather/lump and line solitons as well as lump molecules for the(2+1)-dimensional elliptic Toda equation.Based on the N-soliton solution,we obtain the hybrid solutions consisting of line solitons,breathers and lumps.Through the asymptotic analysis of these hybrid solutions,we derive the phase shifts of the breather,lump and line solitons before and after the interaction between a breather/lump and line solitons.By making the phase shifts infinite,we obtain the resonant solution of two breathers and the resonant solutions of a breather/lump and line solitons.Through the asymptotic analysis of these resonant solutions,we demonstrate that the resonant interactions exhibit the fusion,fission,time-localized breather and rogue lump phenomena.Utilizing the velocity resonance method,we obtain lump–soliton,lump–breather,lump–soliton–breather and lump–breather–breather molecules.The above works have not been reported in the(2+1)-dimensional discrete nonlinear wave equations.展开更多
In this paper, we study the nonclassical properties of the electromagnetic field resulting from the interaction of a three-level ∧-type atom with a two-mode field initially in the coherent state, such as squeezing pr...In this paper, we study the nonclassical properties of the electromagnetic field resulting from the interaction of a three-level ∧-type atom with a two-mode field initially in the coherent state, such as squeezing properties and sub-Poisson statistics. We show that the squeezing can be enhanced by selective atomic measurement.展开更多
We present a scheme in which the N-atom W state is teleported by employing the selective interactionof a cavity field with a driven three-level atom in the A configuration and detecting a single atom in one of the gro...We present a scheme in which the N-atom W state is teleported by employing the selective interactionof a cavity field with a driven three-level atom in the A configuration and detecting a single atom in one of the groundstates.The long-lived W state is teleported from atom A to atom B when the atoms B and A are sent through acavity successively and atom A is then detected.The advantage is that the present one does not involve the Bell-statemeasurement and is robust against the atomic spontaneous emission.展开更多
In this paper, a scheme for generating various multiatom entangled graph states via resonant interactions is proposed. We investigate the generation of various four-atom graph states first in the ideal case and then i...In this paper, a scheme for generating various multiatom entangled graph states via resonant interactions is proposed. We investigate the generation of various four-atom graph states first in the ideal case and then in the case in which the cavity decay and atomic spontaneous emission are taken into consideration in the process of interaction. More importantly, we improve the possible distortion of the graph states coming from cavity decay and atomic spontaneous emission by performing appropriate unitary transforms on atoms. The generation of multiatom entangled graph states is very important for constructing quantum one-way computer in a fault-tolerant manner. The resonant interaction time is very short, which is important in the sense of decoherence. Our scheme is easy and feasible within the reach of current experimental technology.展开更多
We present a scheme for transferring an unknown atomic entangled state with a single resonant interaction. This scheme only requires a single resonant interaction of two atoms with a cavity mode and does not use the c...We present a scheme for transferring an unknown atomic entangled state with a single resonant interaction. This scheme only requires a single resonant interaction of two atoms with a cavity mode and does not use the cavity mode as the memory. Thus the scheme is very simple and the interaction time is very short, which is important, in view of decoherence. Quantum state can be directly transferred from two atoms to another two at, oms with a successful probability of 100 percent.展开更多
An alternative scheme is presented to generate arbitrary anticorrelated states of a two-mode field. In the scheme, a sequence of A-type three-level atoms are orderly sent across the cavity to interact with the cavity ...An alternative scheme is presented to generate arbitrary anticorrelated states of a two-mode field. In the scheme, a sequence of A-type three-level atoms are orderly sent across the cavity to interact with the cavity field initially in the two-mode vacuum state. The detection of all the atoms in the ground state collapses the two-mode field to the desired state. In this way, we can prepare the anticorrelated states of a two-mode field.展开更多
A scheme is presented to generate even-photon state based on resonant interaction between ladder-type three-level atoms with a single-mode field. In the scheme, a sequence of suitably prepared ladder-type three-level ...A scheme is presented to generate even-photon state based on resonant interaction between ladder-type three-level atoms with a single-mode field. In the scheme, a sequence of suitably prepared ladder-type three-level atoms are orderly sent through a single-mode cavity initiaJly in vacuum state. The detection of a J1 the atoms in the ground states collapses the cavity to the desired state. The scheme is based on the resonant interaction of atoms with the cavity, and thus the required interaction time can be greatly shortened. This is important in view of decoherence.展开更多
We propose a potentially practical scheme to implement an approximate three-qubit Toffoli gate by a single resonant interaction in dissipative cavity QED in which the cavity mode decay and atomic spontaneous emission ...We propose a potentially practical scheme to implement an approximate three-qubit Toffoli gate by a single resonant interaction in dissipative cavity QED in which the cavity mode decay and atomic spontaneous emission are considered. The scheme does not require two-qubit controlled-NOT gates but uses a three-qubit phase gate and two Hadamard gates, where the approximate phase gate can be implemented by only a single dissipative resonant interaction of atoms with the cavity mode. Discussions are made for the advantages and the experimental feasibility of our scheme.展开更多
This paper proposes a scheme for the generation of entangled coherent states for two cavity modes. In the scheme a V-type three-level atom is sent through a two-mode cavity filled with a coherent field. After the atom...This paper proposes a scheme for the generation of entangled coherent states for two cavity modes. In the scheme a V-type three-level atom is sent through a two-mode cavity filled with a coherent field. After the atom cavity interaction and detection of the atomic state the cavity modes may evolve to a superposition of two-mode coherent states. As the scheme is based on resonant atom-cavity interaction, the required interaction time is short, which is important in view of the decoherence. Moreover, additional classical pulses are unnecessary before and after the atom-cavlty interaction.展开更多
The basic equations of free capillary_gravity surface_waves in a circular cylindrical basin were derived from Luke's principle. Taking Galerkin's expansion of the velocity potential and the free surface elevat...The basic equations of free capillary_gravity surface_waves in a circular cylindrical basin were derived from Luke's principle. Taking Galerkin's expansion of the velocity potential and the free surface elevation, the second_order perturbation equations were derived by use of expansion of multiple scale. The nonlinear interactions with the second order internal resonance of three free surface_waves were discussed based on the above. The results include:derivation of the couple equations of resonant interactions among three waves and the conservation laws; analysis of the positions of equilibrium points in phase plane; study of the resonant parameters and the non_resonant parameters respectively in all kinds of circumstances; derivation of the stationary solutions of the second_order interaction equations corresponding to different parameters and analysis of the stability property of the solutions; discussion of the effective solutions only in the limited time range. The analysis makes it clear that the energy transformation mode among three waves differs because of the different initial conditions under nontrivial circumstance. The energy may either exchange among three waves periodically or damp or increase in single waves.展开更多
We propose a scheme to implement the n-qubit Deutsch-Jozsa algorithm based on resonant interaction between the atoms and a single-mode cavity. In the scheme, the resonant transitions between two ground states and one ...We propose a scheme to implement the n-qubit Deutsch-Jozsa algorithm based on resonant interaction between the atoms and a single-mode cavity. In the scheme, the resonant transitions between two ground states and one excited state of an atom are changed alternately by adjusting the cavity frequency appropriately, and the operations required to complete the algorithm can be significantly simplified following the increment of the number of qubits. The implementation of the scheme in experiment would show the full power of quantum algorithm and would be significative and important for more complicated quantum algorithm in cavity quantum electrodynamics.展开更多
In this paper we propose a scheme in which two-mode entanglement in a steady state is produced by using two lasers to resonantly drive a single four-level atom embedded inside a two-mode optical cavity. In this scheme...In this paper we propose a scheme in which two-mode entanglement in a steady state is produced by using two lasers to resonantly drive a single four-level atom embedded inside a two-mode optical cavity. In this scheme, atomic coherence induced by a classical laser plays an important role in the process of preparing the entangled state. With the coupling of a strong control field, direct two-photon transition is generated and the relatively weak pump field induces the parametric interaction between two photons, which makes them entangle with each other. By numerical calculation, we find that the degree of entanglement depends strongly on the Rabi frequencies of the classical laser fields and the cavity losses.展开更多
A scheme is proposed for the generation of two-atom maximally entangled states and multi-atom maximally entangled states of W class. The scheme is based on the simultaneous resonant interaction of atoms with a single-...A scheme is proposed for the generation of two-atom maximally entangled states and multi-atom maximally entangled states of W class. The scheme is based on the simultaneous resonant interaction of atoms with a single-mode cavity field. It does not require accurate adjustment of the interaction time. The time needed to complete the generation does not increase with the number of the atom.展开更多
This paper proposes a scheme for generating arbitrary superpositions of several coherent states along a straight line for a cavity mode. In the scheme, several atoms are sent through a cavity initially in a strong coh...This paper proposes a scheme for generating arbitrary superpositions of several coherent states along a straight line for a cavity mode. In the scheme, several atoms are sent through a cavity initially in a strong coherent state. The superposition of several coherent states with desired coefficients may be generated if each atom is detected in the excited state after it exits the cavity. The scheme is based on resonant atom-cavity interaction and no classical field is required during and after the atom cavity interaction. Thus, the scheme is very simple and the interaction time is very short, which is important in view of decoherence.展开更多
We use the photon Green-function method to study the quantum resonant dipole-dipole interaction(RDDI) induced by an Ag nanosphere(ANP).As the distance between the two dipoles increases,the RDDI becomes weaker,whic...We use the photon Green-function method to study the quantum resonant dipole-dipole interaction(RDDI) induced by an Ag nanosphere(ANP).As the distance between the two dipoles increases,the RDDI becomes weaker,which is accompanied by the influence of the higher-order mode of the ANP on RDDI declining more quickly than that of the dipole mode.Across a broad frequency range(above 0.05 eV),the transfer rate of the RDDI is nearly constant since the two dipoles are fixed at the proper position.In addition,this phenomenon still exists for slightly different radius of the ANPs.We find that the frequency corresponding to the maximum transfer rate of RDDI exhibits a monotonic decrease by moving away one dipole as the other dipole and the ANP are kept fixed.In addition,the radius of ANP has little effect on this.When the two dipoles are far from the ANP,the maximum transfer rate of the RDDI takes place at the frequency of the dipole mode.In contrast,when the two dipoles are close to the ANP,the higher-order modes come into effect and they will play a leading role in the RDDI if they match the transition frequency of the dipole.Our results may be used in a biological detector and have a certain guiding significance for further application.展开更多
A simple method is presented for generating multicomponent Schrodinger cat states through resonant atom-field interactions. In the scheme n two-level atoms, initially in ground states, are sent through a resonant cavi...A simple method is presented for generating multicomponent Schrodinger cat states through resonant atom-field interactions. In the scheme n two-level atoms, initially in ground states, are sent through a resonant cavity filled with a strong coherent field sequentially. Then state-selective measurements are performed on the atoms. The detections of the atoms in ground states collapse the cavity field onto a superposition of 2(n) coherent states. This is the first way for producing superpositions of many coherent states through resonant atom-field interaction.展开更多
Some noclassical properties in electromagnetic field are investigated for the interaction of two-modes initially taken in coherent-state representation with the three-level -type atom, such as squeezing properties an...Some noclassical properties in electromagnetic field are investigated for the interaction of two-modes initially taken in coherent-state representation with the three-level -type atom, such as squeezing properties and violation of the Cauchy-Schwartz inequality. The enhancement of field squeezing is found by selective atomic measurement. The Cauchy-Schwartz inequality is violated by the application of the classical field followed by detection in excited state.展开更多
A scheme for implementing a two-qubit phase gate with atoms sent through a high-Q optical cavity is proposed by choosing nonidentical coupling constants between the atoms and cavity. The atomic spontaneous emission ca...A scheme for implementing a two-qubit phase gate with atoms sent through a high-Q optical cavity is proposed by choosing nonidentical coupling constants between the atoms and cavity. The atomic spontaneous emission can be suppressed due to the large atom-field detuning. Moreover, the scheme can be generalized to implement an N-qubit phase gate and the gating time does not change with an increase of the number of qubits.展开更多
A scheme is proposed for generating entangled W states with four cavity modes. In this scheme, we send a V-type three-level atom through two identical two-mode cavities in succession. After the atom exits from the sec...A scheme is proposed for generating entangled W states with four cavity modes. In this scheme, we send a V-type three-level atom through two identical two-mode cavities in succession. After the atom exits from the second cavity, the four cavity modes are prepared in the W state. On the other hand we can obtain three-atom W states by sending three V-type three-level atoms through a two-mode cavity in turn. The present scheme does not require conditional measurement, and it is easily generalized to preparing 2n-mode W states and n-atom W states.展开更多
The existence of specific biorhythms and the role of geomagnetic and/or solar magnetic activities are well-established by appropriate correlations in chronobiology. From a physical viewpoint, there are two different a...The existence of specific biorhythms and the role of geomagnetic and/or solar magnetic activities are well-established by appropriate correlations in chronobiology. From a physical viewpoint, there are two different accesses to biorhythms to set up connections to molecular processes: quantum mechanical perturbation theoretical methods and their resonance dominators to characterize specific interactions between constituents. These methods permit the treatment of molecular processes by circuits with characteristic resonances and “beat-frequencies”, which result from primarily fast physical processes. As examples, the tunneling processes between DNA base pairs (H bonds), the ATP decomposition and the irradiation of tumor cells are accounted for.展开更多
基金the National Natural Science Foundation of China(Grant Nos.12061051 and 11965014)。
文摘The(2+1)-dimensional elliptic Toda equation is a high-dimensional generalization of the Toda lattice and a semidiscrete Kadomtsev–Petviashvili I equation.This paper focuses on investigating the resonant interactions between two breathers,a breather/lump and line solitons as well as lump molecules for the(2+1)-dimensional elliptic Toda equation.Based on the N-soliton solution,we obtain the hybrid solutions consisting of line solitons,breathers and lumps.Through the asymptotic analysis of these hybrid solutions,we derive the phase shifts of the breather,lump and line solitons before and after the interaction between a breather/lump and line solitons.By making the phase shifts infinite,we obtain the resonant solution of two breathers and the resonant solutions of a breather/lump and line solitons.Through the asymptotic analysis of these resonant solutions,we demonstrate that the resonant interactions exhibit the fusion,fission,time-localized breather and rogue lump phenomena.Utilizing the velocity resonance method,we obtain lump–soliton,lump–breather,lump–soliton–breather and lump–breather–breather molecules.The above works have not been reported in the(2+1)-dimensional discrete nonlinear wave equations.
文摘In this paper, we study the nonclassical properties of the electromagnetic field resulting from the interaction of a three-level ∧-type atom with a two-mode field initially in the coherent state, such as squeezing properties and sub-Poisson statistics. We show that the squeezing can be enhanced by selective atomic measurement.
基金Supported by the Natural Science Foundation of Jiangxi,China under Grant No.2008GQW0017the Scientific Research Foundation of Jiangxi Provincial Department of Education under Grant No.GJJ09504the Foundation of Talent of Jinggang of Jiangxi Province under Grant No.2008DQ00400
文摘We present a scheme in which the N-atom W state is teleported by employing the selective interactionof a cavity field with a driven three-level atom in the A configuration and detecting a single atom in one of the groundstates.The long-lived W state is teleported from atom A to atom B when the atoms B and A are sent through acavity successively and atom A is then detected.The advantage is that the present one does not involve the Bell-statemeasurement and is robust against the atomic spontaneous emission.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60678022 and 10704001)the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No 20060357008)+2 种基金Anhui Provincial Natural Science Foundation, China (Grant No 070412060)the Key Program of the Education Department of Anhui Province, China (Grant Nos KJ2008A28ZC, KJ2008B83ZC, KJ2008B265 and KJ2007B082)the Talent Foundation of Anhui University, China,and the Anhui Key Laboratory of Information Materials and Devices (Anhui University), China
文摘In this paper, a scheme for generating various multiatom entangled graph states via resonant interactions is proposed. We investigate the generation of various four-atom graph states first in the ideal case and then in the case in which the cavity decay and atomic spontaneous emission are taken into consideration in the process of interaction. More importantly, we improve the possible distortion of the graph states coming from cavity decay and atomic spontaneous emission by performing appropriate unitary transforms on atoms. The generation of multiatom entangled graph states is very important for constructing quantum one-way computer in a fault-tolerant manner. The resonant interaction time is very short, which is important in the sense of decoherence. Our scheme is easy and feasible within the reach of current experimental technology.
基金The project supported by National Natural Science Foundation of China under Grant No. 10574001, Natural Science Foundation of Anhui Province under Grant No. 050460201, and the Youth Program of Fuyang Teachers College under Grant Nos. 2005LQ04 and 2005LQ03
文摘We present a scheme for transferring an unknown atomic entangled state with a single resonant interaction. This scheme only requires a single resonant interaction of two atoms with a cavity mode and does not use the cavity mode as the memory. Thus the scheme is very simple and the interaction time is very short, which is important, in view of decoherence. Quantum state can be directly transferred from two atoms to another two at, oms with a successful probability of 100 percent.
基金supported by National Natural Science Foundation of China under Grant No.10674025the Fund of Education Department of Fujian Province under Grant No.JB06043
文摘An alternative scheme is presented to generate arbitrary anticorrelated states of a two-mode field. In the scheme, a sequence of A-type three-level atoms are orderly sent across the cavity to interact with the cavity field initially in the two-mode vacuum state. The detection of all the atoms in the ground state collapses the two-mode field to the desired state. In this way, we can prepare the anticorrelated states of a two-mode field.
基金The project supported by the Science Foundation of the Education Department of Fujian Province of China under Grant No.JB06043the Development Funds of Fuzhou University under Grant No.2007-XY-15
文摘A scheme is presented to generate even-photon state based on resonant interaction between ladder-type three-level atoms with a single-mode field. In the scheme, a sequence of suitably prepared ladder-type three-level atoms are orderly sent through a single-mode cavity initiaJly in vacuum state. The detection of a J1 the atoms in the ground states collapses the cavity to the desired state. The scheme is based on the resonant interaction of atoms with the cavity, and thus the required interaction time can be greatly shortened. This is important in view of decoherence.
基金The project supported by National Natural Science Foundation of China under Grant No.10774042National Fundamental Basic Research Program of China under Grant No.2005CB724502+2 种基金Natural Science Foundation of Hunan Province under Grant No.05JJ30005the Scientific Research Fund of Educational Department of Hunan Province under Grant No.05C756the Scientific Research Fund of Hunan Institute of Humanity and Science and Technology under Grant No.2005A008
文摘We propose a potentially practical scheme to implement an approximate three-qubit Toffoli gate by a single resonant interaction in dissipative cavity QED in which the cavity mode decay and atomic spontaneous emission are considered. The scheme does not require two-qubit controlled-NOT gates but uses a three-qubit phase gate and two Hadamard gates, where the approximate phase gate can be implemented by only a single dissipative resonant interaction of atoms with the cavity mode. Discussions are made for the advantages and the experimental feasibility of our scheme.
基金Project supported by the National Natural Science Foundation of China (Grant No 10674025)the Funds from Fuzhou University
文摘This paper proposes a scheme for the generation of entangled coherent states for two cavity modes. In the scheme a V-type three-level atom is sent through a two-mode cavity filled with a coherent field. After the atom cavity interaction and detection of the atomic state the cavity modes may evolve to a superposition of two-mode coherent states. As the scheme is based on resonant atom-cavity interaction, the required interaction time is short, which is important in view of the decoherence. Moreover, additional classical pulses are unnecessary before and after the atom-cavlty interaction.
文摘The basic equations of free capillary_gravity surface_waves in a circular cylindrical basin were derived from Luke's principle. Taking Galerkin's expansion of the velocity potential and the free surface elevation, the second_order perturbation equations were derived by use of expansion of multiple scale. The nonlinear interactions with the second order internal resonance of three free surface_waves were discussed based on the above. The results include:derivation of the couple equations of resonant interactions among three waves and the conservation laws; analysis of the positions of equilibrium points in phase plane; study of the resonant parameters and the non_resonant parameters respectively in all kinds of circumstances; derivation of the stationary solutions of the second_order interaction equations corresponding to different parameters and analysis of the stability property of the solutions; discussion of the effective solutions only in the limited time range. The analysis makes it clear that the energy transformation mode among three waves differs because of the different initial conditions under nontrivial circumstance. The energy may either exchange among three waves periodically or damp or increase in single waves.
基金Project supported by the National Natural Science Foundation of China (Grant No 60667001)
文摘We propose a scheme to implement the n-qubit Deutsch-Jozsa algorithm based on resonant interaction between the atoms and a single-mode cavity. In the scheme, the resonant transitions between two ground states and one excited state of an atom are changed alternately by adjusting the cavity frequency appropriately, and the operations required to complete the algorithm can be significantly simplified following the increment of the number of qubits. The implementation of the scheme in experiment would show the full power of quantum algorithm and would be significative and important for more complicated quantum algorithm in cavity quantum electrodynamics.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11047182,11165008,and 11065007)the Natural Science Foundation of Jiangxi Province,China (Grant Nos. 20114BAB202001 and 2010GQW0011)the Science Foundation of East China Jiaotong University,China (Grant Nos. 10JC03 and 10JC06)
文摘In this paper we propose a scheme in which two-mode entanglement in a steady state is produced by using two lasers to resonantly drive a single four-level atom embedded inside a two-mode optical cavity. In this scheme, atomic coherence induced by a classical laser plays an important role in the process of preparing the entangled state. With the coupling of a strong control field, direct two-photon transition is generated and the relatively weak pump field induces the parametric interaction between two photons, which makes them entangle with each other. By numerical calculation, we find that the degree of entanglement depends strongly on the Rabi frequencies of the classical laser fields and the cavity losses.
基金The project supported by Natural Science Foundation of Fujian Province of China under Grant No. JB05065
文摘A scheme is proposed for the generation of two-atom maximally entangled states and multi-atom maximally entangled states of W class. The scheme is based on the simultaneous resonant interaction of atoms with a single-mode cavity field. It does not require accurate adjustment of the interaction time. The time needed to complete the generation does not increase with the number of the atom.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10674025)the Doctoral Foundation of the Ministry of Education of China (Grant No. 20070386002)
文摘This paper proposes a scheme for generating arbitrary superpositions of several coherent states along a straight line for a cavity mode. In the scheme, several atoms are sent through a cavity initially in a strong coherent state. The superposition of several coherent states with desired coefficients may be generated if each atom is detected in the excited state after it exits the cavity. The scheme is based on resonant atom-cavity interaction and no classical field is required during and after the atom cavity interaction. Thus, the scheme is very simple and the interaction time is very short, which is important in view of decoherence.
基金supported by the National Natural Science Foundation of China(Grant Nos.11347215,11464014,and 11104113)the Natural Science Foundation of Hunan Province,China(Grant Nos.13JJ6059 and 13JJB015)the Natural Science Foundation of Education Department of Hunan Province,China(Grant Nos.13C750 and 13B091)
文摘We use the photon Green-function method to study the quantum resonant dipole-dipole interaction(RDDI) induced by an Ag nanosphere(ANP).As the distance between the two dipoles increases,the RDDI becomes weaker,which is accompanied by the influence of the higher-order mode of the ANP on RDDI declining more quickly than that of the dipole mode.Across a broad frequency range(above 0.05 eV),the transfer rate of the RDDI is nearly constant since the two dipoles are fixed at the proper position.In addition,this phenomenon still exists for slightly different radius of the ANPs.We find that the frequency corresponding to the maximum transfer rate of RDDI exhibits a monotonic decrease by moving away one dipole as the other dipole and the ANP are kept fixed.In addition,the radius of ANP has little effect on this.When the two dipoles are far from the ANP,the maximum transfer rate of the RDDI takes place at the frequency of the dipole mode.In contrast,when the two dipoles are close to the ANP,the higher-order modes come into effect and they will play a leading role in the RDDI if they match the transition frequency of the dipole.Our results may be used in a biological detector and have a certain guiding significance for further application.
基金The project supported by Fok Ying Tung Education Foundation under Grant No. 81008, National Natural Science Foundation of China under Grant Nos. 60008003 and 10225421, and Funds from Fuzhou University
文摘A simple method is presented for generating multicomponent Schrodinger cat states through resonant atom-field interactions. In the scheme n two-level atoms, initially in ground states, are sent through a resonant cavity filled with a strong coherent field sequentially. Then state-selective measurements are performed on the atoms. The detections of the atoms in ground states collapse the cavity field onto a superposition of 2(n) coherent states. This is the first way for producing superpositions of many coherent states through resonant atom-field interaction.
基金The project supported by the Natural Science Foundation of Fujian Province under Grant .No. W0650011 and Funds from Fujian Department of Education under Grant No. JB06041
文摘Some noclassical properties in electromagnetic field are investigated for the interaction of two-modes initially taken in coherent-state representation with the three-level -type atom, such as squeezing properties and violation of the Cauchy-Schwartz inequality. The enhancement of field squeezing is found by selective atomic measurement. The Cauchy-Schwartz inequality is violated by the application of the classical field followed by detection in excited state.
基金Supported by the National Natural Science Foundation of China under Grant No 60667001, and the Education Foundation of Yanbian University.
文摘A scheme for implementing a two-qubit phase gate with atoms sent through a high-Q optical cavity is proposed by choosing nonidentical coupling constants between the atoms and cavity. The atomic spontaneous emission can be suppressed due to the large atom-field detuning. Moreover, the scheme can be generalized to implement an N-qubit phase gate and the gating time does not change with an increase of the number of qubits.
文摘A scheme is proposed for generating entangled W states with four cavity modes. In this scheme, we send a V-type three-level atom through two identical two-mode cavities in succession. After the atom exits from the second cavity, the four cavity modes are prepared in the W state. On the other hand we can obtain three-atom W states by sending three V-type three-level atoms through a two-mode cavity in turn. The present scheme does not require conditional measurement, and it is easily generalized to preparing 2n-mode W states and n-atom W states.
文摘The existence of specific biorhythms and the role of geomagnetic and/or solar magnetic activities are well-established by appropriate correlations in chronobiology. From a physical viewpoint, there are two different accesses to biorhythms to set up connections to molecular processes: quantum mechanical perturbation theoretical methods and their resonance dominators to characterize specific interactions between constituents. These methods permit the treatment of molecular processes by circuits with characteristic resonances and “beat-frequencies”, which result from primarily fast physical processes. As examples, the tunneling processes between DNA base pairs (H bonds), the ATP decomposition and the irradiation of tumor cells are accounted for.