The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about ...The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about the cessation of the Western Philippine Basin(WPB)expansion and the Parece Vela Basin(PVB)breakup.Herein,using the new generation of satellite altimetry gravity data,high-precision seafloor topography data,and newly acquired ship-borne gravity data,the topographic and gravity characteristics of the KPR mid-southern section and adjacent region are depicted.The distribution characteristics of the faults were delineated using the normalized vertical derivative–total horizontal derivative method(NVDR-THDR)and the minimum curvature potential field separation method.The Moho depth and crustal thickness were inverted using the rapid inversion method for a double-interface model with depth constraints.Based on these results,the crust structure features in the KPR mid-southern section,and the“triangular”structure geological significance where the KPR and Central Basin Rift(CBR)of the WPB intersect are interpreted.The KPR crustal thickness is approximately 6–16 km,with a distinct discontinuity that is slightly thicker than the normal oceanic crust.The KPR mid-southern section crust structure was divided into four segments(S1–S4)from north to south,formed by the CBR eastward extension joint action and clockwise rotation of the PVB expansion axis and the Mindanao fault zone blocking effect.展开更多
Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the...Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the seafloor has been precisely modeled to date,and there is an urgent need to improve the accuracy and reduce the uncertainty of underwater survey data.In this study,we introduce a pretrained visual geometry group network(VGGNet)method based on deep learning.To apply this method,we input gravity anomaly data derived from ship measurements and satellite altimetry into the model and correct the latter,which has a larger spatial coverage,based on the former,which is considered the true value and is more accurate.After obtaining the corrected high-precision gravity model,it is inverted to the corresponding bathymetric model by applying the gravity-depth correlation.We choose four data pairs collected from different environments,i.e.,the Southern Ocean,Pacific Ocean,Atlantic Ocean and Caribbean Sea,to evaluate the topographic correction results of the model.The experiments show that the coefficient of determination(R~2)reaches 0.834 among the results of the four experimental groups,signifying a high correlation.The standard deviation and normalized root mean square error are also evaluated,and the accuracy of their performance improved by up to 24.2%compared with similar research done in recent years.The evaluation of the R^(2) values at different water depths shows that our model can achieve performance results above 0.90 at certain water depths and can also significantly improve results from mid-water depths when compared to previous research.Finally,the bathymetry corrected by our model is able to show an accuracy improvement level of more than 21%within 1%of the total water depths,which is sufficient to prove that the VGGNet-based method has the ability to perform a gravity-bathymetry correction and achieve outstanding results.展开更多
The calibration of the sea surface height(SSH)measured by satellite altimeters is essential to understand altimeter biases.Many factors affects the construction and maintenance of a permanent calibration site.In order...The calibration of the sea surface height(SSH)measured by satellite altimeters is essential to understand altimeter biases.Many factors affects the construction and maintenance of a permanent calibration site.In order to calibrate Chinese satellite altimetry missions,the feasibility of maintaining a calibration site based on the Qianliyan islet in Yellow Sea of China is taken into account.The related calibration facilities,such as the permanent tide gauge,GNSS reference station and meteorological station,were already operated by the Ministry of Natural Resources of China.The data could be fully used for satellite altimeter calibration with small fiscal expenditure.In addition,the location and marine environments of Qianliyan were discussed.Finally,we used the Jason-3 mission to check the possibility of calibration works.The result indicates that the brightness temperatures of three channels measured by microwave radiometer(MWR)and the derived wet tropospheric correction varies smoothly,which means the land contamination to MWR could be ignored.The high frequency waveforms at the Qianliyan site present no obvious difference from the normal waveforms received by satellite radar altimeter over the open ocean.In conclusion,the Qianliyan islet will not influence satellite altimetry observation.Following these analyses,a possible layout and mechanism of the Qianliyan calibration site are proposed.展开更多
This paper focuses on estimating a new high-resolution Earth’s gravity field model named SGG-UGM-2 from satellite gravimetry,satellite altimetry,and Earth Gravitational Model 2008(EGM2008)-derived gravity data based ...This paper focuses on estimating a new high-resolution Earth’s gravity field model named SGG-UGM-2 from satellite gravimetry,satellite altimetry,and Earth Gravitational Model 2008(EGM2008)-derived gravity data based on the theory of the ellipsoidal harmonic analysis and coefficient transformation(EHA-CT).We first derive the related formulas of the EHA-CT method,which is used for computing the spherical harmonic coefficients from grid area-mean and point gravity anomalies on the ellipsoid.The derived formulas are successfully evaluated based on numerical experiments.Then,based on the derived least-squares formulas of the EHA-CT method,we develop the new model SGG-UGM-2 up to degree 2190 and order 2159 by combining the observations of the Gravity Field and Steady-State Ocean Circulation Explorer(GOCE),the normal equation of the Gravity Recovery and Climate Experiment(GRACE),marine gravity data derived from satellite altimetry data,and EGM2008-derived continental gravity data.The coefficients of degrees 251–2159 are estimated by solving the block-diagonal form normal equations of surface gravity anomalies(including the marine gravity data).The coefficients of degrees 2–250 are determined by combining the normal equations of satellite observations and surface gravity anomalies.The variance component estimation technique is used to estimate the relative weights of different observations.Finally,global positioning system(GPS)/leveling data in the mainland of China and the United States are used to validate SGG-UGM-2 together with other models,such as European improved gravity model of the earth by new techniques(EIGEN)-6C4,GECO,EGM2008,and SGG-UGM-1(the predecessor of SGG-UGM-2).Compared to other models,the model SGG-UGM-2 shows a promising performance in the GPS/leveling validation.All GOCE-related models have similar performances both in the mainland of China and the United States,and better performances than that of EGM2008 in the mainland of China.Due to the contribution of GRACE data and the new marine gravity anomalies,SGG-UGM-2 is slightly better than SGG-UGM-1 both in the mainland of China and the United States.展开更多
Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal...Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal and inter-annual variations of the SCS surface circulation are identified through the evolution of the characteristic circulation patterns.The annual cycle of the SCS general circulation patterns is described as a change between two opposite basin-scale SW-NE oriented gyres embedded with eddies: low sea surface height anomaly (SSHA) (cyclonic) in winter and high SSHA (anticyclonic) in summer half year. The transition starts from July—August (January—February) with a high (low) SSHA tongue east of Vietnam around 12°~14° N, which develops into a big anticyclonic (cyclonic) gyre while moving eastward to the deep basin. During the transitions, a dipole structure, cyclonic (anticyclonic) in the north and anticyclonic (cyclonic) in the south, may be formed southeast off Vietnam with a strong zonal jet around 10°~12° N. The seasonal variation is modulated by the interannual variations. Besides the strong 1997/1998 event in response to the peak Pacific El Nio in 1997, the overall SCS sea level is found to have a significant rise during 1999~2001, however, in summer 2004 the overall SCS sea level is lower and the basin-wide anticyclonic gyre becomes weaker than the other years.展开更多
The Gravity Recovery and Climate Experiment(GRACE) satellite mission provides a unique opportunity to quantitatively study terrestrial water storage(TWS) variations. In this paper,the terrestrial water storage var...The Gravity Recovery and Climate Experiment(GRACE) satellite mission provides a unique opportunity to quantitatively study terrestrial water storage(TWS) variations. In this paper,the terrestrial water storage variations in the Poyang Lake Basin are recovered from the GRACE gravity data from January 2003 to March 2014 and compared with the Global Land Data Assimilation System(GLDAS) hydrological models and satellite altimetry. Furthermore, the impact of soil moisture content from GLDAS and rainfall from the Tropical Rainfall Measuring Mission(TRMM) on TWS variations are investigated. Our results indicate that the TWS variations from GRACE, GLDAS and satellite altimetry have a general consistency. The TWS trends in the Poyang Lake Basin determined from GRACE, GLDAS and satellite altimetry are increasing at 0.0141 km^3/a, 0.0328 km^3/a and 0.0238 km^3/a,respectively during the investigated time period. The TWS is governed mainly by the soil moisture content and dominated primarily by the precipitation but also modulated by the flood season of the Yangtze River as well as the lake and river exchange water.展开更多
The Kuroshio Extension (KE) plays an important role in climate and environmental change in the North Pacific. In this paper, more than 20 years of merged absolute dynamic topography and merged sea level anomaly prod...The Kuroshio Extension (KE) plays an important role in climate and environmental change in the North Pacific. In this paper, more than 20 years of merged absolute dynamic topography and merged sea level anomaly products from satellite altimetry are used to analyze the stability of the KE system. By analyzing the annually averaged sea surface topography, the variations of inter-annual path and annually averaged eddy kinetic energy at the KE region, the KE's two dynamic states are given as: the relatively stable state during 1993 1995, 2002-2005, and 2010-2012, and the unstable dynamic state among 1996-2001 and 2006-2009. During the stable state, the KE spindle had a shorter path length and smaller time-varying amplitude, as well as a trend to move northward. While during the unstable state, the KE spindle had a longer path length and an integral southward transport trend, and was observed to oscillate significantly over time. The analysis on the KE's upstream and downstream region gives the same variations, indi- cating that they are significantly affected by the El Nino events. The power spectrum of the mean latitudinal position variation of the KE's upstream and downstream shows significant quasi-decadal oscillation characteristics and strong annual signals. Furthermore, the correlation of the strength vari- ation between the southern RG and the KE's upstream is calculated to be 0.50 after low-pass filtering, and that of the mean latitudinal position variation between the southern RG and the KE's upstream/ downstream are 0.75/0.69 after low-pass filtering, respectively. The strong correlations demonstrated that the southern RG and the KE are closely linked.展开更多
High resoultion Eulerian mean velocity field has been derived by combining the satellite tracked surface drifter data with satellite altimetry and ocean surface winds. The drifter data used in this study includes Argo...High resoultion Eulerian mean velocity field has been derived by combining the satellite tracked surface drifter data with satellite altimetry and ocean surface winds. The drifter data used in this study includes Argos and surface drifter data from Global Drifter Program. Maps of Sea Level Anomaly (MSLA) weekly files with a resolution of (1/3)° in both Latitude and Longitude for the period 1993-2012 have been used. The Ekman current is computed using ocean surface mean wind fields from scatterometers onboard ERS 1/2, Quikscat and ASCAT. The derived mean velocity field exhibits the broad flow of Antarctic Circumpolar Current with speeds up to 0.6 m/s. Anomalous field is quite significant in the western part between 20~ and 40~E and in the eastern part between 80~E and 100~E with velocity anomaly up to 0.3 m/s. The estimated mean flow pattern well agrees with the dynamic topography derived from in-situ observations. Also, the derived velocity field is consistent with the in-situ ADCP current measurements. Eddy kinetic energy illustrates an increasing trend during 1993-2008 and is in phase coherence with the Southern Annular Mode by three month lag. Periodic modulations are found in the eddy kinetic energy due the low frequency Antarctic Circumpolar Wave propagation.展开更多
Arctic absolute sea level variations were analyzed based on multi-mission satellite altimetry data and tide gauge observations for the period of 1993–2018.The range of linear absolute sea level trends were found-2.00...Arctic absolute sea level variations were analyzed based on multi-mission satellite altimetry data and tide gauge observations for the period of 1993–2018.The range of linear absolute sea level trends were found-2.00 mm/a to 6.88 mm/a excluding the central Arctic,positive trend rates were predominantly located in shallow water and coastal areas,and negative rates were located in high-latitude areas and Baffin Bay.Satellite-derived results show that the average secular absolute sea level trend was(2.53±0.42)mm/a in the Arctic region.Large differences were presented between satellite-derived and tide gauge results,which are mainly due to low satellite data coverage,uncertainties in tidal height processing and vertical land movement(VLM).The VLM rates at 11 global navigation satellite system stations around the Arctic Ocean were analyzed,among which 6 stations were tide gauge colocated,the results indicate that the absolute sea level trends after VLM corrected were of the same magnitude as satellite altimetry results.Accurately calculating VLM is the primary uncertainty in interpreting tide gauge measurements such that differences between tide gauge and satellite altimetry data are attributable generally to VLM.展开更多
This paper focuses on the study of ocean bathymetric inversion from satellite altimeter data by using FFT technique.In this study,the freeair gravity anomalies over the South China Sea are determined by the satellite ...This paper focuses on the study of ocean bathymetric inversion from satellite altimeter data by using FFT technique.In this study,the freeair gravity anomalies over the South China Sea are determined by the satellite altimeter data of GEOSAT,ERS1,ERS2 and T/P.And the 2.5′×2.5′ bathymetry model in South China Sea is calculated from the gravity anomalies with the inversion model given.After the analysis of the inversion and the comparison between the results,some conclusions can be drawn.展开更多
A new computational procedure for derivation of marine geoid on a 2.5′×2.5′grid in a non-tidal system over the South China Sea and the Philippine Sea from multi-satellite altimeter sea surface heights is discus...A new computational procedure for derivation of marine geoid on a 2.5′×2.5′grid in a non-tidal system over the South China Sea and the Philippine Sea from multi-satellite altimeter sea surface heights is discussed. Single-and dual-satellite crossovers were performed, and components of deflections of the vertical were determined at the crossover positions using Sand-well's computational theory, and gridded onto a 2.5′×2.5′resolution grid by employing the Shepard's interpolation procedure. 2.5′×2.5′grid of EGM96-derived components of deflections of the vertical and geoid heights were then used as reference global geopotential model quantities in a remove-restore procedure to implement the Molodensky-like formula via 1D-FFT technique to predict the geoid heights over the South China Sea and the Philippine Sea from the gridded altimeter-derived components of deflec-tions of the vertical. Statistical comparisons between the altimeter-and the EGM96- derived geoid heights showed that there was a root-mean-square agreement of ±0.35 m between them in a region of less tectonically active geological structures. However, over areas of tectonically active structures such as the Philippine trench, differences of about -19.9 m were obtained.展开更多
In the north Indian Ocean (NIO), maps of sea level anomaly from satellite altimetry were analysed from January-1995 to December-2000. The study attempted to trace the trajectories of the individual mesoscale anomalies...In the north Indian Ocean (NIO), maps of sea level anomaly from satellite altimetry were analysed from January-1995 to December-2000. The study attempted to trace the trajectories of the individual mesoscale anomalies manually and to understand seasonal changes in terms of phase speed. Mesoscale anomalies are detected as concentric circular shapes and diameters of ~90 km to 600 km and the minimum 30 days life cycle. Relatively higher eddy kinetic energy was noticed in the northwestern region of the NIO. Individual mesoscale anomalies, namely positive (warm, anticyclonic eddies) and negative (cold, cyclonic eddies) showing travelling direction westward in the NIO basins. In autumn, the number of negative anomalies detected is more than positive anomalies and vice versa during summer. The westward propagating positive (negative) anomalies in the Arabian Sea start appearing in winter (spring) along (away from) the west coast of India and west of 65°E;individual anomalies move to the west in spring/summer/autumn and collide along Somalia’s & Arabian coast. A group of positive (negative) anomalies trajectories appears as a tail at the southern tip of India are located west of the Laccadive ridge in winter (summer to autumn) associated with LH (LL). The Bay of Bengal (BB) trajectories show southwestward in northern BB, westward in central BB and northwestward in southern BB;individual anomalies are appearing along the west coast of Andaman & Nicobar ridge. The zonal phase speed decreases away from the equator, and the magnitude varies longitudinally in each season in the form of a wave-like pattern propagating westward from autumn to summer;the life cycle of the wave is almost 365 days (a year). The theoretical phase speed of the first mode of the baroclinic Rossby waves is quite similar to that of averaged zonal speed. Therefore mesoscale anomalies (eddies) are embedded into the large waves like phenomenon (Rossby waves), responsible for creating high variability and EKE in the region of NIO along the western boundaries.展开更多
This study endeavors to deal with the least square spectral analysis on the time series, to find present significant frequencies, to analyze 40 tide components using harmonic methods and to show relationship between d...This study endeavors to deal with the least square spectral analysis on the time series, to find present significant frequencies, to analyze 40 tide components using harmonic methods and to show relationship between discovered frequencies and 40 components of tide. For the purpose of collecting data of altimetry satellites of Topex/Poseidon (T/P), Jason 1, Jason 2 and coastal tide gauges of Bandar Anzali, Noshahr, and Nekah were utilized. In this time series formed by cross over points of altimetry satellite and then using least square spectral analysis on time series derived from altimetry satellite and coastal tide gauges the significant components were found and annual, biannual, and monthly components were discovered. Then, analysis of 40 tide components was conducted using harmonic method to find the amplitude and phase. It represented that solar annual (Sa) plays the most significant role on Caspian Sea corresponded to the least square spectral analysis of the time series. The results shows that the annual (Sa) and semi-annual Solar (Ssa) constituents on all of the ports listed have the highest amplitude in comparison with the other constituents which are respectively 16 cm, 18 cm and 15 cm for annual constituent and 2.8 cm, 5.4 cm and 3.7 cm for semi-annual constituent.展开更多
ABSTRACT A decade-long pronounced increase in temperatures in the Arctic resulted in a global warming hotspot over the Greenland ice sheet(GrIS).Associated changes in the cryosphere were the consequence and led to a d...ABSTRACT A decade-long pronounced increase in temperatures in the Arctic resulted in a global warming hotspot over the Greenland ice sheet(GrIS).Associated changes in the cryosphere were the consequence and led to a demand for monitoring glacier changes,which are one of the major parameters to analyze the responses of the GrIS to climate change.Long-term altimetry data(e.g.ICESat,CryoSat-2,and ICESat-2)can provide elevation changes over different periods,and many methods have been developed for altimetry alone to obtain elevation changes.In this work,we provided the long-term elevation change rate data of the GrIS in three different periods using ICESat data(from February 2003 to October 2009),Cryosat-2 data(from August 2010 to October 2018)and ICESat-2 data(from October 2018 to December 2020).Optimal methods were applied to the datasets collected by three different altimeters:crossover analysis for ICESat/ICESat-2 and the surface fit method for Cryosat-2.The data revealed that the elevation change rates of the GrIS were-12.19±3.81 cm/yr,-19.70±3.61 cm/yr and-23.39±3.06 cm/yr in the three different periods,corresponding to volume change rates of-210.20±25.34 km^(3)/yr,-339.11±24.01 km^(3)/yr and-363.33±20.37 km^(3)/yr,respectively.In general,the obtained results agree with the trends discovered by other studies that were also derived from satellite altimetry data.This dataset provides the basic data for research into the impact of climate change over the GrIS.The dataset is available at https://doi.org/10.57760/sciencedb.j00076.00121.展开更多
The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compa...The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compared with the linear optimal interpolation(LOI)method,the DOI method can improve the accuracy of gridded ADT locally but with low computational efficiency.Consequently,considering both computational efficiency and accuracy,the DOI method is more suitable to be used only for regional applications.In this study,we propose to evaluate the suitable region for applying the DOI method based on the correlation between the absolute value of the Jacobian operator of the geostrophic stream function and the improvement achieved by the DOI method.After verifying the LOI and DOI methods,the suitable region was investigated in three typical areas:the Gulf Stream(25°N-50°N,55°W-80°W),the Japanese Kuroshio(25°N-45°N,135°E-155°E),and the South China Sea(5°N-25°N,100°E-125°E).We propose to use the DOI method only in regions outside the equatorial region and where the absolute value of the Jacobian operator of the geostrophic stream function is higher than1×10^(-11).展开更多
China has successfully launched four Haiyang-2(HY-2)series altimetry satellites.HY-2A has attracted significant attention in gravity field recovery,but the performance of other HY-2 series satellites,including HY-2B/C...China has successfully launched four Haiyang-2(HY-2)series altimetry satellites.HY-2A has attracted significant attention in gravity field recovery,but the performance of other HY-2 series satellites,including HY-2B/C/D,is seldom discussed.This study evaluated the performance of all the HY-2 series satellites in recovering marine gravity field.First,the crossover discrepancies in sea surface height of the four satellites,HY-2A,HY-2B,HY-2C,and HY-2D,were analyzed to assess their altimetry stability.It was found that HY-2B had the best altimetry quality,followed by HY-2D.Subsequently,different combina-tions of altimetry data were used to calculate vertical deflections and gravity anomalies in the South China Sea(112°E-119°E,12°N-20°N).The results showed that combining data from HY-2B,HY-2C,and HY-2D improved the inversion accuracy of gravity anomalies by 0.3 mGal compared to using HY-2A data alone.HY-2C and HY-2D contributed to enhancing the accuracy of the east component of vertical deflections.展开更多
The vertical thermohaline structure in the western equatorial Pacific is examined with a Gravest Empirical Mode(GEM)diagnosis of in-situ mooring measurements. The poor GEM performance in estimating deep thermohaline v...The vertical thermohaline structure in the western equatorial Pacific is examined with a Gravest Empirical Mode(GEM)diagnosis of in-situ mooring measurements. The poor GEM performance in estimating deep thermohaline variability from satellite altimetry confirms a lack of vertical coherence in the equatorial ocean. Mooring observation reveals layered equatorial water with phase difference up to 6 months between thermocline and sub-thermocline variations. The disjointed layers reflect weak geostrophy and resemble pancake structures in non-rotating stratified turbulence. A coherency theorem is then proved, stating that traditional stationary GEM represents in-phase coherent structure and can not describe vertically out-of-phase variability. The fact that stationary GEM holds both spatial and temporal coherence makes it a unique tool to diagnose vertical coherent structure in geophysical flows. The study also develops a non-stationary GEM projection that captures more than 40% of the thermohaline variance in the equatorial deep water.展开更多
The laser altimeter loaded on the GaoFen-7(GF-7)satellite is designed to record the full waveform data and footprint image,which can obtain high-precision elevation control points for stereo image.The footprint camera...The laser altimeter loaded on the GaoFen-7(GF-7)satellite is designed to record the full waveform data and footprint image,which can obtain high-precision elevation control points for stereo image.The footprint camera equipped on the GF-7 laser altimetry system can capture the energy distribution at the time of laser emission and the image of the ground object where the laser falls,which can be used to judge whether the laser is affected by the cloud.At the same time,the centroid of laser spot on the footprint image can be extracted to monitor the change of laser pointing stability.In this manuscript,a data quality analysis scheme of laser altimetry based on footprint image is presented.Firstly,the cloud detection of footprint image is realized based on deep learning.The fusion result of the model is about 5%better than that of the traditional cloud detection algorithm,which can quickly and accurately determine whether the laser spot is affected by cloud.Secondly,according to the characteristics of footprint image,a threshold constrained ellipse fitting method for extracting the centroid of laser spot is proposed to monitor the pointing stability of long-period lasers.Based on the above method,the change of laser spot centroid since GF-7 satellite was put into operation is analyzed,and the conclusions obtained have certain reference significance for the quality control of satellite laser altimetry data and the analysis of pointing angle stability.展开更多
The Zambezi Delta basin is a passive marginal basin located on the East African coast that has good oil and gas exploration potential.Due to the special geological evolutionary background of the Beira High in the Zamb...The Zambezi Delta basin is a passive marginal basin located on the East African coast that has good oil and gas exploration potential.Due to the special geological evolutionary background of the Beira High in the Zambezi Delta basin,it has a low gravity anomaly,and the existing seismic survey lines do not cover the whole basin;therefore,it is difficult to interpret the structural characteristics of the whole basin based solely on gravity or seismic data.Based on satellite altimetry gravity anomaly data,this study infers the distribution characteristics of faults in the Zambezi Delta basin by using the normalized vertical derivative of the total horizontal derivative(NVDR-THDR)technique.Then,constrained by seismic data,the gravity anomaly at the Moho interface is extracted by using the fast forward method of the double-interface model of the gravity anomaly,and this anomaly is then removed from the Bouguer gravity anomaly to obtain the sedimentary layer gravity anomaly.The thickness of the sedimentary strata is obtained by inversing the sedimentary basement depth of the whole basin.Then,uplifts and depressions are divided based on a sedimentary layer thickness of 3 km.This research demonstrates that the Zambezi Delta basin mainly features nearly SN-trending and NE-trending faults and that these faults exhibit east-west partitioning.The nearly SN-trending strike-slip faults controlled the sedimentary development of the basin,and the NE-trending tensile faults may have acted as migration channels for oil,gas and magma.The“overcompensation”effect of the Moho interface gravity anomaly on the gravity anomaly of the sedimentary layer is caused by the depression of the Moho interface beneath the Beira High,which results in a low gravity anomaly value for the Beira High.The pattern of uplifts and depressions trends NE and has the structural characteristics of east-west blocks.展开更多
In recent years,there has been a significant acceleration in the thinning,calving and retreat of the Pine Island Ice Shelf(PIIS).The basal channels,results of enhanced basal melting,have the potential to significantly...In recent years,there has been a significant acceleration in the thinning,calving and retreat of the Pine Island Ice Shelf(PIIS).The basal channels,results of enhanced basal melting,have the potential to significantly impact the stability of the PIIS.In this study,we used a variety of remote sensing data,including Landsat,REMA DEM,ICESat-1 and ICESat-2 satellite altimetry observations,and Ice Bridge airborne measurements,to study the spatiotemporal changes in the basal channels from 2003 to 2020 and basal melt rate from 2010 to 2017 of the PIIS under the Eulerian framework.We found that the basal channels are highly developed in the PIIS,with a total length exceeding 450 km.Most of the basal channels are ocean-sourced or groundingline-sourced basal channels,caused by the rapid melting under the ice shelf or near the groundingline.A raised seabed prevented warm water intrusion into the eastern branch of the PIIS,resulting in a lower basal melt rate in that area.In contrast,a deepsea trough facilitates warm seawater into the mainstream and the western branch of the PIIS,resulting in a higher basal melt rate in the main-stream,and the surface elevation changes above the basal channels of the mainstream and western branch are more significant.The El Ni?o event in 2015–2016 possibly slowed down the basal melting of the PIIS by modulating wind field,surface sea temperature and depth seawater temperature.Ocean and atmospheric changes were driven by El Ni?o,which can further explain and confirm the changes in the basal melting of the PIIS.展开更多
基金‘Research on Deep Structural Differences between Potential Oil-rich Depressions in Offshore basins of China Sea’from the scientific and technological project of CNOOC Research Institute Co.,Ltd.,under contract No.CCL2021RCPS0167KQN‘Resource Potential,Accumulation Mechanism and Breakthrough Direction of Potential Oil-rich Depressions in Offshore China Sea’,under contract No.220226220101+1 种基金the Project of China Geological Survey under contract No.DD20191003the National Natural Science Foundation of Shandong Province of China under contract No.ZR2022MD047。
文摘The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about the cessation of the Western Philippine Basin(WPB)expansion and the Parece Vela Basin(PVB)breakup.Herein,using the new generation of satellite altimetry gravity data,high-precision seafloor topography data,and newly acquired ship-borne gravity data,the topographic and gravity characteristics of the KPR mid-southern section and adjacent region are depicted.The distribution characteristics of the faults were delineated using the normalized vertical derivative–total horizontal derivative method(NVDR-THDR)and the minimum curvature potential field separation method.The Moho depth and crustal thickness were inverted using the rapid inversion method for a double-interface model with depth constraints.Based on these results,the crust structure features in the KPR mid-southern section,and the“triangular”structure geological significance where the KPR and Central Basin Rift(CBR)of the WPB intersect are interpreted.The KPR crustal thickness is approximately 6–16 km,with a distinct discontinuity that is slightly thicker than the normal oceanic crust.The KPR mid-southern section crust structure was divided into four segments(S1–S4)from north to south,formed by the CBR eastward extension joint action and clockwise rotation of the PVB expansion axis and the Mindanao fault zone blocking effect.
基金The National Key R&D Program of China under contract Nos 2022YFC3003800,2020YFC1521700 and 2020YFC1521705the National Natural Science Foundation of China under contract No.41830540+3 种基金the Open Fund of the East China Coastal Field Scientific Observation and Research Station of the Ministry of Natural Resources under contract No.OR-SECCZ2022104the Deep Blue Project of Shanghai Jiao Tong University under contract No.SL2020ZD204the Special Funding Project for the Basic Scientific Research Operation Expenses of the Central Government-Level Research Institutes of Public Interest of China under contract No.SZ2102the Zhejiang Provincial Project under contract No.330000210130313013006。
文摘Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the seafloor has been precisely modeled to date,and there is an urgent need to improve the accuracy and reduce the uncertainty of underwater survey data.In this study,we introduce a pretrained visual geometry group network(VGGNet)method based on deep learning.To apply this method,we input gravity anomaly data derived from ship measurements and satellite altimetry into the model and correct the latter,which has a larger spatial coverage,based on the former,which is considered the true value and is more accurate.After obtaining the corrected high-precision gravity model,it is inverted to the corresponding bathymetric model by applying the gravity-depth correlation.We choose four data pairs collected from different environments,i.e.,the Southern Ocean,Pacific Ocean,Atlantic Ocean and Caribbean Sea,to evaluate the topographic correction results of the model.The experiments show that the coefficient of determination(R~2)reaches 0.834 among the results of the four experimental groups,signifying a high correlation.The standard deviation and normalized root mean square error are also evaluated,and the accuracy of their performance improved by up to 24.2%compared with similar research done in recent years.The evaluation of the R^(2) values at different water depths shows that our model can achieve performance results above 0.90 at certain water depths and can also significantly improve results from mid-water depths when compared to previous research.Finally,the bathymetry corrected by our model is able to show an accuracy improvement level of more than 21%within 1%of the total water depths,which is sufficient to prove that the VGGNet-based method has the ability to perform a gravity-bathymetry correction and achieve outstanding results.
基金supported by the National Natural Science Foundation of China under Grants No. 42174001
文摘The calibration of the sea surface height(SSH)measured by satellite altimeters is essential to understand altimeter biases.Many factors affects the construction and maintenance of a permanent calibration site.In order to calibrate Chinese satellite altimetry missions,the feasibility of maintaining a calibration site based on the Qianliyan islet in Yellow Sea of China is taken into account.The related calibration facilities,such as the permanent tide gauge,GNSS reference station and meteorological station,were already operated by the Ministry of Natural Resources of China.The data could be fully used for satellite altimeter calibration with small fiscal expenditure.In addition,the location and marine environments of Qianliyan were discussed.Finally,we used the Jason-3 mission to check the possibility of calibration works.The result indicates that the brightness temperatures of three channels measured by microwave radiometer(MWR)and the derived wet tropospheric correction varies smoothly,which means the land contamination to MWR could be ignored.The high frequency waveforms at the Qianliyan site present no obvious difference from the normal waveforms received by satellite radar altimeter over the open ocean.In conclusion,the Qianliyan islet will not influence satellite altimetry observation.Following these analyses,a possible layout and mechanism of the Qianliyan calibration site are proposed.
基金We appreciate the help from Torsten Mayer-Gürr and Andreas Kvas for providing us the NEQ system of the ITSG-Grace2018 model.This research was financially supported by the National Natural Science Foundation of China(41574019 and 41774020)the German Academic Exchange Service(DAAD)Thematic Network Project(57421148)+2 种基金the Major Project of High-Resolution Earth Observation System,and Science Fund for Creative Research Groups of the National Natural Science Foundation of China(41721003)the Fundamental Research Funds for the Central Universities(N170103009)We also thank the editor and the anonymous reviewers for their constructive remarks that helped us to improve the quality of the manuscript.
文摘This paper focuses on estimating a new high-resolution Earth’s gravity field model named SGG-UGM-2 from satellite gravimetry,satellite altimetry,and Earth Gravitational Model 2008(EGM2008)-derived gravity data based on the theory of the ellipsoidal harmonic analysis and coefficient transformation(EHA-CT).We first derive the related formulas of the EHA-CT method,which is used for computing the spherical harmonic coefficients from grid area-mean and point gravity anomalies on the ellipsoid.The derived formulas are successfully evaluated based on numerical experiments.Then,based on the derived least-squares formulas of the EHA-CT method,we develop the new model SGG-UGM-2 up to degree 2190 and order 2159 by combining the observations of the Gravity Field and Steady-State Ocean Circulation Explorer(GOCE),the normal equation of the Gravity Recovery and Climate Experiment(GRACE),marine gravity data derived from satellite altimetry data,and EGM2008-derived continental gravity data.The coefficients of degrees 251–2159 are estimated by solving the block-diagonal form normal equations of surface gravity anomalies(including the marine gravity data).The coefficients of degrees 2–250 are determined by combining the normal equations of satellite observations and surface gravity anomalies.The variance component estimation technique is used to estimate the relative weights of different observations.Finally,global positioning system(GPS)/leveling data in the mainland of China and the United States are used to validate SGG-UGM-2 together with other models,such as European improved gravity model of the earth by new techniques(EIGEN)-6C4,GECO,EGM2008,and SGG-UGM-1(the predecessor of SGG-UGM-2).Compared to other models,the model SGG-UGM-2 shows a promising performance in the GPS/leveling validation.All GOCE-related models have similar performances both in the mainland of China and the United States,and better performances than that of EGM2008 in the mainland of China.Due to the contribution of GRACE data and the new marine gravity anomalies,SGG-UGM-2 is slightly better than SGG-UGM-1 both in the mainland of China and the United States.
基金National Basic Research Program of China under contract No. 2007 CB816003the Key International Co-operative Proiect of the National Natural Science Foundation of China under contract No.40510073the International Cooperative Proiect of the Mini-stry of Science and Technology of China under contract No.2006DFB21630.
文摘Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal and inter-annual variations of the SCS surface circulation are identified through the evolution of the characteristic circulation patterns.The annual cycle of the SCS general circulation patterns is described as a change between two opposite basin-scale SW-NE oriented gyres embedded with eddies: low sea surface height anomaly (SSHA) (cyclonic) in winter and high SSHA (anticyclonic) in summer half year. The transition starts from July—August (January—February) with a high (low) SSHA tongue east of Vietnam around 12°~14° N, which develops into a big anticyclonic (cyclonic) gyre while moving eastward to the deep basin. During the transitions, a dipole structure, cyclonic (anticyclonic) in the north and anticyclonic (cyclonic) in the south, may be formed southeast off Vietnam with a strong zonal jet around 10°~12° N. The seasonal variation is modulated by the interannual variations. Besides the strong 1997/1998 event in response to the peak Pacific El Nio in 1997, the overall SCS sea level is found to have a significant rise during 1999~2001, however, in summer 2004 the overall SCS sea level is lower and the basin-wide anticyclonic gyre becomes weaker than the other years.
基金supported by the National Natural Science Foundation of China(NSFC)Projects(11173050 and 11373059)
文摘The Gravity Recovery and Climate Experiment(GRACE) satellite mission provides a unique opportunity to quantitatively study terrestrial water storage(TWS) variations. In this paper,the terrestrial water storage variations in the Poyang Lake Basin are recovered from the GRACE gravity data from January 2003 to March 2014 and compared with the Global Land Data Assimilation System(GLDAS) hydrological models and satellite altimetry. Furthermore, the impact of soil moisture content from GLDAS and rainfall from the Tropical Rainfall Measuring Mission(TRMM) on TWS variations are investigated. Our results indicate that the TWS variations from GRACE, GLDAS and satellite altimetry have a general consistency. The TWS trends in the Poyang Lake Basin determined from GRACE, GLDAS and satellite altimetry are increasing at 0.0141 km^3/a, 0.0328 km^3/a and 0.0238 km^3/a,respectively during the investigated time period. The TWS is governed mainly by the soil moisture content and dominated primarily by the precipitation but also modulated by the flood season of the Yangtze River as well as the lake and river exchange water.
基金supported by the National Basic Research Program of China(2013CB733302,2012CB957703)the National Natural Science Foundation of China(41210006,41304003)
文摘The Kuroshio Extension (KE) plays an important role in climate and environmental change in the North Pacific. In this paper, more than 20 years of merged absolute dynamic topography and merged sea level anomaly products from satellite altimetry are used to analyze the stability of the KE system. By analyzing the annually averaged sea surface topography, the variations of inter-annual path and annually averaged eddy kinetic energy at the KE region, the KE's two dynamic states are given as: the relatively stable state during 1993 1995, 2002-2005, and 2010-2012, and the unstable dynamic state among 1996-2001 and 2006-2009. During the stable state, the KE spindle had a shorter path length and smaller time-varying amplitude, as well as a trend to move northward. While during the unstable state, the KE spindle had a longer path length and an integral southward transport trend, and was observed to oscillate significantly over time. The analysis on the KE's upstream and downstream region gives the same variations, indi- cating that they are significantly affected by the El Nino events. The power spectrum of the mean latitudinal position variation of the KE's upstream and downstream shows significant quasi-decadal oscillation characteristics and strong annual signals. Furthermore, the correlation of the strength vari- ation between the southern RG and the KE's upstream is calculated to be 0.50 after low-pass filtering, and that of the mean latitudinal position variation between the southern RG and the KE's upstream/ downstream are 0.75/0.69 after low-pass filtering, respectively. The strong correlations demonstrated that the southern RG and the KE are closely linked.
基金support for the work from UTM GUP Antarctic research grant Vote No.Q.J130000.2409.01G27,MOHE
文摘High resoultion Eulerian mean velocity field has been derived by combining the satellite tracked surface drifter data with satellite altimetry and ocean surface winds. The drifter data used in this study includes Argos and surface drifter data from Global Drifter Program. Maps of Sea Level Anomaly (MSLA) weekly files with a resolution of (1/3)° in both Latitude and Longitude for the period 1993-2012 have been used. The Ekman current is computed using ocean surface mean wind fields from scatterometers onboard ERS 1/2, Quikscat and ASCAT. The derived mean velocity field exhibits the broad flow of Antarctic Circumpolar Current with speeds up to 0.6 m/s. Anomalous field is quite significant in the western part between 20~ and 40~E and in the eastern part between 80~E and 100~E with velocity anomaly up to 0.3 m/s. The estimated mean flow pattern well agrees with the dynamic topography derived from in-situ observations. Also, the derived velocity field is consistent with the in-situ ADCP current measurements. Eddy kinetic energy illustrates an increasing trend during 1993-2008 and is in phase coherence with the Southern Annular Mode by three month lag. Periodic modulations are found in the eddy kinetic energy due the low frequency Antarctic Circumpolar Wave propagation.
基金The Open Fund of Key Laboratory of Marine Environmental Survey Technology and Application,Ministry of Natural Resource under contract No.MESTA-2020-B005the Shandong Provincial Natural Science Foundation under contract No.ZR2020QD087+1 种基金the National Key R&D Program of China under contract Nos 2017YFC0306003 and 2016YFB0501703the National Natural Science Foundation of China under contract Nos 42104035 and 41706115。
文摘Arctic absolute sea level variations were analyzed based on multi-mission satellite altimetry data and tide gauge observations for the period of 1993–2018.The range of linear absolute sea level trends were found-2.00 mm/a to 6.88 mm/a excluding the central Arctic,positive trend rates were predominantly located in shallow water and coastal areas,and negative rates were located in high-latitude areas and Baffin Bay.Satellite-derived results show that the average secular absolute sea level trend was(2.53±0.42)mm/a in the Arctic region.Large differences were presented between satellite-derived and tide gauge results,which are mainly due to low satellite data coverage,uncertainties in tidal height processing and vertical land movement(VLM).The VLM rates at 11 global navigation satellite system stations around the Arctic Ocean were analyzed,among which 6 stations were tide gauge colocated,the results indicate that the absolute sea level trends after VLM corrected were of the same magnitude as satellite altimetry results.Accurately calculating VLM is the primary uncertainty in interpreting tide gauge measurements such that differences between tide gauge and satellite altimetry data are attributable generally to VLM.
文摘This paper focuses on the study of ocean bathymetric inversion from satellite altimeter data by using FFT technique.In this study,the freeair gravity anomalies over the South China Sea are determined by the satellite altimeter data of GEOSAT,ERS1,ERS2 and T/P.And the 2.5′×2.5′ bathymetry model in South China Sea is calculated from the gravity anomalies with the inversion model given.After the analysis of the inversion and the comparison between the results,some conclusions can be drawn.
基金Funded by the National Natural Science Foundation of China (No.40474004).
文摘A new computational procedure for derivation of marine geoid on a 2.5′×2.5′grid in a non-tidal system over the South China Sea and the Philippine Sea from multi-satellite altimeter sea surface heights is discussed. Single-and dual-satellite crossovers were performed, and components of deflections of the vertical were determined at the crossover positions using Sand-well's computational theory, and gridded onto a 2.5′×2.5′resolution grid by employing the Shepard's interpolation procedure. 2.5′×2.5′grid of EGM96-derived components of deflections of the vertical and geoid heights were then used as reference global geopotential model quantities in a remove-restore procedure to implement the Molodensky-like formula via 1D-FFT technique to predict the geoid heights over the South China Sea and the Philippine Sea from the gridded altimeter-derived components of deflec-tions of the vertical. Statistical comparisons between the altimeter-and the EGM96- derived geoid heights showed that there was a root-mean-square agreement of ±0.35 m between them in a region of less tectonically active geological structures. However, over areas of tectonically active structures such as the Philippine trench, differences of about -19.9 m were obtained.
文摘In the north Indian Ocean (NIO), maps of sea level anomaly from satellite altimetry were analysed from January-1995 to December-2000. The study attempted to trace the trajectories of the individual mesoscale anomalies manually and to understand seasonal changes in terms of phase speed. Mesoscale anomalies are detected as concentric circular shapes and diameters of ~90 km to 600 km and the minimum 30 days life cycle. Relatively higher eddy kinetic energy was noticed in the northwestern region of the NIO. Individual mesoscale anomalies, namely positive (warm, anticyclonic eddies) and negative (cold, cyclonic eddies) showing travelling direction westward in the NIO basins. In autumn, the number of negative anomalies detected is more than positive anomalies and vice versa during summer. The westward propagating positive (negative) anomalies in the Arabian Sea start appearing in winter (spring) along (away from) the west coast of India and west of 65°E;individual anomalies move to the west in spring/summer/autumn and collide along Somalia’s & Arabian coast. A group of positive (negative) anomalies trajectories appears as a tail at the southern tip of India are located west of the Laccadive ridge in winter (summer to autumn) associated with LH (LL). The Bay of Bengal (BB) trajectories show southwestward in northern BB, westward in central BB and northwestward in southern BB;individual anomalies are appearing along the west coast of Andaman & Nicobar ridge. The zonal phase speed decreases away from the equator, and the magnitude varies longitudinally in each season in the form of a wave-like pattern propagating westward from autumn to summer;the life cycle of the wave is almost 365 days (a year). The theoretical phase speed of the first mode of the baroclinic Rossby waves is quite similar to that of averaged zonal speed. Therefore mesoscale anomalies (eddies) are embedded into the large waves like phenomenon (Rossby waves), responsible for creating high variability and EKE in the region of NIO along the western boundaries.
文摘This study endeavors to deal with the least square spectral analysis on the time series, to find present significant frequencies, to analyze 40 tide components using harmonic methods and to show relationship between discovered frequencies and 40 components of tide. For the purpose of collecting data of altimetry satellites of Topex/Poseidon (T/P), Jason 1, Jason 2 and coastal tide gauges of Bandar Anzali, Noshahr, and Nekah were utilized. In this time series formed by cross over points of altimetry satellite and then using least square spectral analysis on time series derived from altimetry satellite and coastal tide gauges the significant components were found and annual, biannual, and monthly components were discovered. Then, analysis of 40 tide components was conducted using harmonic method to find the amplitude and phase. It represented that solar annual (Sa) plays the most significant role on Caspian Sea corresponded to the least square spectral analysis of the time series. The results shows that the annual (Sa) and semi-annual Solar (Ssa) constituents on all of the ports listed have the highest amplitude in comparison with the other constituents which are respectively 16 cm, 18 cm and 15 cm for annual constituent and 2.8 cm, 5.4 cm and 3.7 cm for semi-annual constituent.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA19070202)the Joint Project of the Chinese Academy of Science(CAS)entitled Using Earth Observations to Address Ecology and Environment Change in the Pan-Antarctic Cryosphere(No.183611KYSB20200059)the Open Research Program of the International Research Center of Big Data for Sustainable Development Goals(No.CBAS2022ORP04).
文摘ABSTRACT A decade-long pronounced increase in temperatures in the Arctic resulted in a global warming hotspot over the Greenland ice sheet(GrIS).Associated changes in the cryosphere were the consequence and led to a demand for monitoring glacier changes,which are one of the major parameters to analyze the responses of the GrIS to climate change.Long-term altimetry data(e.g.ICESat,CryoSat-2,and ICESat-2)can provide elevation changes over different periods,and many methods have been developed for altimetry alone to obtain elevation changes.In this work,we provided the long-term elevation change rate data of the GrIS in three different periods using ICESat data(from February 2003 to October 2009),Cryosat-2 data(from August 2010 to October 2018)and ICESat-2 data(from October 2018 to December 2020).Optimal methods were applied to the datasets collected by three different altimeters:crossover analysis for ICESat/ICESat-2 and the surface fit method for Cryosat-2.The data revealed that the elevation change rates of the GrIS were-12.19±3.81 cm/yr,-19.70±3.61 cm/yr and-23.39±3.06 cm/yr in the three different periods,corresponding to volume change rates of-210.20±25.34 km^(3)/yr,-339.11±24.01 km^(3)/yr and-363.33±20.37 km^(3)/yr,respectively.In general,the obtained results agree with the trends discovered by other studies that were also derived from satellite altimetry data.This dataset provides the basic data for research into the impact of climate change over the GrIS.The dataset is available at https://doi.org/10.57760/sciencedb.j00076.00121.
基金supported by National Natural Science Foundation of China under Grants 42192531 and 42192534the Special Fund of Hubei Luojia Laboratory(China)under Grant 220100001the Natural Science Foundation of Hubei Province for Distinguished Young Scholars(China)under Grant 2022CFA090。
文摘The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compared with the linear optimal interpolation(LOI)method,the DOI method can improve the accuracy of gridded ADT locally but with low computational efficiency.Consequently,considering both computational efficiency and accuracy,the DOI method is more suitable to be used only for regional applications.In this study,we propose to evaluate the suitable region for applying the DOI method based on the correlation between the absolute value of the Jacobian operator of the geostrophic stream function and the improvement achieved by the DOI method.After verifying the LOI and DOI methods,the suitable region was investigated in three typical areas:the Gulf Stream(25°N-50°N,55°W-80°W),the Japanese Kuroshio(25°N-45°N,135°E-155°E),and the South China Sea(5°N-25°N,100°E-125°E).We propose to use the DOI method only in regions outside the equatorial region and where the absolute value of the Jacobian operator of the geostrophic stream function is higher than1×10^(-11).
基金funded by the National Natural Science Foundation of China(No.42074017).
文摘China has successfully launched four Haiyang-2(HY-2)series altimetry satellites.HY-2A has attracted significant attention in gravity field recovery,but the performance of other HY-2 series satellites,including HY-2B/C/D,is seldom discussed.This study evaluated the performance of all the HY-2 series satellites in recovering marine gravity field.First,the crossover discrepancies in sea surface height of the four satellites,HY-2A,HY-2B,HY-2C,and HY-2D,were analyzed to assess their altimetry stability.It was found that HY-2B had the best altimetry quality,followed by HY-2D.Subsequently,different combina-tions of altimetry data were used to calculate vertical deflections and gravity anomalies in the South China Sea(112°E-119°E,12°N-20°N).The results showed that combining data from HY-2B,HY-2C,and HY-2D improved the inversion accuracy of gravity anomalies by 0.3 mGal compared to using HY-2A data alone.HY-2C and HY-2D contributed to enhancing the accuracy of the east component of vertical deflections.
基金supported by the National Basic Research Program of China (Grant No.2012CB417400)the National Natural Science Foundation of China (Grant Nos. 41576017 & U1406401)
文摘The vertical thermohaline structure in the western equatorial Pacific is examined with a Gravest Empirical Mode(GEM)diagnosis of in-situ mooring measurements. The poor GEM performance in estimating deep thermohaline variability from satellite altimetry confirms a lack of vertical coherence in the equatorial ocean. Mooring observation reveals layered equatorial water with phase difference up to 6 months between thermocline and sub-thermocline variations. The disjointed layers reflect weak geostrophy and resemble pancake structures in non-rotating stratified turbulence. A coherency theorem is then proved, stating that traditional stationary GEM represents in-phase coherent structure and can not describe vertically out-of-phase variability. The fact that stationary GEM holds both spatial and temporal coherence makes it a unique tool to diagnose vertical coherent structure in geophysical flows. The study also develops a non-stationary GEM projection that captures more than 40% of the thermohaline variance in the equatorial deep water.
基金National Nature Science Foundation(Nos.41971425,41601505)Special Fund for High Resolution Images Surveying and Mapping Application System(No.42-Y30B04-9001-19/21)。
文摘The laser altimeter loaded on the GaoFen-7(GF-7)satellite is designed to record the full waveform data and footprint image,which can obtain high-precision elevation control points for stereo image.The footprint camera equipped on the GF-7 laser altimetry system can capture the energy distribution at the time of laser emission and the image of the ground object where the laser falls,which can be used to judge whether the laser is affected by the cloud.At the same time,the centroid of laser spot on the footprint image can be extracted to monitor the change of laser pointing stability.In this manuscript,a data quality analysis scheme of laser altimetry based on footprint image is presented.Firstly,the cloud detection of footprint image is realized based on deep learning.The fusion result of the model is about 5%better than that of the traditional cloud detection algorithm,which can quickly and accurately determine whether the laser spot is affected by cloud.Secondly,according to the characteristics of footprint image,a threshold constrained ellipse fitting method for extracting the centroid of laser spot is proposed to monitor the pointing stability of long-period lasers.Based on the above method,the change of laser spot centroid since GF-7 satellite was put into operation is analyzed,and the conclusions obtained have certain reference significance for the quality control of satellite laser altimetry data and the analysis of pointing angle stability.
基金The Petrochina Basic Prospective Science and Technology Research Project–Overseas deepwater ultra-deepwater oil and gas exploration technology research topic,under contract No.2021DJ2403。
文摘The Zambezi Delta basin is a passive marginal basin located on the East African coast that has good oil and gas exploration potential.Due to the special geological evolutionary background of the Beira High in the Zambezi Delta basin,it has a low gravity anomaly,and the existing seismic survey lines do not cover the whole basin;therefore,it is difficult to interpret the structural characteristics of the whole basin based solely on gravity or seismic data.Based on satellite altimetry gravity anomaly data,this study infers the distribution characteristics of faults in the Zambezi Delta basin by using the normalized vertical derivative of the total horizontal derivative(NVDR-THDR)technique.Then,constrained by seismic data,the gravity anomaly at the Moho interface is extracted by using the fast forward method of the double-interface model of the gravity anomaly,and this anomaly is then removed from the Bouguer gravity anomaly to obtain the sedimentary layer gravity anomaly.The thickness of the sedimentary strata is obtained by inversing the sedimentary basement depth of the whole basin.Then,uplifts and depressions are divided based on a sedimentary layer thickness of 3 km.This research demonstrates that the Zambezi Delta basin mainly features nearly SN-trending and NE-trending faults and that these faults exhibit east-west partitioning.The nearly SN-trending strike-slip faults controlled the sedimentary development of the basin,and the NE-trending tensile faults may have acted as migration channels for oil,gas and magma.The“overcompensation”effect of the Moho interface gravity anomaly on the gravity anomaly of the sedimentary layer is caused by the depression of the Moho interface beneath the Beira High,which results in a low gravity anomaly value for the Beira High.The pattern of uplifts and depressions trends NE and has the structural characteristics of east-west blocks.
基金The National Natural Science Foundation of China under contract Nos 41941010 and 42006184the Fundamental Research Funds for the Central Universities under contract No.2042022kf1068。
文摘In recent years,there has been a significant acceleration in the thinning,calving and retreat of the Pine Island Ice Shelf(PIIS).The basal channels,results of enhanced basal melting,have the potential to significantly impact the stability of the PIIS.In this study,we used a variety of remote sensing data,including Landsat,REMA DEM,ICESat-1 and ICESat-2 satellite altimetry observations,and Ice Bridge airborne measurements,to study the spatiotemporal changes in the basal channels from 2003 to 2020 and basal melt rate from 2010 to 2017 of the PIIS under the Eulerian framework.We found that the basal channels are highly developed in the PIIS,with a total length exceeding 450 km.Most of the basal channels are ocean-sourced or groundingline-sourced basal channels,caused by the rapid melting under the ice shelf or near the groundingline.A raised seabed prevented warm water intrusion into the eastern branch of the PIIS,resulting in a lower basal melt rate in that area.In contrast,a deepsea trough facilitates warm seawater into the mainstream and the western branch of the PIIS,resulting in a higher basal melt rate in the main-stream,and the surface elevation changes above the basal channels of the mainstream and western branch are more significant.The El Ni?o event in 2015–2016 possibly slowed down the basal melting of the PIIS by modulating wind field,surface sea temperature and depth seawater temperature.Ocean and atmospheric changes were driven by El Ni?o,which can further explain and confirm the changes in the basal melting of the PIIS.