A robust Reynolds-Averaged Navier-Stokes(RANS)based solver is established to predict the complex unsteady aerodynamic characteristics of the Active Flap Control(AFC)rotor.The complex motion with multiple degrees of fr...A robust Reynolds-Averaged Navier-Stokes(RANS)based solver is established to predict the complex unsteady aerodynamic characteristics of the Active Flap Control(AFC)rotor.The complex motion with multiple degrees of freedom of the Trailing Edge Flap(TEF)is analyzed by employing an inverse nested overset grid method.Simulation of non-rotational and rotational modes of blade motion are carried out to investigate the formation and development of TEF shedding vortex with high-frequency deflection of TEF.Moreover,the mechanism of TEF deflection interference with blade tip vortex and overall rotor aerodynamics is also explored.In nonrotational mode,two bundles of vortices form at the gap ends of TEF and the main blade and merge into a single TEF vortex.Dynamic deflection of the TEF significantly interferes with the blade tip vortex.The position of the blade tip vortex consistently changes,and its frequency is directly related to the frequency of TEF deflection.In rotational mode,the tip vortex forms a helical structure.The end vortices at the gap sides co-swirl and subsequently merge into the concentrated beam of tip vortices,causing fluctuations in the vorticity and axial position of the tip vortex under the rotor.This research concludes with the investigation on suppression of Blade Vortex Interaction(BVI),showing an increase in miss distance and reduction in the vorticity of tip vortex through TEF phase control at a particular control frequency.Through this mechanism,a designed TEF deflection law increases the miss distance by 34.7%and reduces vorticity by 11.9%at the target position,demonstrating the effectiveness of AFC in mitigating BVI.展开更多
This paper proposes a new approach to eliminate aerodynamic lift oscillation,called the Dominant Sector Individual Blade Control(DS-IBC)method for rigid rotor helicopters.An Advancing Blade Concept(ABC)rotor model for...This paper proposes a new approach to eliminate aerodynamic lift oscillation,called the Dominant Sector Individual Blade Control(DS-IBC)method for rigid rotor helicopters.An Advancing Blade Concept(ABC)rotor model for aerodynamic analysis based on the free-wake method is applied.DS-IBC avoids applying active control on the rotor's retreating side by employing and restricting active control inputs to a sector area of the rotor disc.Outside this sector,only primary collective and cyclic pitch control are used.Each blade takes turns entering the sector,creating a“relay”active control form to ensure continuous control inputs.The method also includes outer-trim and inner-trim iteration modules.Results show that DS-IBC can eliminate aerodynamic lift oscillation using much smaller control inputs than the sine-trim method.By focusing active control on the rotor's advancing side,DS-IBC improves the effective lift-to-drag ratio and reduces the implementation difficulty of active rotor control for aerodynamic oscillation elimination,especially at a large lift-offset.展开更多
The dual-rotor structure serves as the primary source of vibration in aero-engines. Understanding itsdynamical model and analyzing dynamic characteristics, such as critical speed and unbalanced response, arecrucial fo...The dual-rotor structure serves as the primary source of vibration in aero-engines. Understanding itsdynamical model and analyzing dynamic characteristics, such as critical speed and unbalanced response, arecrucial for rotor system dynamics. Previous work introduced a coaxial dual-rotor-support scheme for aeroengines,and a physical model featuring a high-speed flexible inner rotor with a substantial length-to-diameter ratiowas designed. Then a finite element (FE) dynamic model based on the Timoshenko beam elements and rigid bodykinematics of the dual-rotor system is modeled, with the Newmark method and Newton–Raphson method used forthe numerical calculation to study the dynamic characteristics of the system. Three different simulation models,including beam-based FE (1D) model, solid-based FE (3D) model, and transfer matrix model, were designed tostudy the characteristics of mode and the critical speed characteristic of the dual-rotor system. The unbalancedresponse of the dual-rotor system was analyzed to study the influence of mass unbalance on the rotor system. Theeffect of different disk unbalance phases and different speed ratios on the dynamic characteristics of the dual-rotorsystem was investigated in detail. The experimental result shows that the beam-based FE model is effective andsuitable for studying the dual-rotor system.展开更多
As an innovative,low-power consuming,and low-stiffness suspension approach,the diamagnetic levitation technique has attracted considerable interest because of its potential applicability in miniaturized mechanical sys...As an innovative,low-power consuming,and low-stiffness suspension approach,the diamagnetic levitation technique has attracted considerable interest because of its potential applicability in miniaturized mechanical systems.The foundation of a diamagnetic levitation system is mathematical modeling,which is essential for operating performance optimization and stability prediction.However,few studies on systematic mathematical modeling have been reported.In this study,a systematic mathematical model for a disc-shaped diamagnetically levitated rotor on a permanent magnet array is proposed.Based on the proposed model,the magnetic field distribution characteristics,diamagnetic levitation force characteristics(i.e.,levitation height and stiffness),and optimized theoretical conditions for realizing stable levitation are determined.Experiments are conducted to verify the feasibility of the proposed mathematical model.Theoretical predictions and experimental results indicate that increasing the levitation height enlarges the stable region.Moreover,with a further increase in the rotor radius,the stable regions of the rotor gradually diminish and even vanish.Thus,when the levitation height is fixed,a moderate rotor radius permits stable levitation.This study proposes a mathematical modeling method for a diamagnetic levitation system that has potential applications in miniaturized mechanical systems.展开更多
Current research on the dynamics and vibrations of geared rotor systems primarily focuses on deterministic models.However,uncertainties inevitably exist in the gear system,which cause uncertainties in system parameter...Current research on the dynamics and vibrations of geared rotor systems primarily focuses on deterministic models.However,uncertainties inevitably exist in the gear system,which cause uncertainties in system parameters and subsequently influence the accurate evaluation of system dynamic behavior.In this study,a dynamic model of a geared rotor system with mixed parameters and model uncertainties is proposed.Initially,the dynamic model of the geared rotor-bearing system with deterministic parameters is established using a finite element method.Subsequently,a nonparametric method is introduced to model the hybrid uncertainties in the dynamic model.Deviation coefficients and dispersion parameters are used to reflect the levels of parameter and model uncertainty.For example,the study evaluates the effects of uncertain bearing and mesh stiffness on the vibration responses of a geared rotor system.The results demonstrate that the influence of uncertainty varies among different model types.Model uncertainties have a more significant than parametric uncertainties,whereas hybrid uncertainties increase the nonlinearities and complexities of the system’s dynamic responses.These findings provide valuable insights into understanding the dynamic behavior of geared system with hybrid uncertainties.展开更多
This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibr...This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibration of the rotor is provided by an active magnetic actuator(AMA).The iterative gain of the MILC algorithm here presented has a self-adjustment based on the magnitude of the vibration.Notch filters are adopted to extract the synchronous(1×Ω)and twice rotational frequency(2×Ω)components of the rotor vibration.Both the notch frequency of the filter and the size of feedforward storage used during the experiment have a real-time adaptation to the rotational speed.The method proposed in this work can provide effective suppression of the vibration of the rotor in case of sudden changes or fluctuations of the rotor speed.Simulations and experiments using the MILC algorithm proposed here are carried out and give evidence to the feasibility and robustness of the technique proposed.展开更多
In this paper,the electromagnetic performance of variable flux memory(VFM)machines with series-magnetic-circuit is investigated and compared for different rotor topologies.Based on a V-type VFM machine,five topologies...In this paper,the electromagnetic performance of variable flux memory(VFM)machines with series-magnetic-circuit is investigated and compared for different rotor topologies.Based on a V-type VFM machine,five topologies with different interior permanent magnet(IPM)arrangements are evolved and optimized under same constrains.Based on two-dimensional(2-D)finite element(FE)method,their electromagnetic performance at magnetization and demagnetization states is evaluated.It reveals that the iron bridge and rotor lamination region between constant PM(CPM)and variable PM(VPM)play an important role in torque density and flux regulation(FR)capabilities.Besides,the global efficiency can be improved in VFM machines by adjusting magnetization state(MS)under different operating conditions.展开更多
The Blade Altering Toolbox(BAT)described in this paper is a tool designed for fast reconstruction of an altered blade geometry for design optimization purposes.The BAT algorithm is capable of twisting a given rotor’s...The Blade Altering Toolbox(BAT)described in this paper is a tool designed for fast reconstruction of an altered blade geometry for design optimization purposes.The BAT algorithm is capable of twisting a given rotor’s angle of attack and stretching the chord length along the span of the rotor.Several test cases were run using the BAT’s algorithm.The BAT code’s twisting,stretching,and mesh reconstruction capabilities proved to be able to handle reasonably large geometric alterations to a provided input rotor geometry.The test examples showed that the toolbox’s algorithm could handle any stretching of the blade’s chord as long as the blade remained within the original bounds of the unaltered mesh.The algorithm appears to fail when the net twist angle applied the geometry exceeds approximately 30 degrees,however this limitation is dependent on the initial geometry and other input parameters.Overall,the algorithm is a very powerful tool for automating a design optimization procedure.展开更多
Coal mine conveyor belt and other low-speed large torque system,the torque density and torque stability of the motor requirements are higher,permanent magnet/magnet reluctance hybrid rotor double stator synchronous mo...Coal mine conveyor belt and other low-speed large torque system,the torque density and torque stability of the motor requirements are higher,permanent magnet/magnet reluctance hybrid rotor double stator synchronous motor(PM/MRHRDSSM)is just adapted to this requirement,however,the traditional close winding single inverter vector control system control PM/MRHRDSSM provides large torque ripple,high speed fluctuation and large total harmonic distortion(THD)of the current,difficult to be used in actual production and life,this paper proposes a large torque open winding-permanent magnet/magnet reluctance hybrid rotor double stator synchronous motor(OW-PM/MRHRDSSM)based on SVPWM dual inverter control strategy,and analysis of open winding double inverter structure,and its voltage vector mathematical model,using the existing two-level inverter as a basis,the bilateral inverter separately discussed its role and control method,as well as the decomposition method of synthetic voltage vector and the inverter device in the small sector on-time,the end of this paper through simulation to compare the traditional close winding single inverter vector control system control PM/MRHRDSSM and the large torque OW-PM/MRHRDSSM based on SVPWM dual inverter control strategy to prove the effectiveness of the proposed method in reducing torque ripple,speed fluctuation and THD of current during motor operation.展开更多
The reactor coolant pump(RCP)rotor seizure accident is defined as a short-time seizure of the RCP rotor.This event typically leads to an abrupt flow decrease in the corresponding loop and an ensuing reactor and turbin...The reactor coolant pump(RCP)rotor seizure accident is defined as a short-time seizure of the RCP rotor.This event typically leads to an abrupt flow decrease in the corresponding loop and an ensuing reactor and turbine trip.The significant reduction of core coolant flow while the reactor is being operated at full load can have very negative consequences.This potentially dangerous event is typically characterized by a complex transient behavior in terms of flow conditions and energy transformation,which need to be analyzed and understood.This study constructed transient flow and rotational speed mathematical models under various degrees of rotor seizure using the test data collected from a dedicated transient rotor seizure test system.Then,bidirectional fluid-solid coupling simulations were conducted to investigate the flow evolution mechanism.It is found that the influence of the impeller structure size and transient braking acceleration on the unsteady head(Hu)is dominant in rotor seizure accident events.Moreover,the present results also show that the rotational acceleration additional head(Hu1)is much higher than the instantaneous head(Hu2).展开更多
This paper proposes and implements a model-free open-loop iterative learning control(ILC)strategy to realize the speed control of the single-phase flux switching motor(FSM)with an asymmetrical rotor.Base on the propos...This paper proposes and implements a model-free open-loop iterative learning control(ILC)strategy to realize the speed control of the single-phase flux switching motor(FSM)with an asymmetrical rotor.Base on the proposed winding control method,the asymmetrical rotor enables the motor to generate continuous positive torque for positive rotation,and relatively small resistance torque for negative rotation.An initial iteration coefficient and variable iteration coefficient optimized scheme was proposed based on the characteristics of the hardware circuit,thereby forming the model-free strategy.A series of prototype experiments was carried out.Experimental results verify the effectiveness and practicability of the proposed ILC strategy.展开更多
Most of existing methods for the safety assessment of the primary cooling loop of nuclear reactors in conditions of reactor coolant pump(RCP)failure(rotor seizure accident)essentially rely on the combination of one-di...Most of existing methods for the safety assessment of the primary cooling loop of nuclear reactors in conditions of reactor coolant pump(RCP)failure(rotor seizure accident)essentially rely on the combination of one-dimensional theory and experience.This study introduces a novel three-dimensional model of the‘Hualong-1’(HPR1000)primary loop and uses the method of matching the resistance characteristics of the tube to ensure that the main pump operates at the rated operating condition.In particular,the three-dimensional unsteady numerical calculation of the RCP behavior in the rotor-seizure accident condition is carried out in the framework of the RNG k-εturbulence model.The related transient pressure surge law and hydraulic load response are obtained accordingly.展开更多
The external rotor hub motor adopts direct drive mode,no deceleration drive device,and has a compact structure.Its axial size is smaller than that of a deceleration-driven hub motor,which greatly reduces the weight of...The external rotor hub motor adopts direct drive mode,no deceleration drive device,and has a compact structure.Its axial size is smaller than that of a deceleration-driven hub motor,which greatly reduces the weight of the vehicle and increases the cruising range of the vehicle.Because of the limited special working environment and performance requirements,the hub motor has a small internal space and a large heat generation,so it puts forward higher requirements for heat dissipation capacity.For the external rotor hub motor,a new type of in-tank watercooled structure of hub motor was proposed to improve its cooling effect and performance.Firstly,the threedimensional finite element model of the motor is established to analyze the characteristics of motor loss and temperature field distribution.Secondly,the cooling performance of different cooling structures in the tank was studied.Finally,the thermal network model and three-dimensional finite element analysis were used to optimize the water-cooled structure in the tank,and the power density of themotor was improved by improving the cooling performance under the condition of volume limitation of the hub motor.The results show that the cooling effect of the proposed water-cooled structure in the tank is significant under the condition of constant power density.Compared to natural ventilation,the maximum temperature was reduced by 33.13°C and the cooling effect was increased by about 27.7%.展开更多
Two methods for vibration characteristic investigation of the counter-rotating dual-rotors in an aero-en- gine are put forward. The two methods use DAMP tool on the MSC. NASTRAN platform and develope the re- solving s...Two methods for vibration characteristic investigation of the counter-rotating dual-rotors in an aero-en- gine are put forward. The two methods use DAMP tool on the MSC. NASTRAN platform and develope the re- solving sequence. Vibration characteristics of a turbofan engine are analyzed by using the two methods. Com- pared with results calculated using transfer matrix method and test results, the two methods are valuable and have great potential in practical applications for vibration characteristic investigation of aero-engines with high thrust-weight ratio.展开更多
The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of th...The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of the tip-jet rotor composite power system, studying the effects of intake mode, inner cavity structure, propellant components, and injection amount on the characteristics of the composite power system. The results show that when a single high-temperature exhaust gas enters, the gas generator outlet fluid is uneven and asymmetric;when two-way high-temperature exhaust gas enters, the outlet temperature of the gas generator with a tilted inlet is more uniform than that with a vertical inlet;adding an inner cavity improves the temperature and velocity distribution of the gas generator's internal flow field;increasing the energy of the propellant is beneficial for improving the available moment.展开更多
For the quad tilt rotor aircraft, a computational fluid dynamics method based on multiple reference frames (MRF) was used to analyze the influence of aerodynamic layout parameters on the aerodynamic characteristics of...For the quad tilt rotor aircraft, a computational fluid dynamics method based on multiple reference frames (MRF) was used to analyze the influence of aerodynamic layout parameters on the aerodynamic characteristics of the quad tilt rotor aircraft. Firstly, a numerical simulation method for the interference flow field of the quad tilt rotor aircraft is established. Based on this method, the aerodynamic characteristics of isolated rotors, rotor combinations at different lateral positions on the wing, and rotor rotation directions under different inflow velocities were calculated and analyzed, in order to grasp their aerodynamic interference laws and provide reference for the design and control theory research of such aircraft.展开更多
This paper describes an improved model of curved vortex element on the circular arc (CVEC) for rotor wake analysis.As the key of the paper,two approximate formulas are derived by the series of limited terms to replace...This paper describes an improved model of curved vortex element on the circular arc (CVEC) for rotor wake analysis.As the key of the paper,two approximate formulas are derived by the series of limited terms to replace the Legendre incomplete elliptical integrals from the Biot-Savart integration,and the analytical solution of the induced velocity for the CVEC is obtained, which is more efficient in the complex rotor free wake calculation. Furthermore,the approximate formulas with the chosen factors are selected to avoid sigularity and give finite result of the induced velocity on the Vortex line,and an equivalent viscous vortex core radius might be evaluated.As examples, the induced velocity calculations on the vortex ring and two turns of a skew vortex helix are performed, and the comparisons between the circular-arc vortex element and the conventional straightline vortex element (SLVE) are given.It is shown that this curved vortex element model is advantageous over the SLVE model and is suitable for the rotor wake analysis.展开更多
Helicopter rotor flapping angles from hover to low speed forward flight are calculated and compared with the measured data in this paper. The analytical method is based on a second order lifting line/full span free...Helicopter rotor flapping angles from hover to low speed forward flight are calculated and compared with the measured data in this paper. The analytical method is based on a second order lifting line/full span free wake model as well as a fully coupled rotor trim model. It is shown that, in order to accurately predict the lateral flapping angle at low advance ratio, it is necessary to use free wake analysis to account for the highly non uniform inflow induced by the distorted wake geometry at rotor disc plane.展开更多
Shaftless ducted rotor(SDR)is a new type of ducted rotor system designed with ducted-rotor-motor integration,which is quite different from traditional ducted rotor(DR)in aerodynamic characteristics.The sliding mesh ba...Shaftless ducted rotor(SDR)is a new type of ducted rotor system designed with ducted-rotor-motor integration,which is quite different from traditional ducted rotor(DR)in aerodynamic characteristics.The sliding mesh based on unstructured grid is used to simulate the aerodynamic characteristics of SDR and DR.Then,the effects of five key parameters,namely,the rotor disk height,the number of blades,the spread angle of the duct,the central hole radius and the ducted lip radius on the aerodynamic characteristics of the SDR are investigated.It is found that the same-sized SDR produces a larger total lift than the DR in hovering,but the lift proportion of its duct is reduced.In the forward flight,a large low-speed region is generated behind the SDR duct,and the reflux vortex in blade root above the advancing blade has the trend for inward diffusion.The rotor disk height has similar effects on SDR and DR.Increasing the number of blades can effectively increase the total lift of SDR,which also increases the lift proportion of duct.Increasing the spread angle of the duct will lead to the rotor lift coefficient decrease,reducing the central hole radius can increase the total lift,but the component lift coefficient decreases.Appropriately increasing the ducted lip radius can increase the total lift,which begins to decrease after reaching a certain value.展开更多
A rotor system supported by roller beatings displays very complicated nonlinear behaviors due to nonlinear Hertzian contact forces, radial clearances and bearing waviness. This paper presents nonlinear bearing forces ...A rotor system supported by roller beatings displays very complicated nonlinear behaviors due to nonlinear Hertzian contact forces, radial clearances and bearing waviness. This paper presents nonlinear bearing forces of a roller bearing under four-dimensional loads and establishes 4-DOF dynamics equations of a rotor roller bearing system. The methods of Newmark-β and of Newton-Laphson are used to solve the nonlinear equations. The dynamics behaviors of a rigid rotor system are studied through the bifurcation, the Poincar è maps, the spectrum diagrams and the axis orbit of responses of the system. The results show that the system is liable to undergo instability caused by the quasi-periodic bifurcation, the periodic-doubling bifurcation and chaos routes as the rotational speed increases. Clearances, outer race waviness, inner race waviness, roller waviness, damping, radial forces and unbalanced forces-all these bring a significant influence to bear on the system stability. As the clearance increases, the dynamics behaviors become complicated with the number and the scale of instable regions becoming larger. The vibration frequencies induced by the roller bearing waviness and the orders of the waviness might cause severe vibrations. The system is able to eliminate non-periodic vibration by reasonable choice and optimization of the parameters.展开更多
基金supported by the National Natural Science Foundation of China(No.11972190)。
文摘A robust Reynolds-Averaged Navier-Stokes(RANS)based solver is established to predict the complex unsteady aerodynamic characteristics of the Active Flap Control(AFC)rotor.The complex motion with multiple degrees of freedom of the Trailing Edge Flap(TEF)is analyzed by employing an inverse nested overset grid method.Simulation of non-rotational and rotational modes of blade motion are carried out to investigate the formation and development of TEF shedding vortex with high-frequency deflection of TEF.Moreover,the mechanism of TEF deflection interference with blade tip vortex and overall rotor aerodynamics is also explored.In nonrotational mode,two bundles of vortices form at the gap ends of TEF and the main blade and merge into a single TEF vortex.Dynamic deflection of the TEF significantly interferes with the blade tip vortex.The position of the blade tip vortex consistently changes,and its frequency is directly related to the frequency of TEF deflection.In rotational mode,the tip vortex forms a helical structure.The end vortices at the gap sides co-swirl and subsequently merge into the concentrated beam of tip vortices,causing fluctuations in the vorticity and axial position of the tip vortex under the rotor.This research concludes with the investigation on suppression of Blade Vortex Interaction(BVI),showing an increase in miss distance and reduction in the vorticity of tip vortex through TEF phase control at a particular control frequency.Through this mechanism,a designed TEF deflection law increases the miss distance by 34.7%and reduces vorticity by 11.9%at the target position,demonstrating the effectiveness of AFC in mitigating BVI.
基金supported by the National Natural Science Foundation of China(No.12372229)the Aeronautical Science Foundation of China(No.2020Z006063001)+1 种基金the Science and Technology on Rotorcraft Aeromechanics Laboratory Foundation,China(No.61422202110)the Fundamental Research Funds for the Central Universities of China(No.DUT22LK12)。
文摘This paper proposes a new approach to eliminate aerodynamic lift oscillation,called the Dominant Sector Individual Blade Control(DS-IBC)method for rigid rotor helicopters.An Advancing Blade Concept(ABC)rotor model for aerodynamic analysis based on the free-wake method is applied.DS-IBC avoids applying active control on the rotor's retreating side by employing and restricting active control inputs to a sector area of the rotor disc.Outside this sector,only primary collective and cyclic pitch control are used.Each blade takes turns entering the sector,creating a“relay”active control form to ensure continuous control inputs.The method also includes outer-trim and inner-trim iteration modules.Results show that DS-IBC can eliminate aerodynamic lift oscillation using much smaller control inputs than the sine-trim method.By focusing active control on the rotor's advancing side,DS-IBC improves the effective lift-to-drag ratio and reduces the implementation difficulty of active rotor control for aerodynamic oscillation elimination,especially at a large lift-offset.
文摘The dual-rotor structure serves as the primary source of vibration in aero-engines. Understanding itsdynamical model and analyzing dynamic characteristics, such as critical speed and unbalanced response, arecrucial for rotor system dynamics. Previous work introduced a coaxial dual-rotor-support scheme for aeroengines,and a physical model featuring a high-speed flexible inner rotor with a substantial length-to-diameter ratiowas designed. Then a finite element (FE) dynamic model based on the Timoshenko beam elements and rigid bodykinematics of the dual-rotor system is modeled, with the Newmark method and Newton–Raphson method used forthe numerical calculation to study the dynamic characteristics of the system. Three different simulation models,including beam-based FE (1D) model, solid-based FE (3D) model, and transfer matrix model, were designed tostudy the characteristics of mode and the critical speed characteristic of the dual-rotor system. The unbalancedresponse of the dual-rotor system was analyzed to study the influence of mass unbalance on the rotor system. Theeffect of different disk unbalance phases and different speed ratios on the dynamic characteristics of the dual-rotorsystem was investigated in detail. The experimental result shows that the beam-based FE model is effective andsuitable for studying the dual-rotor system.
基金Supported by National Natural Science Foundation of China (Grant No.52275537)Nanjing Major Scientific and Technological Project of China (Grant No.202209011)。
文摘As an innovative,low-power consuming,and low-stiffness suspension approach,the diamagnetic levitation technique has attracted considerable interest because of its potential applicability in miniaturized mechanical systems.The foundation of a diamagnetic levitation system is mathematical modeling,which is essential for operating performance optimization and stability prediction.However,few studies on systematic mathematical modeling have been reported.In this study,a systematic mathematical model for a disc-shaped diamagnetically levitated rotor on a permanent magnet array is proposed.Based on the proposed model,the magnetic field distribution characteristics,diamagnetic levitation force characteristics(i.e.,levitation height and stiffness),and optimized theoretical conditions for realizing stable levitation are determined.Experiments are conducted to verify the feasibility of the proposed mathematical model.Theoretical predictions and experimental results indicate that increasing the levitation height enlarges the stable region.Moreover,with a further increase in the rotor radius,the stable regions of the rotor gradually diminish and even vanish.Thus,when the levitation height is fixed,a moderate rotor radius permits stable levitation.This study proposes a mathematical modeling method for a diamagnetic levitation system that has potential applications in miniaturized mechanical systems.
基金Supported by National Natural Science Foundation of China(Grant Nos.12072106,52005156)National Key Research and Development Program of China(Grant No.2020YFB2008101)Foundation of Henan Key Laboratory of Superhard Abrasives and Grinding Equipment,Henan University of Technology of China(Grant No.JDKFJJ2022002).
文摘Current research on the dynamics and vibrations of geared rotor systems primarily focuses on deterministic models.However,uncertainties inevitably exist in the gear system,which cause uncertainties in system parameters and subsequently influence the accurate evaluation of system dynamic behavior.In this study,a dynamic model of a geared rotor system with mixed parameters and model uncertainties is proposed.Initially,the dynamic model of the geared rotor-bearing system with deterministic parameters is established using a finite element method.Subsequently,a nonparametric method is introduced to model the hybrid uncertainties in the dynamic model.Deviation coefficients and dispersion parameters are used to reflect the levels of parameter and model uncertainty.For example,the study evaluates the effects of uncertain bearing and mesh stiffness on the vibration responses of a geared rotor system.The results demonstrate that the influence of uncertainty varies among different model types.Model uncertainties have a more significant than parametric uncertainties,whereas hybrid uncertainties increase the nonlinearities and complexities of the system’s dynamic responses.These findings provide valuable insights into understanding the dynamic behavior of geared system with hybrid uncertainties.
基金Supported by National Natural Science Foundation of China(Grant Nos.51975037,52375075).
文摘This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibration of the rotor is provided by an active magnetic actuator(AMA).The iterative gain of the MILC algorithm here presented has a self-adjustment based on the magnitude of the vibration.Notch filters are adopted to extract the synchronous(1×Ω)and twice rotational frequency(2×Ω)components of the rotor vibration.Both the notch frequency of the filter and the size of feedforward storage used during the experiment have a real-time adaptation to the rotational speed.The method proposed in this work can provide effective suppression of the vibration of the rotor in case of sudden changes or fluctuations of the rotor speed.Simulations and experiments using the MILC algorithm proposed here are carried out and give evidence to the feasibility and robustness of the technique proposed.
基金supported by the CRRC Zhuzhou Institute Company Ltd.and in part by Key R&D projects in Hunan+1 种基金ChinaNo.2022GK2062。
文摘In this paper,the electromagnetic performance of variable flux memory(VFM)machines with series-magnetic-circuit is investigated and compared for different rotor topologies.Based on a V-type VFM machine,five topologies with different interior permanent magnet(IPM)arrangements are evolved and optimized under same constrains.Based on two-dimensional(2-D)finite element(FE)method,their electromagnetic performance at magnetization and demagnetization states is evaluated.It reveals that the iron bridge and rotor lamination region between constant PM(CPM)and variable PM(VPM)play an important role in torque density and flux regulation(FR)capabilities.Besides,the global efficiency can be improved in VFM machines by adjusting magnetization state(MS)under different operating conditions.
基金NASA Glenn Research Center,Award Number,GRT00060658NSF IUCRC Smart Vehicle Concept Research Seed Program,No Award Number Provided.
文摘The Blade Altering Toolbox(BAT)described in this paper is a tool designed for fast reconstruction of an altered blade geometry for design optimization purposes.The BAT algorithm is capable of twisting a given rotor’s angle of attack and stretching the chord length along the span of the rotor.Several test cases were run using the BAT’s algorithm.The BAT code’s twisting,stretching,and mesh reconstruction capabilities proved to be able to handle reasonably large geometric alterations to a provided input rotor geometry.The test examples showed that the toolbox’s algorithm could handle any stretching of the blade’s chord as long as the blade remained within the original bounds of the unaltered mesh.The algorithm appears to fail when the net twist angle applied the geometry exceeds approximately 30 degrees,however this limitation is dependent on the initial geometry and other input parameters.Overall,the algorithm is a very powerful tool for automating a design optimization procedure.
基金supported in part by the National Natural Science Foundation of China under Grant U22A20215 and 51877139Applied Basic Research Program of Liaoning Province under Grant 2023JH2/101300219。
文摘Coal mine conveyor belt and other low-speed large torque system,the torque density and torque stability of the motor requirements are higher,permanent magnet/magnet reluctance hybrid rotor double stator synchronous motor(PM/MRHRDSSM)is just adapted to this requirement,however,the traditional close winding single inverter vector control system control PM/MRHRDSSM provides large torque ripple,high speed fluctuation and large total harmonic distortion(THD)of the current,difficult to be used in actual production and life,this paper proposes a large torque open winding-permanent magnet/magnet reluctance hybrid rotor double stator synchronous motor(OW-PM/MRHRDSSM)based on SVPWM dual inverter control strategy,and analysis of open winding double inverter structure,and its voltage vector mathematical model,using the existing two-level inverter as a basis,the bilateral inverter separately discussed its role and control method,as well as the decomposition method of synthetic voltage vector and the inverter device in the small sector on-time,the end of this paper through simulation to compare the traditional close winding single inverter vector control system control PM/MRHRDSSM and the large torque OW-PM/MRHRDSSM based on SVPWM dual inverter control strategy to prove the effectiveness of the proposed method in reducing torque ripple,speed fluctuation and THD of current during motor operation.
基金National Natural Science Foundation Joint Fund Key Project(U20A20292)Task Book for Shandong Provincial Science and Technology Small and Medium-Sized Enterprise Innovation Capability Enhancement Engineering Project(2023TSGC0005).
文摘The reactor coolant pump(RCP)rotor seizure accident is defined as a short-time seizure of the RCP rotor.This event typically leads to an abrupt flow decrease in the corresponding loop and an ensuing reactor and turbine trip.The significant reduction of core coolant flow while the reactor is being operated at full load can have very negative consequences.This potentially dangerous event is typically characterized by a complex transient behavior in terms of flow conditions and energy transformation,which need to be analyzed and understood.This study constructed transient flow and rotational speed mathematical models under various degrees of rotor seizure using the test data collected from a dedicated transient rotor seizure test system.Then,bidirectional fluid-solid coupling simulations were conducted to investigate the flow evolution mechanism.It is found that the influence of the impeller structure size and transient braking acceleration on the unsteady head(Hu)is dominant in rotor seizure accident events.Moreover,the present results also show that the rotational acceleration additional head(Hu1)is much higher than the instantaneous head(Hu2).
文摘This paper proposes and implements a model-free open-loop iterative learning control(ILC)strategy to realize the speed control of the single-phase flux switching motor(FSM)with an asymmetrical rotor.Base on the proposed winding control method,the asymmetrical rotor enables the motor to generate continuous positive torque for positive rotation,and relatively small resistance torque for negative rotation.An initial iteration coefficient and variable iteration coefficient optimized scheme was proposed based on the characteristics of the hardware circuit,thereby forming the model-free strategy.A series of prototype experiments was carried out.Experimental results verify the effectiveness and practicability of the proposed ILC strategy.
文摘Most of existing methods for the safety assessment of the primary cooling loop of nuclear reactors in conditions of reactor coolant pump(RCP)failure(rotor seizure accident)essentially rely on the combination of one-dimensional theory and experience.This study introduces a novel three-dimensional model of the‘Hualong-1’(HPR1000)primary loop and uses the method of matching the resistance characteristics of the tube to ensure that the main pump operates at the rated operating condition.In particular,the three-dimensional unsteady numerical calculation of the RCP behavior in the rotor-seizure accident condition is carried out in the framework of the RNG k-εturbulence model.The related transient pressure surge law and hydraulic load response are obtained accordingly.
基金supported by National Science Foundation of China(Grant No.51705306).
文摘The external rotor hub motor adopts direct drive mode,no deceleration drive device,and has a compact structure.Its axial size is smaller than that of a deceleration-driven hub motor,which greatly reduces the weight of the vehicle and increases the cruising range of the vehicle.Because of the limited special working environment and performance requirements,the hub motor has a small internal space and a large heat generation,so it puts forward higher requirements for heat dissipation capacity.For the external rotor hub motor,a new type of in-tank watercooled structure of hub motor was proposed to improve its cooling effect and performance.Firstly,the threedimensional finite element model of the motor is established to analyze the characteristics of motor loss and temperature field distribution.Secondly,the cooling performance of different cooling structures in the tank was studied.Finally,the thermal network model and three-dimensional finite element analysis were used to optimize the water-cooled structure in the tank,and the power density of themotor was improved by improving the cooling performance under the condition of volume limitation of the hub motor.The results show that the cooling effect of the proposed water-cooled structure in the tank is significant under the condition of constant power density.Compared to natural ventilation,the maximum temperature was reduced by 33.13°C and the cooling effect was increased by about 27.7%.
文摘Two methods for vibration characteristic investigation of the counter-rotating dual-rotors in an aero-en- gine are put forward. The two methods use DAMP tool on the MSC. NASTRAN platform and develope the re- solving sequence. Vibration characteristics of a turbofan engine are analyzed by using the two methods. Com- pared with results calculated using transfer matrix method and test results, the two methods are valuable and have great potential in practical applications for vibration characteristic investigation of aero-engines with high thrust-weight ratio.
文摘The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of the tip-jet rotor composite power system, studying the effects of intake mode, inner cavity structure, propellant components, and injection amount on the characteristics of the composite power system. The results show that when a single high-temperature exhaust gas enters, the gas generator outlet fluid is uneven and asymmetric;when two-way high-temperature exhaust gas enters, the outlet temperature of the gas generator with a tilted inlet is more uniform than that with a vertical inlet;adding an inner cavity improves the temperature and velocity distribution of the gas generator's internal flow field;increasing the energy of the propellant is beneficial for improving the available moment.
文摘For the quad tilt rotor aircraft, a computational fluid dynamics method based on multiple reference frames (MRF) was used to analyze the influence of aerodynamic layout parameters on the aerodynamic characteristics of the quad tilt rotor aircraft. Firstly, a numerical simulation method for the interference flow field of the quad tilt rotor aircraft is established. Based on this method, the aerodynamic characteristics of isolated rotors, rotor combinations at different lateral positions on the wing, and rotor rotation directions under different inflow velocities were calculated and analyzed, in order to grasp their aerodynamic interference laws and provide reference for the design and control theory research of such aircraft.
文摘This paper describes an improved model of curved vortex element on the circular arc (CVEC) for rotor wake analysis.As the key of the paper,two approximate formulas are derived by the series of limited terms to replace the Legendre incomplete elliptical integrals from the Biot-Savart integration,and the analytical solution of the induced velocity for the CVEC is obtained, which is more efficient in the complex rotor free wake calculation. Furthermore,the approximate formulas with the chosen factors are selected to avoid sigularity and give finite result of the induced velocity on the Vortex line,and an equivalent viscous vortex core radius might be evaluated.As examples, the induced velocity calculations on the vortex ring and two turns of a skew vortex helix are performed, and the comparisons between the circular-arc vortex element and the conventional straightline vortex element (SLVE) are given.It is shown that this curved vortex element model is advantageous over the SLVE model and is suitable for the rotor wake analysis.
文摘Helicopter rotor flapping angles from hover to low speed forward flight are calculated and compared with the measured data in this paper. The analytical method is based on a second order lifting line/full span free wake model as well as a fully coupled rotor trim model. It is shown that, in order to accurately predict the lateral flapping angle at low advance ratio, it is necessary to use free wake analysis to account for the highly non uniform inflow induced by the distorted wake geometry at rotor disc plane.
基金supported by the National Defense Science and Technology Key Laboratory Fund(No.6142220180511)Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Shaftless ducted rotor(SDR)is a new type of ducted rotor system designed with ducted-rotor-motor integration,which is quite different from traditional ducted rotor(DR)in aerodynamic characteristics.The sliding mesh based on unstructured grid is used to simulate the aerodynamic characteristics of SDR and DR.Then,the effects of five key parameters,namely,the rotor disk height,the number of blades,the spread angle of the duct,the central hole radius and the ducted lip radius on the aerodynamic characteristics of the SDR are investigated.It is found that the same-sized SDR produces a larger total lift than the DR in hovering,but the lift proportion of its duct is reduced.In the forward flight,a large low-speed region is generated behind the SDR duct,and the reflux vortex in blade root above the advancing blade has the trend for inward diffusion.The rotor disk height has similar effects on SDR and DR.Increasing the number of blades can effectively increase the total lift of SDR,which also increases the lift proportion of duct.Increasing the spread angle of the duct will lead to the rotor lift coefficient decrease,reducing the central hole radius can increase the total lift,but the component lift coefficient decreases.Appropriately increasing the ducted lip radius can increase the total lift,which begins to decrease after reaching a certain value.
基金National Natural Science Foundation of China(50575054)973Program(2007CB607602)
文摘A rotor system supported by roller beatings displays very complicated nonlinear behaviors due to nonlinear Hertzian contact forces, radial clearances and bearing waviness. This paper presents nonlinear bearing forces of a roller bearing under four-dimensional loads and establishes 4-DOF dynamics equations of a rotor roller bearing system. The methods of Newmark-β and of Newton-Laphson are used to solve the nonlinear equations. The dynamics behaviors of a rigid rotor system are studied through the bifurcation, the Poincar è maps, the spectrum diagrams and the axis orbit of responses of the system. The results show that the system is liable to undergo instability caused by the quasi-periodic bifurcation, the periodic-doubling bifurcation and chaos routes as the rotational speed increases. Clearances, outer race waviness, inner race waviness, roller waviness, damping, radial forces and unbalanced forces-all these bring a significant influence to bear on the system stability. As the clearance increases, the dynamics behaviors become complicated with the number and the scale of instable regions becoming larger. The vibration frequencies induced by the roller bearing waviness and the orders of the waviness might cause severe vibrations. The system is able to eliminate non-periodic vibration by reasonable choice and optimization of the parameters.