To cope with the problems that edge detection operators are liable to make the detected edges too blurry for synthetic aperture radar(SAR)images,an edge detection method for detecting river in SAR images is proposed b...To cope with the problems that edge detection operators are liable to make the detected edges too blurry for synthetic aperture radar(SAR)images,an edge detection method for detecting river in SAR images is proposed based on contourlet modulus maxima and improved mathematical morphology.The SAR image is firstly transformed to a contourlet domain.According to the directional information and gradient information of directional subband of contourlet transform,the modulus maximum and the improved mathematical morphology are used to detect high frequency and low frequency sub-image edges,respectively.Subsequently,the edges of river in SAR image are obtained after fusing the high frequency sub-image and the low frequency sub-image.Experimental results demonstrate that the proposed edge detection method can obtain more accurate edge location and reduce false edges,compared with the Canny method,the method based on wavelet and Canny,the method based on contourlet modulus maxima,and the method based on improved(ROEWA).The obtained river edges are complete and clear.展开更多
Accurate winter wheat identification and phenology extraction are essential for field management and agricultural policy making. Here, we present mechanisms of winter wheat discrimination and phenological detection in...Accurate winter wheat identification and phenology extraction are essential for field management and agricultural policy making. Here, we present mechanisms of winter wheat discrimination and phenological detection in the Yellow River Delta(YRD) region using moderate resolution imaging spectroradiometer(MODIS) time-series data. The normalized difference vegetation index(NDVI) was obtained by calculating the surface reflectance in red and infrared. We used the Savitzky-Golay filter to smooth time series NDVI curves. We adopted a two-step classification to identify winter wheat. The first step was designed to mask out non-vegetation classes, and the second step aimed to identify winter wheat from other vegetation based on its phenological features. We used the double Gaussian model and the maximum curvature method to extract phenology. Due to the characteristics of the time-series profiles for winter wheat, a double Gaussian function method was selected to fit the temporal profile. A maximum curvature method was performed to extract phenological phases. Phenological phases such as the green-up, heading and harvesting phases were detected when the NDVI curvature exhibited local maximum values. The extracted phenological dates then were validated with records of the ground observations. The spatial patterns of phenological phases were investigated. This study concluded that, for winter wheat, the accuracy of classification is 87.07%, and the accuracy of planting acreage is 90.09%. The phenological result was comparable to the ground observation at the municipal level. The average green-up date for the whole region occurred on March 5, the average heading date occurred on May 9, and the average harvesting date occurred on June 5. The spatial distribution of the phenology for winter wheat showed a significant gradual delay from the southwest to the northeast. This study demonstrates the effectiveness of our proposed method for winter wheat classification and phenology detection.展开更多
基金Supported by the CRSRI Open Research Program(CKWV2013225/KY)the Open Project Foundation of Key Laboratory of the Yellow River Sediment of Ministry of Water Resource(2014006)+2 种基金the Open Project Foundation of Key Lab of Port,Waterway and Sedimentation Engineering of the Ministry of Transportthe State Key Lab of Urban Water Resource and Environment(HIT)(ES201409)the Priority Academic Program Development of Jiangsu Higher Education Institution
文摘To cope with the problems that edge detection operators are liable to make the detected edges too blurry for synthetic aperture radar(SAR)images,an edge detection method for detecting river in SAR images is proposed based on contourlet modulus maxima and improved mathematical morphology.The SAR image is firstly transformed to a contourlet domain.According to the directional information and gradient information of directional subband of contourlet transform,the modulus maximum and the improved mathematical morphology are used to detect high frequency and low frequency sub-image edges,respectively.Subsequently,the edges of river in SAR image are obtained after fusing the high frequency sub-image and the low frequency sub-image.Experimental results demonstrate that the proposed edge detection method can obtain more accurate edge location and reduce false edges,compared with the Canny method,the method based on wavelet and Canny,the method based on contourlet modulus maxima,and the method based on improved(ROEWA).The obtained river edges are complete and clear.
基金supported by the National Natural Science Foundation of China (41471335, 41271407)the National Remote Sensing Survey and Assessment of Eco-Environment Change between 2000 and 2010, China (STSN-1500)+2 种基金the National Key Technologies R&D Program of China during the 12th Five-Year Plan period (2013BAD05B03)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05050601)the International Science and Technology (S&T) Cooperation Program of China (2012DFG22050)
文摘Accurate winter wheat identification and phenology extraction are essential for field management and agricultural policy making. Here, we present mechanisms of winter wheat discrimination and phenological detection in the Yellow River Delta(YRD) region using moderate resolution imaging spectroradiometer(MODIS) time-series data. The normalized difference vegetation index(NDVI) was obtained by calculating the surface reflectance in red and infrared. We used the Savitzky-Golay filter to smooth time series NDVI curves. We adopted a two-step classification to identify winter wheat. The first step was designed to mask out non-vegetation classes, and the second step aimed to identify winter wheat from other vegetation based on its phenological features. We used the double Gaussian model and the maximum curvature method to extract phenology. Due to the characteristics of the time-series profiles for winter wheat, a double Gaussian function method was selected to fit the temporal profile. A maximum curvature method was performed to extract phenological phases. Phenological phases such as the green-up, heading and harvesting phases were detected when the NDVI curvature exhibited local maximum values. The extracted phenological dates then were validated with records of the ground observations. The spatial patterns of phenological phases were investigated. This study concluded that, for winter wheat, the accuracy of classification is 87.07%, and the accuracy of planting acreage is 90.09%. The phenological result was comparable to the ground observation at the municipal level. The average green-up date for the whole region occurred on March 5, the average heading date occurred on May 9, and the average harvesting date occurred on June 5. The spatial distribution of the phenology for winter wheat showed a significant gradual delay from the southwest to the northeast. This study demonstrates the effectiveness of our proposed method for winter wheat classification and phenology detection.