期刊文献+
共找到1,495篇文章
< 1 2 75 >
每页显示 20 50 100
Synergistic instability of coal pillar and roof system and filling method based on plate model 被引量:18
1
作者 Liu Congliang Tan Zhixiang +1 位作者 Deng Kazhong Li Peixian 《International Journal of Mining Science and Technology》 SCIE EI 2013年第1期145-149,共5页
The security challenges from room and pillar gobs include land subsidence, spontaneous combustion of coal pillars and mine flood caused by gob water. To explore the instability mechanism of room and pillar gob, we est... The security challenges from room and pillar gobs include land subsidence, spontaneous combustion of coal pillars and mine flood caused by gob water. To explore the instability mechanism of room and pillar gob, we established a mechanical model of elastic plate on elastic foundation in which pillars and hard roofs were considered as continuous Winkler foundations and elastic plates, respectively. The synergetic instability of pillar and roof system was analyzed based on plate bending theory and catastrophe theory. In addition, mechanical conditions and math criterion of roof failure and overall instability of coal pillar and roof system were given. Through analyzing both advantages and disadvantages of some technologies such as induced caving, filling, gob sealing and isolation, we presented a new filling method named box-filling, in view of box foundation theory, to control the disasters of ground collapse, water inrush and mine fire. In a gob's treatment project in Ordos, safety assessment and filling design of a room and pillar gob have been done by the mechanical model. The results show that the gob will collapse when the pillars' average yield band is wider than 0.93 m, and box-filling can control land collapse, mine flood and mine fire economically and efficiently. So it is worth to study further and popularize. 展开更多
关键词 Room and pillar gob Hard roof Synergetic instability Elastic foundation plate Box-filling
下载PDF
Analysis on stability of pillar and stiff roof system in the gob area 被引量:2
2
作者 LIU Hong HU Qian-ting +1 位作者 WANG Jin-an LI Jian-gong 《Journal of Coal Science & Engineering(China)》 2009年第2期206-209,共4页
Based on the open stope method,the stability of the gob area was decided bypillars and stiff roof.Therefore,it was dispensable to leave pillars with long-term strengthand enough size to support the stiff roof during m... Based on the open stope method,the stability of the gob area was decided bypillars and stiff roof.Therefore,it was dispensable to leave pillars with long-term strengthand enough size to support the stiff roof during mining activities.Based on the miningconditions of Baixiang wollastonite mine in Changxing County of Zhejiang,while consideringpillars with different shape,irregular size,and distribution,the load imposed on the pillarswas analyzed,and the safety coefficient was calculated in order to determine theirsupport status.The strength of stiff roof was calculated by means of analytical solution-theory of rectangle thin plate rested on elastic foundation.The system stability ofpillar and stiff roof was analyzed according to the proportion of the total cross section areaof pillars to the stiff roof area above the mined area. 展开更多
关键词 PILLAR IRREGULAR support conditions safety coefficient stiff roof STABILITY
下载PDF
Performance Evaluation of Hybrid Green Roof System in a Subtropical Climate Using Fluent
3
作者 S. F. Ahmed T. Ahasan +2 位作者 M. G. Rasul M. M. K. Khan A. K. Azad 《Journal of Power and Energy Engineering》 2014年第4期113-119,共7页
Energy disaster is one of the major obstacles in the progress of human society. There are some on-going researches to overcome this for a sustainable environment. Green roof system is one of them which assist to reduc... Energy disaster is one of the major obstacles in the progress of human society. There are some on-going researches to overcome this for a sustainable environment. Green roof system is one of them which assist to reduce energy consumption of the buildings. The green roof system for a building involves a green roof that is partially or completely covered with vegetation and plant over a waterproofing membrane. Green roofs provide shade and remove heat from the air through evapotranspiration, reducing temperatures of the roof surface and the surrounding air. This paper reports the thermal performance of hybrid green roof system for a hot and humid subtropical climatic zone in Queensland, Australia. A thermal model is developed for the green roof system using ANSYS Fluent. Data were collected from two modelled rooms, one connected with green roof system and other non-green roof system. The rooms were built from two shipping containers and?installed at Central Queensland University, Rockhampton, Australia. Impact of air temperature on room cooling performance is assessed in this study. A temperature reduction of 0.95&deg;C was observed in the room with green roof which will save energy cost in buildings. Only 1.7% variation in temperature was found in numerical result in comparison with experimental result. 展开更多
关键词 THERMAL Performance Green roof SUBTROPICAL CLIMATE ANSYS FLUENT
下载PDF
Fuzzy inference system using genetic algorithm and pattern search for predicting roof fall rate in underground coal mines
4
作者 Ayush Sahu Satish Sinha Haider Banka 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期31-41,共11页
One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operati... One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operations.As a result,a reliable roof fall prediction model is essential to tackle such challenges.Different parameters that substantially impact roof falls are ill-defined and intangible,making this an uncertain and challenging research issue.The National Institute for Occupational Safety and Health assembled a national database of roof performance from 37 coal mines to explore the factors contributing to roof falls.Data acquired for 37 mines is limited due to several restrictions,which increased the likelihood of incompleteness.Fuzzy logic is a technique for coping with ambiguity,incompleteness,and uncertainty.Therefore,In this paper,the fuzzy inference method is presented,which employs a genetic algorithm to create fuzzy rules based on 109 records of roof fall data and pattern search to refine the membership functions of parameters.The performance of the deployed model is evaluated using statistical measures such as the Root-Mean-Square Error,Mean-Absolute-Error,and coefficient of determination(R_(2)).Based on these criteria,the suggested model outperforms the existing models to precisely predict roof fall rates using fewer fuzzy rules. 展开更多
关键词 Underground coal mining roof fall Fuzzy logic Genetic algorithm
下载PDF
Instability mechanism of mining roadway passing through fault at different angles in kilometre-deep mine and control measures of roof cutting and NPR cables 被引量:2
5
作者 SUN Xiaoming WANG Jian +6 位作者 ZHAO Wenchao MING Jiang ZHANG Yong LI Zhihu MIAO Chengyu GUO Zhibiao HE Manchao 《Journal of Mountain Science》 SCIE CSCD 2024年第1期236-251,共16页
The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and ... The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway. 展开更多
关键词 Kilometre-deep mine Fault Mining roadway Failure mechanism Pre-splitting cutting roof High pre-stress NPR anchor cable
下载PDF
Deformation mechanism and roof pre-splitting control technology of gob-side entry in thick hard main roof full-mechanized longwall caving panel
6
作者 WANG Hao-sen HE Man-chao +6 位作者 WANG Jiong YANG Gang MAZi-min MING Can WANG Rui FENG Zeng-chao ZHANG Wen-jie 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3206-3224,共19页
This paper explores the deformation mechanism and control technology of roof pre-splitting for gob-side entries in hard roof full-mechanized longwall caving panel(LTCC).The investigation utilizes a comprehensive appro... This paper explores the deformation mechanism and control technology of roof pre-splitting for gob-side entries in hard roof full-mechanized longwall caving panel(LTCC).The investigation utilizes a comprehensive approach that integrates field monitoring,theoretical analysis,and numerical simulation.Theoretical analysis has illuminated the influence of the length of the lateral cantilever beam of the main roof(LCBM)above the roadway on the stability of the gob-side entry behind the panel.Numerical simulations have further revealed that the longer LCBM results in heightened vertical stress within the coal pillar,developed cracks around the roadway,and more pronounced damage to the roadway.Moreover,numerical simulations also demonstrate the potential of roof pre-splitting technology in optimizing the fracture position of the hard roof.This technology significantly reduces the length of the LCBM,thereby alleviating stress concentration in the coal pillars and integrated coal rib while minimizing the destruction of the gob-side entry.Therefore,this manuscript first proposes the use of roof pre-splitting technology to control roadway deformation,and automatically retain the entry within a hard roof LTCC panel.Field implementation has demonstrated that the proposed automatically retained entry by roof pre-splitting technology effectively reduces gob-side entry deformation and achieves automatically retained entry. 展开更多
关键词 deformation mechanism hard roof gob-side entry cantilever beam roof pre-spliting
下载PDF
Ground response and failure mechanism of gob-side entry by roof cutting with hard main roof
7
作者 ZHU Heng-zhong XU Lei WEN Zhi-jie 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2488-2512,共25页
This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensi... This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensive field measurement program was conducted to determine entry deformation,roof fracture zone,and anchor bolt(cable)loading.The results indicate that GSERC deformation presents asymmetric characteristics.The maximum convergence near roof cutting side is 458 mm during the primary use process and 1120 mm during the secondary reuse process.The entry deformation is closely associated with the primary development stage,primary use stage,and secondary reuse stage.The key block movement of roof cutting structure,a complex stress environment,and a mismatch in the supporting design scheme are the failure mechanism of GSERC.A controlling ideology for mining states,including regional and stage divisions,was proposed.Both dynamic and permanent support schemes have been implemented in the field.Engineering practice results indicate that the new support scheme can efficiently ensure long-term entry safety and could be a reliable approach for other engineering practices. 展开更多
关键词 gob-side entry by roof cutting ground response failure mechanism following mining states control hard main roof
下载PDF
Assessment and control of the mine tremor disaster induced by the energy accumulation and dispersion of thick-hard roofs
8
作者 Bin Yu Mingxian Peng +1 位作者 Yang Tai Shuai Guo 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第7期925-941,共17页
In order to solve the problem that current theory models cannot accurately describe thick-hard roof(THR)elastic energy and assess the mine tremor disasters,a theoretical method,a Timoshenko beam theory on Winkler foun... In order to solve the problem that current theory models cannot accurately describe thick-hard roof(THR)elastic energy and assess the mine tremor disasters,a theoretical method,a Timoshenko beam theory on Winkler foundation was adopted to establish the THR’s periodic breaking model.The superposition principle was used for this complex model to derive the calculation formulas of the elastic energy and impact load on hydraulic supports.Then,the influence of roof thickness h,cantilever length L_(1),and load q on THR’s elastic energy and impact load was analyzed.And,the effect of mine tremor disasters was assessed.Finally,it is revealed that:(1)The THR’s elastic energy U exhibits power-law variations,with the fitted relationships U=0.0096L_(1)^(3.5866^),U=5943.9h^(-1.935),and U=21.049q^(2).(2)The impact load on hydraulic supports F_(ZJ) increases linearly with an increase in the cantilever length,thickness,and applied load.The fitted relationships are F_(ZJ)=1067.3L_(1)+6361.1,F_(ZJ)=125.89h+15100,and F_(ZJ)=10420q+3912.6.(3)Ground hydraulic fracturing and liquid explosive deep-hole blasting techniques effectively reduce the THR’s cantilever length at periodic breakages,thus eliminating mine tremor disasters. 展开更多
关键词 Dynamic disaster Energy Hard and thick roof Timoshenko beam
下载PDF
Physical and numerical investigations of target stratum selection for ground hydraulic fracturing of multiple hard roofs
9
作者 Binwei Xia Yanmin Zhou +2 位作者 Xingguo Zhang Lei Zhou Zikun Ma 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期699-712,共14页
Ground hydraulic fracturing plays a crucial role in controlling the far-field hard roof,making it imperative to identify the most suitable target stratum for effective control.Physical experiments are conducted based ... Ground hydraulic fracturing plays a crucial role in controlling the far-field hard roof,making it imperative to identify the most suitable target stratum for effective control.Physical experiments are conducted based on engineering properties to simulate the gradual collapse of the roof during longwall top coal caving(LTCC).A numerical model is established using the material point method(MPM)and the strain-softening damage constitutive model according to the structure of the physical model.Numerical simulations are conducted to analyze the LTCC process under different hard roofs for ground hydraulic fracturing.The results show that ground hydraulic fracturing releases the energy and stress of the target stratum,resulting in a substantial lag in the fracturing of the overburden before collapse occurs in the hydraulic fracturing stratum.Ground hydraulic fracturing of a low hard roof reduces the lag effect of hydraulic fractures,dissipates the energy consumed by the fracture of the hard roof,and reduces the abutment stress.Therefore,it is advisable to prioritize the selection of the lower hard roof as the target stratum. 展开更多
关键词 Target stratum selection Ground hydraulic fracturing Hard roof control Fracture network Material point method
下载PDF
Fracture propagation and evolution law of indirect fracturing in the roof of broken soft coal seams
10
作者 Haifeng Zhao Pengyue Li +1 位作者 Xuejiao Li Wenjie Yao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期78-102,共25页
Indirect fracturing in the roof of broken soft coal seams has been demonstrated to be a feasible technology.In this work,the No.5 coal seam in the Hancheng block was taken as the research object.Based on the findings ... Indirect fracturing in the roof of broken soft coal seams has been demonstrated to be a feasible technology.In this work,the No.5 coal seam in the Hancheng block was taken as the research object.Based on the findings of true triaxial hydraulic fracturing experiments and field pilot under this technology and the cohesive element method,a 3D numerical model of indirect fracturing in the roof of broken soft coal seams was established,the fracture morphology propagation and evolution law under different conditions was investigated,and analysis of main controlling factors of fracture parameters was conducted with the combination weight method,which was based on grey incidence,analytic hierarchy process and entropy weight method.The results show that“士”-shaped fractures,T-shaped fractures,cross fractures,H-shaped fractures,and“干”-shaped fractures dominated by horizontal fractures were formed.Different parameter combinations can form different fracture morphologies.When the coal seam permeability is lower and the minimum horizontal principal stress difference between layers and fracturing fluid injection rate are both larger,it tends to form“士”-shaped fractures.When the coal seam permeability and minimum horizontal principal stress between layers and perforation position are moderate,cross fractures are easily generated.Different fracture parameters have different main controlling factors.Engineering factors of perforation location,fracturing fluid injection rate and viscosity are the dominant factors of hydraulic fracture shape parameters.This study can provide a reference for the design of indirect fracturing in the roof of broken soft coal seams. 展开更多
关键词 Indirect fracturing roof of coal seam Fracture propagation and evolution Coalbed methane Cohesive element method Combination weight method
下载PDF
Bearing mechanism of roof and rib support structure in automatically formed roadway and its support design method
11
作者 JIANG Bei WANG Ming-zi +4 位作者 WANG Qi XIN Zhong-xin XING Xue-yang DENG Yu-song YAO Liang-di 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2467-2487,共21页
Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the succ... Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the successful application of the new method.In order to realize the stability control of the roadway surrounding rock,the mechanical model of the roof and rib support structure is established,and the influence mechanism of the automatically formed roadway parameters on the compound force is revealed.On this basis,the roof and rib support structure technology of confined lightweight concrete is proposed,and its mechanical tests under different eccentricity are carried out.The results show that the bearing capacity of confined lightweight concrete specimens is basically the same as that of ordinary confined concrete specimens.The bearing capacity of confined lightweight concrete specimens under different eccentricities is 1.95 times higher than those of U-shaped steel specimens.By comparing the test results with the theoretical calculated results of the confined concrete,the calculation method of the bearing capacity for the confined lightweight concrete structure is selected.The design method of confined lightweight concrete support structure is established,and is successfully applied in the extra-large mine,Ningtiaota Coal Mine,China. 展开更多
关键词 automatically roadway with non-pillar confined lightweight concrete roof and rib support mechanical model bearing behaviour
下载PDF
Combined blasting for protection of gob-side roadway with thick and hard roof
12
作者 Qiang Fu Jun Yang +4 位作者 Yubing Gao Changjiang Li Hongxu Song Yuxuan Liu Xing Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3165-3180,共16页
The deformation control of surrounding rock in gobside roadway with thick and hard roof poses a significant challenge to the safety and efficiency of coal mining.To address this issue,a novel approach combining direct... The deformation control of surrounding rock in gobside roadway with thick and hard roof poses a significant challenge to the safety and efficiency of coal mining.To address this issue,a novel approach combining directional and non-directional blasting techniques,known as combined blasting,was proposed.This study focuses on the experimental investigation of the proposed method in the 122108 working face in Caojiatan Coal Mine as the engineering background.The initial phase of the study involves physical model experiments to reveal the underlying mechanisms of combined blasting for protecting gob-side roadway with thick and hard roof.The results demonstrate that this approach effectively accelerates the collapse of thick and hard roofs,enhances the fragmentation and expansion coefficient of gangue,facilitates the filling of the goaf with gangue,and provides support to the overlying strata,thus reducing the subsidence of the overlying strata above the goaf.Additionally,the method involves cutting the main roof into shorter beams to decrease the stress and disrupt stress transmission pathways.Subsequent numerical simulations were conducted to corroborate the findings of the physical model experiments,thus validating the accuracy of the experimental results.Furthermore,field engineering experiments were performed,affirming the efficacy of the combined blasting method in mitigating the deformation of surrounding rock and achieving the desired protection of the gob-side roadway. 展开更多
关键词 Thick and hard roof Surrounding rock control Combined blasting Fragmentation and expansion support stress relief
下载PDF
Experimental Assessment of the Thermal Performance of Two Corrugated Metal Roofs
13
作者 Kouamé Jean-Louis Kouakou Ekoun Paul Magloire Koffi +1 位作者 Bi Tra Désiré Zinla Prosper Gbaha 《Open Journal of Applied Sciences》 2024年第9期2374-2392,共19页
This experimental study is a contribution to the search for solutions to reduce indoor heat gain through sheet metal roofing in hot weather. It has evaluated the thermal impact of two different sheet metal roofs insid... This experimental study is a contribution to the search for solutions to reduce indoor heat gain through sheet metal roofing in hot weather. It has evaluated the thermal impact of two different sheet metal roofs inside of two identical test buildings in sunny weather and cloudy weather conditions. Test building 1 has a single sheet corrugated roof and the building 2 is covered with roof made from top to bottom with corrugated sheet metal, a 12 mm thick serpentine copper tube in which water is circulated, a sheet of aluminium foil acting as a heat reflector, a 4 cm thick polystyrene panel and a 1.5 cm thick plywood. A maximum reduction of 15.1˚C in the temperature of the inner face of the test Building 2 roof was obtained comparatively to the temperature of the inner face of the test Building 1 roof consisting of a single sheet of metal at the warmest hours. In addition, the simple corrugated sheet metal roof of the test building generates high and varied temperatures inside the building. Whereas the proposed heat recovery roof favours low and relatively uniform temperatures inside the building. The proposed sheet metal roof construction technique is very effective in reducing the heat gain through the roof considerably;thus improving the thermal comfort inside sheet metal roofed dwellings. Hot water has been produced by recovering heat from the metal sheet of the roof of test building 2. The temperature of the hot water produced reached of 39˚C. This study could be also an alternative for the reduction of energy consumption due to the use of mechanical means for cooling of sheet metal roofed houses and the reduction of the use of fossil fuels for domestic hot water production. 展开更多
关键词 METAL roof Corrugated Time Lag Decrement Factor
下载PDF
Estimating runoff coefficient for quantity assessment of roof rainwater harvesting system 被引量:1
14
作者 张炜 李思敏 唐锋兵 《Journal of Southeast University(English Edition)》 EI CAS 2014年第2期220-224,共5页
In order to accurately estimate the runoff coefficient for the quantity assessment of the roof rainwater harvesting system RRHS great differences in the value of event runoff coefficient ψERC were observed by field m... In order to accurately estimate the runoff coefficient for the quantity assessment of the roof rainwater harvesting system RRHS great differences in the value of event runoff coefficient ψERC were observed by field monitoring under different roof types roof slope and material and diverse rainfall distributions rainfall depth and intensity in three years 2010 to 2012 in Handan Hebei China.The results indicate that the distribution of ψERC is more highly correlated with the event rainfall depth than other factors. The relationship between ψERC and the rainfall depth can be well represented by the piecewise linear function.Further based on the daily rainfall data over the period from 1960 to 2008 the value of the annual runoff coefficient ψARC is calculated. Although the total rainfall depth in each year is different ψARC in Handan can be considered as a constant 0.62 approximately. The results can be used for the quantity assessment and performance analysis of the RRHS. 展开更多
关键词 roof rainwater harvesting system event runoff coefficient annual runoff coefficient rainfall depth
下载PDF
Application of Automatic Water-saving Irrigation System in Roof Gardens 被引量:1
15
作者 周炼 张美 《Journal of Landscape Research》 2009年第4期75-79,共5页
Based on the special site conditions of roof gardens,it was put forward to introduce automatic water-saving irrigation system into the roof garden constructions,such as the solar energy and microcomputer auto water-sa... Based on the special site conditions of roof gardens,it was put forward to introduce automatic water-saving irrigation system into the roof garden constructions,such as the solar energy and microcomputer auto water-saving irrigation system,aiming to solve the photosynthetic noon break phenomenon of plants and relieve the stress from high temperature. 展开更多
关键词 AUTOMATIC IRRIGATION WATER-SAVING IRRIGATION roof GARDEN
下载PDF
Predicting roof displacement of roadways in underground coal mines using adaptive neuro-fuzzy inference system optimized by various physics-based optimization algorithms 被引量:7
16
作者 Chengyu Xie Hoang Nguyen +2 位作者 Xuan-Nam Bui Van-Thieu Nguyen Jian Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1452-1465,共14页
Due to the rapid industrialization and the development of the economy in each country,the demand for energy is increasing rapidly.The coal mines have to pace up the mining operations with large production to meet the ... Due to the rapid industrialization and the development of the economy in each country,the demand for energy is increasing rapidly.The coal mines have to pace up the mining operations with large production to meet the energy demand.This requirement has led underground coal mines to go deeper with more difficult conditions,especially the mining hazards,such as large deformations,rockburst,coal burst,roof collapse,to name a few.Therefore,this study aims at investigating and predicting the stability of the roadways in underground coal mines exploited by longwall mining method,using various novel intelligent techniques based on physics-based optimization algorithms(i.e.multi-verse optimizer(MVO),equilibrium optimizer(EO),simulated annealing(SA),and Henry gas solubility optimization(HGSO)) and adaptive neuro-fuzzy inference system(ANFIS),named as MVO-ANFIS,EO-ANFIS,SA-ANFIS and HGSOANFIS models.Accordingly,162 roof displacement events were investigated based on the characteristics of surrounding rocks,such as cohesion,Young’s modulus,density,shear strength,angle of internal friction,uniaxial compressive strength,quench durability index,rock mass rating,and tensile strength.The MVO-ANFIS,EO-ANFIS,SA-ANFIS and HGSO-ANFIS models were then developed and evaluated based on this dataset for predicting roof displacements in roadways of underground mines.The results indicated that the proposed intelligent techniques could accurately predict the roof displacements in roadways of underground mines with an accuracy in the range of 83%-92%.Remarkably,the SA-ANFIS model yielded the most dominant accuracy(i.e.92%).Based on the accurate predictions from the proposed techniques,the reinforced solutions can be timely suggested to ensure the stability of roadways during exploiting coal,especially in the underground coal mines exploited by the longwall mining. 展开更多
关键词 roof displacement Longwall mining Underground mine Physics-based optimization Risk assessment Mining hazards
下载PDF
Similar material simulation of time series system for induced caving of roof in continuous mining under backfill 被引量:9
17
作者 高峰 周科平 +1 位作者 董卫军 苏家红 《Journal of Central South University of Technology》 EI 2008年第3期356-360,共5页
With the help of similar material simulation test,time series system for induced caving of roof in continuous mining under complex backfill in ore body No.92 of Tongkeng Tin Mine was studied. According to the similari... With the help of similar material simulation test,time series system for induced caving of roof in continuous mining under complex backfill in ore body No.92 of Tongkeng Tin Mine was studied. According to the similarity theory,a two-dimensional similar simulation test-bed was constructed. The stress and displacement that change along with the advance of mining were acquired and analyzed automatically by data system. The processes of continuous mining of ore-block in 5 intervals and artificial induced caving of roof were simulated. The results of the test show that ore body remained as safety roof in thickness of 15 m guarantees the safe advance of stoping work face. Caving of safety roof puts in practice at the first two mining intervals when the third interval of continuous mining is finished,and one interval as the safety distance should be kept all the time between stopping and caving. While mining in the last interval,pre-slotting should be implemented first of all,and the roof of the last two mining intervals is caved simultaneously. Only this kind of time series system can be an efficient and safe way for induced caving of roof in continuous mining. 展开更多
关键词 continuous mining induced caving similar material simulation safety roof SLOTTING
下载PDF
Composite active control system of roof and side truss cable for large section coal roadway in fold coal pillar area 被引量:5
18
作者 Sheng-Rong XIE Er-Peng LI Fu-Lian HE Shou-Bao ZHANG Guang-Chao ZHANG Mao-Yu PANG 《Journal of Coal Science & Engineering(China)》 2013年第2期126-132,共7页
In order to solve the surrounding rock control problem of large section gangue replacement roadway under complicated conditions, this paper analyzed the impact to the roadway controlling produced by the geological con... In order to solve the surrounding rock control problem of large section gangue replacement roadway under complicated conditions, this paper analyzed the impact to the roadway controlling produced by the geological conditions such as high ground stress, folded structure tilted roof asymmetry and soft wall rock, and built the tilt layered roof structural mechanics model to clarify the increase span mechanism of the weak coal instability. Then, we proposed the combined control system including roof inclined truss cable, coal-side cable-channel steel and intensive bolt support. And then by building the structural mechanics model of roof inclined truss cable system, the support principle was described. Besides, according to this model, we deduced the calculation formula of cable anchoring force and its tensile stress. Finally surrounding rock control technology of large section roadway in fold coal pillar area was formed. Field practice shows that the greatest roof convergence of gangue replacement roadway is 158 mm and coal-side deformation is 243 mm. Roadway deformation is controlled effectively and technical support is provided for replacement mining. 展开更多
关键词 fold coal pillar area increase span mechanism roof inclined truss cable system coal-side cable-channel steel structural mechanics model
下载PDF
One-time Shaping Technological System of Lightweight Roof Greening 被引量:1
19
作者 殷金岩 许建新 +5 位作者 罗旭荣 骆华容 黎修东 唐巧玲 王玲玲 何新杰 《Agricultural Science & Technology》 CAS 2016年第6期1471-1474,共4页
Lightweight roof greening is an important way for improving urban ecological environment and has good ecological and social benefits, but the investment is- too-high for the investors. Therefore, it is necessary to im... Lightweight roof greening is an important way for improving urban ecological environment and has good ecological and social benefits, but the investment is- too-high for the investors. Therefore, it is necessary to improve the system of lightweight roof greening. This study introduced a lightweight roof greening mode with low cost, simple construction, rapid formation, good economic benefit and convenient curing. 展开更多
关键词 Lightweight roof greening One-time shaping technology Plant mat
下载PDF
Mechanical and Experimental Study of Sprinkling Water Cooling System on Roof of Shanghai Expo Theme Pavilion
20
作者 ZHAO Hui-zhong1,HUANG Chen1,LI Wei-xiang2,SHI Jin-yue2,TAO Si-yuan1,WANG Qian1,WANG Yu-qing1,ZHANG Min3(1.College of Urban Construction and Environment Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China 2.Architectural Design & Research Institute of Tongji University,Shanghai 200092,China 3.College of Food Science Technology,Shanghai Ocean University,Shanghai 201306,China) 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第S1期156-159,共4页
Based on the similarity theory,a scale effect model of the spraying water cooling system of Shanghai expo Theme Pavilion's roof was set up.According to the typical weather conditions in Shanghai city,different mod... Based on the similarity theory,a scale effect model of the spraying water cooling system of Shanghai expo Theme Pavilion's roof was set up.According to the typical weather conditions in Shanghai city,different models were analyzed on solar radiation,and different heat transfer amount was obtained.And the following conclusions could be made:At the sunny day of summer in Shanghai,the temperature of inner roof with sprinkling system descended about 3 ℃,and the air conditioning load of the whole Theme Pavilion descend more than 320 kW. 展开更多
关键词 Shanghai EXPO large space ATRIUM solar radiation roof sprinkling system similarity theory prototype
下载PDF
上一页 1 2 75 下一页 到第
使用帮助 返回顶部