In this study, we present a PSHA(Probabilistic Seismic Hazard Analysis) for the city of San Juan, which is located in the central-western region of Argentina(30°S-35.5°S; 66.5°W-71°W). In addit...In this study, we present a PSHA(Probabilistic Seismic Hazard Analysis) for the city of San Juan, which is located in the central-western region of Argentina(30°S-35.5°S; 66.5°W-71°W). In addition to crustal earthquakes provided by catalogues, recent paleoseismological and neotectonic investigations have permitted to consider events which occurred during the last 400 years.Four seismogenic sources that could cause damages to the studied site corresponding to Precordillera,Western Sierras Pampeanas, Basement of the Cuyana Basin and Cordillera Principal were identified.Based on the evaluation of the contribution of these sources,maximum moment magnitudes above 7.5(Mw) are expected.High values of SA(spectral acceleration)(0.2 and 1 s periods) and PGA(peak ground acceleration) were found in the city of San Juan, which suggests that it is located in a zone of high seismic hazard.Finally, the obtained SA spectra were compared with the seismic-resistant construction standards of Argentina INPRES-CIRSOC 103 [1]. Results suggest that for the city of San Juan and for a return period of475 years, it covers the seismic requirements of the structures.展开更多
A mature mathematical technique called copula joint function is introduced in this paper, which is commonly used in the financial risk analysis to estimate uncertainty. The joint function is generalized to the n-dimen...A mature mathematical technique called copula joint function is introduced in this paper, which is commonly used in the financial risk analysis to estimate uncertainty. The joint function is generalized to the n-dimensional Frank’s copula. In addition, we adopt two attenuation models proposed by YU and Boore et al, respectively, and construct a two-dimensional copula joint probabilistic function as an example to illustrate the uncertainty treatment at low probability. The results show that copula joint function gives us a better prediction of peak ground motion than that resultant from the simple linear weight technique which is commonly used in the traditional logic-tree treatment of model uncertainties. In light of widespread application in the risk analysis from financial investment to insurance assessment, we believe that the copula-based technique will have a potential application in the seismic hazard analysis.展开更多
Potential sources are simplified as point sources or linear sources in current probabilistic seismic hazard analysis (PSHA) methods. Focus size of large earthquakes is considerable, and fault rupture attitudes may h...Potential sources are simplified as point sources or linear sources in current probabilistic seismic hazard analysis (PSHA) methods. Focus size of large earthquakes is considerable, and fault rupture attitudes may have great influence upon the seismic hazard of a site which is near the source. Under this circumstance, it is unreasonable to use the simplified potential source models in the PSHA, so a potential rupture surface model is proposed in this paper. Adopting this model, we analyze the seismic hazard near the Chelungpu fault that generated the Chi-Chi (Jiji) earthquake with magnitude 7.6 and the following conclusions are reached. (1) This model is reasonable on the base of focal mechanism, especially for sites near potential earthquakes with large magnitude; (2) The attitudes of potential rupture surfaces have great influence on the results of probabilistic seismic hazard analysis and seismic zoning.展开更多
Based on the seismic source model in the Fifth Generation Seismic Ground Motion Parameters Zonation Map of China(FGSGMPZMC),a new seismic fault model,the new zonation of seismic risk areas(SRAs),and the estimation of ...Based on the seismic source model in the Fifth Generation Seismic Ground Motion Parameters Zonation Map of China(FGSGMPZMC),a new seismic fault model,the new zonation of seismic risk areas(SRAs),and the estimation of seismicity rates for 2021-2030,this study constructed a new time-dependent seismic source model of China’s mainland,and used the probabilistic seismic hazard analysis method to calculate seismic hazard by selecting the ground motion models(GMMs)suitable for seismic sources in China.It also provided the probabilities of China’s mainland being affected by earthquakes of modified Mercalli intensity(MMI)Ⅵ,Ⅶ,Ⅷ,Ⅸ,and≥Ⅹin 2021-2030.The spatial pattern of seismic hazards presented in this article is similar to the pattern of the FGSGMPZMC,but shows more details.The seismic hazards in this study are higher than those in the FGSGMPZMC in the SRAs and fault zones that can produce large earthquakes.This indicates that the seismic source model construction in this study is scientific and reasonable.There are certain similarities between the results in this study and those of Rong et al.(2020)and Feng et al.(2020),but also disparities for specific sites due to differences in seismic source models,seismicity parameters,and GMMs.The results of seismic hazard may serve as parameter input for future seismic risk assessments.The hazard results can also be used as a basis for the formulation of earthquake prevention and mitigation policies for China’s mainland.展开更多
Since there are few studies on the performance-based seismic evaluation of the long-span suspension bridge system under two-level earthquake hazard in Chinese code,the developed procedure of this study can be regarded...Since there are few studies on the performance-based seismic evaluation of the long-span suspension bridge system under two-level earthquake hazard in Chinese code,the developed procedure of this study can be regarded as a general program to assess the seismic performance of the overall system for long-span suspension bridges.In the procedure,the probabilistic seismic demand models of multiple bridge components were developed by nonlinear time-history analyses incorporating the related uncertainties,and the component-level fragility curves were calculated by the reasonable definition of limit states of the corresponding components in combination with seismic hazard analysis.The bridge repair cost ratios used to evaluate the system seismic performance were derived through the performance-based methodology and the damage probability of critical components.Furthermore,the repair cost ratios of the overall bridge system that was retrofitted with fluid viscous dampers for the main bridge and changed restraint systems for the approach bridges were compared.The results show that peak ground velocity and peak ground acceleration can be selected as the optimal intensity measurements of long-span suspension bridges using the TOPSIS(technique for order preference by similarity to an ideal solution).The bridge repair cost ratios can serve as accurate evaluation indicators to provide an efficient evaluation of retrofit measures.The seismic evaluation of long-span bridges is misled when ignoring the interaction of adjacent structures.However,the repair cost ratios of a bridge system that has optimum seismic performance are less sensitive to the relative importance of adjacent structures.展开更多
Based on the modern earthquake catalogue,the incomplete centroidal voronoi tessellation(ICVT)method was used in this study to estimate the seismic hazard in Sichuan-Yunnan region of China.We calculated spatial distrib...Based on the modern earthquake catalogue,the incomplete centroidal voronoi tessellation(ICVT)method was used in this study to estimate the seismic hazard in Sichuan-Yunnan region of China.We calculated spatial distributions of the total seismic hazard and background seismic hazard in this area.The Bayesian delaunay tessellation smoothing method put forward by Ogata was used to calculate the spatial distributions of b-value.The results show that seismic hazards in Sichuan-Yunan region are high,and areas with relatively high hazard values are distributed along the main faults,while seismic hazards in Sichuan basin are relatively low.展开更多
The proposed site of the Diamer Bhasha Dam in northern Pakistan is situated in an active tectonic zone with intensive seismicity,which makes it necessary for seismic hazard analysis(SHA).Deterministic and probabilisti...The proposed site of the Diamer Bhasha Dam in northern Pakistan is situated in an active tectonic zone with intensive seismicity,which makes it necessary for seismic hazard analysis(SHA).Deterministic and probabilistic approaches have been used for SHA of the dam site.The Main Mantle Thrust(MMT),Main Karakaram Thrust(MKT),Raikot-Sassi Fault(RKSF)and Kohistan Fault(KF)have been considered as major seismic sources,all of which can create maximum ground shaking with maximum potential earthquake(MPE).Deterministically estimated MPE for magnitudes of 7.8,7.7,7.6,and 7.1 can be produced from MMT,MKT,RKSF and KF,respectively.The corresponding peak ground accelerations(PGA)of 0.07,0.11,0.13 and 0.05 g can also be generated from these earthquakes,respectively.The deterministic analysis predicts a so-called floating earthquake as a MPE of magnitude=7.1 as close as 10 km away from the site.The corresponding PGA was computed as 0.38 g for a maximum design earthquake at the project site.However,the probabilistic analysis revealed that the PGA with 50%probability of exceedance in 100 years is 0.18 g.Thus,this PGA value related to the operational basis earthquake(OBE)is suggested for the design of this project with shear wave velocity(V_(s30))equal to 760 m/s under dense soil and soft rock conditions.展开更多
Many destructive earthquakes happened in Tehran, Iran in the last centuries. The existence of active faults like the North Tehran is the main cause of seismicity in this city. According to past investigations, it is e...Many destructive earthquakes happened in Tehran, Iran in the last centuries. The existence of active faults like the North Tehran is the main cause of seismicity in this city. According to past investigations, it is estimated that in the scenario of activation of the North Tehran fault, many structures in Tehran will collapse. Therefore, it is necessary to incorporate the near field rupture directivity effects of this fault into the seismic hazard assessment of important sites in Tehran. In this study, using calculations coded in MATLAB, Probabilistic Seismic Hazard Analysis (PSHA) is conducted for an important site in Tehran. Following that, deaggregation technique is performed on PSHA and the contribution of seis- mic scenarios to hazard is obtained in the range of distance and magnitude. After identifying the North Tehran fault as the most hazardous source affecting the site in 10000-year return period, rupture directivity effects of this fault is incorporated into the seismic hazard assessment using Somerville et al. (1997) model with broadband approach and Shahi and Baker (2011) model with narrowband approach. The results show that the narrowband approach caused a 27% increase in the peak of response spectrum in 10000-year return period compared with the conventional PSHA. Therefore, it is necessary to incorporate the near fault rupture directivity effects into the higher levels of seismic hazard assessment attributed to important sites.展开更多
Based on the intrinsic characters of the fractal and chaotic dynamic systems of seismic dissipated energy active intensity E d and active intensity of seismic dissipated energy moment I e,the evolutional laws of the...Based on the intrinsic characters of the fractal and chaotic dynamic systems of seismic dissipated energy active intensity E d and active intensity of seismic dissipated energy moment I e,the evolutional laws of the long term system and short term system behavior are discussed respectively.Active and passive earthquake control parameters,maintenance decision and inputted energy optimization of system are discussed by means of the predictive results of short term behavior in practical engineering structures; earthquake resistant design probability,maintenance probability,seismic risk analysis and seismic hazard analysis are also discussed by means of the predictive results of long term behavior probability in practical engineering structures.The content might be valuable for the practical applications of earthquake resistance theory and method,and for earthquake control and earthquake reduction problems in practical engineering structures.展开更多
This paper presents probabilistic assessment of seismically-induced slope displacements considering uncertainties of seismic ground motions and soil properties.A stochastic ground motion model representing both the te...This paper presents probabilistic assessment of seismically-induced slope displacements considering uncertainties of seismic ground motions and soil properties.A stochastic ground motion model representing both the temporal and spectral non-stationarity of earthquake shakings and a three-dimensional rotational failure mechanism are integrated to assess Newmark-type slope displacements.A new probabilistic approach that incorporates machine learning in metamodeling technique is proposed,by combining relevance vector machine with polynomial chaos expansions(RVM-PCE).Compared with other PCE methods,the proposed RVM-PCE is shown to be more effective in estimating failure probabilities.The sensitivity and relative influence of each random input parameter to the slope displacements are discussed.Finally,the fragility curves for slope displacements are established for sitespecific soil conditions and earthquake hazard levels.The results indicate that the slope displacement is more sensitive to the intensities and strong shaking durations of seismic ground motions than the frequency contents,and a critical Arias intensity that leads to the maximum annual failure probabilities can be identified by the proposed approach.展开更多
This paper makes a summary of status of delimitation of seismic zones and belts of China firstly in aspects of studying history, purpose, usage, delimiting principles, various presenting forms and main specialties. Th...This paper makes a summary of status of delimitation of seismic zones and belts of China firstly in aspects of studying history, purpose, usage, delimiting principles, various presenting forms and main specialties. Then the viewpoints are emphasized, making geographical divisions by seismicity is just the most important purpose of delimiting seismic belts and the concept of seismic belt is also quite different from that of seismic statistical zone used in CPSHA method. The concept of seismic statistical zone and its history of evolvement are introduced too. Large differences between these rwo concepts exist separately in their statistical property, actual meaning, gradation, required scale, and property of refusing to overlap each other, aim and usage of delimitation. But in current engineering practice, these two concepts are confused. On the one hand, it causes no fit theory for delimiting seismic statistical zone in PSHA to be set up; on the other hand, researches about delimitation of seismic belts with purposes of seismicity zoning and studying on structural environment, mechanism of earthquake generating also pause to go ahead. Major conclusions are given in the end of this paper, that seismic statistical zone bases on the result of seismic belt delimiting, it only arises in and can be used in the especial PSHA method of China with considering spatially and temporally inhomogeneous seismic activities, and its concept should be clearly differentiated from the concept of seismic belt.展开更多
This paper presents an effective means of analyzing the safety of a tunnel under dynamic loading in areas<span style="font-family:Verdana;"> </span><span style="font-family:Verdana;"...This paper presents an effective means of analyzing the safety of a tunnel under dynamic loading in areas<span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">with seismic records. A particular case of the railway tunnel in the earthquake-prone regions of the escarpment seismic zone of Ethiopia was the specific focus area of the research. Probabilistic seismic hazard analysis (PSHA) and deaggregation have been conducted to determine the design earthquake required as an input for the dynamic analysis. The PSHA</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">performed by considering the operating design earthquake with conservative assumptions of the local geological features resulted in a peak ground acceleration of 0.36. Two pairs of design earthquake have been obtained from the deaggregation process, which were used to filter acceleration time histories for the selected design earthquake from the ground motion database of Pacific Earthquake Engineering Research Center. Finally, full dynamic analyses of the tunnel have been performed by applying the scaled acceleration time histories corresponding to the structure in the specific site. It was demonstrated how to prove the stability of the tunnel located in difficult ground conditions by performing plane strain analyses with the possible minimum computational efforts.</span>展开更多
It has been a period of time since the concept of scenario earthquake was proposed, but this concept has rarely been used in seismic safety evaluation in China since then. Meanwhile, because of the uncertainties of ma...It has been a period of time since the concept of scenario earthquake was proposed, but this concept has rarely been used in seismic safety evaluation in China since then. Meanwhile, because of the uncertainties of magnitudes-distances pairs, there is large arbitrariness while determining the envelope function of time histories in seismic hazard analysis. In this paper, we describe a method to control the envelope functions of the time histories by introducing the most-likely combinations of magnitude and distance of the scenario earthquakes based on a probabilistic method, revise the software of the ellipse model for seismic hazard analysis, and give a computation example.展开更多
The seismic hazard of research area is evaluated by probabilistic analysis method for three different seismic statis-tical zone scenarios. The influence of uncertainty in seismic statistical zone delimiting on the eva...The seismic hazard of research area is evaluated by probabilistic analysis method for three different seismic statis-tical zone scenarios. The influence of uncertainty in seismic statistical zone delimiting on the evaluation result is discussed too. It can be seen that for those local sites along zone's border or within areas with vast change of upper bound magnitude among different scenarios the influence on seismic hazard result should not be neglected.展开更多
We are living in a world of numbers and calculations with enormous amount of pretty fast user-friendly software ready for an automatic output that may lead to a discovery or,alternatively,mislead to a deceptive conclu...We are living in a world of numbers and calculations with enormous amount of pretty fast user-friendly software ready for an automatic output that may lead to a discovery or,alternatively,mislead to a deceptive conclusion,erroneous claims and predictions.As a matter of fact,nowadays,Science can disclose Natural Hazards,assess Risks,and deliver the state-of-the-art Knowledge of looming disaster in advance catastrophes along with useful Recommendations on the level of risks for decision making regarding engineering design,insurance,and emergency management.展开更多
The building code of any country is considered to be a basic technical guidance document for the seismic design of structures.However,building codes are typically developed for the whole country,without considering si...The building code of any country is considered to be a basic technical guidance document for the seismic design of structures.However,building codes are typically developed for the whole country,without considering site specific models that incorporate detailed site-specific data.Therefore,the adequacy of the design spectrum for building codes may sometimes be questionable.To study the sufficiency of the building codes of Pakistan(BCP-SP-2007),a deterministic seismic hazard analysis(DSHA)based spectrum was developed for a site in the Muzaffargarh area,Pakistan,using an updated earthquake catalogue,seismic source model,and a next generation attenuation model(NGA-WEST-2).Further,an International Building Code(IBC-2000)spectrum was developed for the study area to compare the results.The DSHA-based response spectrum resulted in a peak ground acceleration(PGA)value of 0.21 g for the Chaudwan fault.The evaluation of BCP-SP-2007 and IBC-2000 spectra provided a critical assessment for analyzing the associated margins.A comparison with the DSHA-based response spectrum showed that the BCP-SP-2007 design spectrum mostly overlapped with the DSHA spectrum unlike IBC-2000.However,special attention is needed for designing buildings in the study area when considering earthquake periods longer than 1 s,and the BCP-SP-2007 spectrum can be enhanced when considering a period range of 0.12-0.64 s.Finally,BCP-SP-2007 is based on a probabilistic approach and its comparison with deterministic results showed the significance of both methods in terms of design.展开更多
It is pointed out in this paper that the concept of scenario earthquake, expectant earthquake or proposed earthquake suggested by Kameda Nojima (1988) is not probability consistent due to unfit understanding for the ...It is pointed out in this paper that the concept of scenario earthquake, expectant earthquake or proposed earthquake suggested by Kameda Nojima (1988) is not probability consistent due to unfit understanding for the aseismic design standard of probabilistic method. The corresponding concept proposed by QI FENG LUO meets the meaning of probability consistent, but it is still in a meaning of average so the result is not good enough. On the basis of above analysis, a concept of probability consistent conservative earthquakes is suggested. And a new method selecting aseismic objective earthquake with physical meaning is proposed on the basis of probabilistic method. After seismic hazard is analysed by certain control parameters, such as peak acceleration, we can determine the aseismic standard according to certain probabilistic level. Based on the attenuation law and the potential sources, we can find out some earthquakes or their combinations of magnitudes and distances. Such earthquakes or combinations are probability consistent for this control parameter. Based on above parameter, we suggest considering the destructive effects of other parameters (such as response spectrum), and selecting conservative earthquakes to replace the average earthquake and meet the requirements of aseismic design better.展开更多
In this study, a composite source model has been used to calculate the realistic strong ground motions in Beijing area, caused by 1679 Ms8.0 earthquake in Sanhe-Pinggu. The results could provide us the useful physical...In this study, a composite source model has been used to calculate the realistic strong ground motions in Beijing area, caused by 1679 Ms8.0 earthquake in Sanhe-Pinggu. The results could provide us the useful physical parameters for the future seismic hazard analysis in this area. Considering the regional geological/geophysical background, we simulated the scenario earthquake with an associated ground motions in the area ranging from 39.3°N to 41. 1°N in latitude and from 115.35°E to 117.55°E in longitude. Some of the key factors which could influence the characteristics of strong ground motion have been discussed, and the resultant peak ground acceleration (PGA) distribution and the peak ground velocity (PGV) distribution around Beijing area also have been made as well. A comparison of the simulated result with the results derived from the attenuation relation has been made, and a sufficient discussion about the advantages and disadvantages of composite source model also has been given in this study. The numerical results, such as the PGA, PGV, peak ground displacement (PGD), and the three-component time-histories developed for Beijing area, have a potential application in earthquake engineering field and building code design, especially for the evaluation of critical constructions, government decision making and the seismic hazard assessment by financial/insurance companies.展开更多
The estimated seismic hazard based on the delineated seismic source model is used as the basis to assign the seismic design loads in Canadian structural design codes.An alternative for the estimation is based on a spa...The estimated seismic hazard based on the delineated seismic source model is used as the basis to assign the seismic design loads in Canadian structural design codes.An alternative for the estimation is based on a spatially smoothed source model.However,a quantification of differences in the Canadian seismic hazard maps(CanSHMs)obtained based on the delineated seismic source model and spatially smoothed model is unavailable.The quantification is valuable to identify epistemic uncertainty in the estimated seismic hazard and the degree of uncertainty in the CanSHMs.In the present study,we developed seismic source models using spatial smoothing and historical earthquake catalogue.We quantified the differences in the estimated Canadian seismic hazard by considering the delineated source model and spatially smoothed source models.For the development of the spatially smoothed seismic source models,we considered spatial kernel smoothing techniques with or without adaptive bandwidth.The results indicate that the use of the delineated seismic source model could lead to under or over-estimation of the seismic hazard as compared to those estimated based on spatially smoothed seismic source models.This suggests that an epistemic uncertainty caused by the seismic source models should be considered to map the seismic hazard.展开更多
This paper points out that it is theoretically wrong for the traditional method to determine cumulatiove b value using linear regression and derive earthquake recurrence relation according to probability distribution ...This paper points out that it is theoretically wrong for the traditional method to determine cumulatiove b value using linear regression and derive earthquake recurrence relation according to probability distribution or density function. As a result, it always systematically overestimated b value so as to underestimate the frequencies of the part of larger earthquakes. The smaller the actual b in the research area, or the smaller the magnitude range of the data in regression, or the smaller the magnitude interval, the larger the above deviation. So for an area with lower upper bound magnitude, if only historic earthquake data are used to determine b value by regression method, the b value will be obviously overestimated and systematic deviation of seismic hazard will be arised because the lower bound magnitude of reliable data is high and the magnitude range of data is small. In this paper, it is suggested to substitude cumulative b value without upper bound magnitude for conventional cumulative b value with upper bound magnitude, and the regression method is devloped to determine b value without upper bound magnitude.展开更多
文摘In this study, we present a PSHA(Probabilistic Seismic Hazard Analysis) for the city of San Juan, which is located in the central-western region of Argentina(30°S-35.5°S; 66.5°W-71°W). In addition to crustal earthquakes provided by catalogues, recent paleoseismological and neotectonic investigations have permitted to consider events which occurred during the last 400 years.Four seismogenic sources that could cause damages to the studied site corresponding to Precordillera,Western Sierras Pampeanas, Basement of the Cuyana Basin and Cordillera Principal were identified.Based on the evaluation of the contribution of these sources,maximum moment magnitudes above 7.5(Mw) are expected.High values of SA(spectral acceleration)(0.2 and 1 s periods) and PGA(peak ground acceleration) were found in the city of San Juan, which suggests that it is located in a zone of high seismic hazard.Finally, the obtained SA spectra were compared with the seismic-resistant construction standards of Argentina INPRES-CIRSOC 103 [1]. Results suggest that for the city of San Juan and for a return period of475 years, it covers the seismic requirements of the structures.
基金Project of Institute of Crustal Dynamics, China Earthquake Administration (ZDJ2007-1)One Hundred Individual Program of Chinese Academy of Sciences (99M2009M02) National Natural Science Foundation of China (40574022)
文摘A mature mathematical technique called copula joint function is introduced in this paper, which is commonly used in the financial risk analysis to estimate uncertainty. The joint function is generalized to the n-dimensional Frank’s copula. In addition, we adopt two attenuation models proposed by YU and Boore et al, respectively, and construct a two-dimensional copula joint probabilistic function as an example to illustrate the uncertainty treatment at low probability. The results show that copula joint function gives us a better prediction of peak ground motion than that resultant from the simple linear weight technique which is commonly used in the traditional logic-tree treatment of model uncertainties. In light of widespread application in the risk analysis from financial investment to insurance assessment, we believe that the copula-based technique will have a potential application in the seismic hazard analysis.
基金Foundation item: Joint Seismological Science Foundation of China (104065)Social Public Welfare Special Foundation of the Na-tional Research Institutes (2005DIB3J119).
文摘Potential sources are simplified as point sources or linear sources in current probabilistic seismic hazard analysis (PSHA) methods. Focus size of large earthquakes is considerable, and fault rupture attitudes may have great influence upon the seismic hazard of a site which is near the source. Under this circumstance, it is unreasonable to use the simplified potential source models in the PSHA, so a potential rupture surface model is proposed in this paper. Adopting this model, we analyze the seismic hazard near the Chelungpu fault that generated the Chi-Chi (Jiji) earthquake with magnitude 7.6 and the following conclusions are reached. (1) This model is reasonable on the base of focal mechanism, especially for sites near potential earthquakes with large magnitude; (2) The attitudes of potential rupture surfaces have great influence on the results of probabilistic seismic hazard analysis and seismic zoning.
基金sponsored by the Special Fund of the Institute of Geophysics,China Earthquake Administration(Grant Nos.DQJB22Z03 and DQJB22B25)。
文摘Based on the seismic source model in the Fifth Generation Seismic Ground Motion Parameters Zonation Map of China(FGSGMPZMC),a new seismic fault model,the new zonation of seismic risk areas(SRAs),and the estimation of seismicity rates for 2021-2030,this study constructed a new time-dependent seismic source model of China’s mainland,and used the probabilistic seismic hazard analysis method to calculate seismic hazard by selecting the ground motion models(GMMs)suitable for seismic sources in China.It also provided the probabilities of China’s mainland being affected by earthquakes of modified Mercalli intensity(MMI)Ⅵ,Ⅶ,Ⅷ,Ⅸ,and≥Ⅹin 2021-2030.The spatial pattern of seismic hazards presented in this article is similar to the pattern of the FGSGMPZMC,but shows more details.The seismic hazards in this study are higher than those in the FGSGMPZMC in the SRAs and fault zones that can produce large earthquakes.This indicates that the seismic source model construction in this study is scientific and reasonable.There are certain similarities between the results in this study and those of Rong et al.(2020)and Feng et al.(2020),but also disparities for specific sites due to differences in seismic source models,seismicity parameters,and GMMs.The results of seismic hazard may serve as parameter input for future seismic risk assessments.The hazard results can also be used as a basis for the formulation of earthquake prevention and mitigation policies for China’s mainland.
基金Basic Scientific Research Service Project of Centrallevel Public Welfare Research Institute(No.2016-9018)
文摘Since there are few studies on the performance-based seismic evaluation of the long-span suspension bridge system under two-level earthquake hazard in Chinese code,the developed procedure of this study can be regarded as a general program to assess the seismic performance of the overall system for long-span suspension bridges.In the procedure,the probabilistic seismic demand models of multiple bridge components were developed by nonlinear time-history analyses incorporating the related uncertainties,and the component-level fragility curves were calculated by the reasonable definition of limit states of the corresponding components in combination with seismic hazard analysis.The bridge repair cost ratios used to evaluate the system seismic performance were derived through the performance-based methodology and the damage probability of critical components.Furthermore,the repair cost ratios of the overall bridge system that was retrofitted with fluid viscous dampers for the main bridge and changed restraint systems for the approach bridges were compared.The results show that peak ground velocity and peak ground acceleration can be selected as the optimal intensity measurements of long-span suspension bridges using the TOPSIS(technique for order preference by similarity to an ideal solution).The bridge repair cost ratios can serve as accurate evaluation indicators to provide an efficient evaluation of retrofit measures.The seismic evaluation of long-span bridges is misled when ignoring the interaction of adjacent structures.However,the repair cost ratios of a bridge system that has optimum seismic performance are less sensitive to the relative importance of adjacent structures.
基金Ningxia Hui Autonomous Region Key R&D Plan East West cooperation Project(No.2018BFG02011)National Natural Science Foundation of China(No.41674047)China Earthquake Science Experiment Site Project,CEA(Nos.2019CSES0105 and 2019CSES0106).
文摘Based on the modern earthquake catalogue,the incomplete centroidal voronoi tessellation(ICVT)method was used in this study to estimate the seismic hazard in Sichuan-Yunnan region of China.We calculated spatial distributions of the total seismic hazard and background seismic hazard in this area.The Bayesian delaunay tessellation smoothing method put forward by Ogata was used to calculate the spatial distributions of b-value.The results show that seismic hazards in Sichuan-Yunan region are high,and areas with relatively high hazard values are distributed along the main faults,while seismic hazards in Sichuan basin are relatively low.
文摘The proposed site of the Diamer Bhasha Dam in northern Pakistan is situated in an active tectonic zone with intensive seismicity,which makes it necessary for seismic hazard analysis(SHA).Deterministic and probabilistic approaches have been used for SHA of the dam site.The Main Mantle Thrust(MMT),Main Karakaram Thrust(MKT),Raikot-Sassi Fault(RKSF)and Kohistan Fault(KF)have been considered as major seismic sources,all of which can create maximum ground shaking with maximum potential earthquake(MPE).Deterministically estimated MPE for magnitudes of 7.8,7.7,7.6,and 7.1 can be produced from MMT,MKT,RKSF and KF,respectively.The corresponding peak ground accelerations(PGA)of 0.07,0.11,0.13 and 0.05 g can also be generated from these earthquakes,respectively.The deterministic analysis predicts a so-called floating earthquake as a MPE of magnitude=7.1 as close as 10 km away from the site.The corresponding PGA was computed as 0.38 g for a maximum design earthquake at the project site.However,the probabilistic analysis revealed that the PGA with 50%probability of exceedance in 100 years is 0.18 g.Thus,this PGA value related to the operational basis earthquake(OBE)is suggested for the design of this project with shear wave velocity(V_(s30))equal to 760 m/s under dense soil and soft rock conditions.
文摘Many destructive earthquakes happened in Tehran, Iran in the last centuries. The existence of active faults like the North Tehran is the main cause of seismicity in this city. According to past investigations, it is estimated that in the scenario of activation of the North Tehran fault, many structures in Tehran will collapse. Therefore, it is necessary to incorporate the near field rupture directivity effects of this fault into the seismic hazard assessment of important sites in Tehran. In this study, using calculations coded in MATLAB, Probabilistic Seismic Hazard Analysis (PSHA) is conducted for an important site in Tehran. Following that, deaggregation technique is performed on PSHA and the contribution of seis- mic scenarios to hazard is obtained in the range of distance and magnitude. After identifying the North Tehran fault as the most hazardous source affecting the site in 10000-year return period, rupture directivity effects of this fault is incorporated into the seismic hazard assessment using Somerville et al. (1997) model with broadband approach and Shahi and Baker (2011) model with narrowband approach. The results show that the narrowband approach caused a 27% increase in the peak of response spectrum in 10000-year return period compared with the conventional PSHA. Therefore, it is necessary to incorporate the near fault rupture directivity effects into the higher levels of seismic hazard assessment attributed to important sites.
文摘Based on the intrinsic characters of the fractal and chaotic dynamic systems of seismic dissipated energy active intensity E d and active intensity of seismic dissipated energy moment I e,the evolutional laws of the long term system and short term system behavior are discussed respectively.Active and passive earthquake control parameters,maintenance decision and inputted energy optimization of system are discussed by means of the predictive results of short term behavior in practical engineering structures; earthquake resistant design probability,maintenance probability,seismic risk analysis and seismic hazard analysis are also discussed by means of the predictive results of long term behavior probability in practical engineering structures.The content might be valuable for the practical applications of earthquake resistance theory and method,and for earthquake control and earthquake reduction problems in practical engineering structures.
基金financially supported by the Research Grants Council of the Hong Kong Special Administrative Region(Project No.15212418)。
文摘This paper presents probabilistic assessment of seismically-induced slope displacements considering uncertainties of seismic ground motions and soil properties.A stochastic ground motion model representing both the temporal and spectral non-stationarity of earthquake shakings and a three-dimensional rotational failure mechanism are integrated to assess Newmark-type slope displacements.A new probabilistic approach that incorporates machine learning in metamodeling technique is proposed,by combining relevance vector machine with polynomial chaos expansions(RVM-PCE).Compared with other PCE methods,the proposed RVM-PCE is shown to be more effective in estimating failure probabilities.The sensitivity and relative influence of each random input parameter to the slope displacements are discussed.Finally,the fragility curves for slope displacements are established for sitespecific soil conditions and earthquake hazard levels.The results indicate that the slope displacement is more sensitive to the intensities and strong shaking durations of seismic ground motions than the frequency contents,and a critical Arias intensity that leads to the maximum annual failure probabilities can be identified by the proposed approach.
文摘This paper makes a summary of status of delimitation of seismic zones and belts of China firstly in aspects of studying history, purpose, usage, delimiting principles, various presenting forms and main specialties. Then the viewpoints are emphasized, making geographical divisions by seismicity is just the most important purpose of delimiting seismic belts and the concept of seismic belt is also quite different from that of seismic statistical zone used in CPSHA method. The concept of seismic statistical zone and its history of evolvement are introduced too. Large differences between these rwo concepts exist separately in their statistical property, actual meaning, gradation, required scale, and property of refusing to overlap each other, aim and usage of delimitation. But in current engineering practice, these two concepts are confused. On the one hand, it causes no fit theory for delimiting seismic statistical zone in PSHA to be set up; on the other hand, researches about delimitation of seismic belts with purposes of seismicity zoning and studying on structural environment, mechanism of earthquake generating also pause to go ahead. Major conclusions are given in the end of this paper, that seismic statistical zone bases on the result of seismic belt delimiting, it only arises in and can be used in the especial PSHA method of China with considering spatially and temporally inhomogeneous seismic activities, and its concept should be clearly differentiated from the concept of seismic belt.
文摘This paper presents an effective means of analyzing the safety of a tunnel under dynamic loading in areas<span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">with seismic records. A particular case of the railway tunnel in the earthquake-prone regions of the escarpment seismic zone of Ethiopia was the specific focus area of the research. Probabilistic seismic hazard analysis (PSHA) and deaggregation have been conducted to determine the design earthquake required as an input for the dynamic analysis. The PSHA</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">performed by considering the operating design earthquake with conservative assumptions of the local geological features resulted in a peak ground acceleration of 0.36. Two pairs of design earthquake have been obtained from the deaggregation process, which were used to filter acceleration time histories for the selected design earthquake from the ground motion database of Pacific Earthquake Engineering Research Center. Finally, full dynamic analyses of the tunnel have been performed by applying the scaled acceleration time histories corresponding to the structure in the specific site. It was demonstrated how to prove the stability of the tunnel located in difficult ground conditions by performing plane strain analyses with the possible minimum computational efforts.</span>
基金sponsored under the keyresearch project of social development of Zhejiang Province(2005C23075)
文摘It has been a period of time since the concept of scenario earthquake was proposed, but this concept has rarely been used in seismic safety evaluation in China since then. Meanwhile, because of the uncertainties of magnitudes-distances pairs, there is large arbitrariness while determining the envelope function of time histories in seismic hazard analysis. In this paper, we describe a method to control the envelope functions of the time histories by introducing the most-likely combinations of magnitude and distance of the scenario earthquakes based on a probabilistic method, revise the software of the ellipse model for seismic hazard analysis, and give a computation example.
基金Chinese Joint Seismological Science Foundation (100110).
文摘The seismic hazard of research area is evaluated by probabilistic analysis method for three different seismic statis-tical zone scenarios. The influence of uncertainty in seismic statistical zone delimiting on the evaluation result is discussed too. It can be seen that for those local sites along zone's border or within areas with vast change of upper bound magnitude among different scenarios the influence on seismic hazard result should not be neglected.
基金supported by the Russian Science Foundationproject no.20-17-00180-P“Development of a scenario approach to the tasks of seismic hazard and risk assessment”。
文摘We are living in a world of numbers and calculations with enormous amount of pretty fast user-friendly software ready for an automatic output that may lead to a discovery or,alternatively,mislead to a deceptive conclusion,erroneous claims and predictions.As a matter of fact,nowadays,Science can disclose Natural Hazards,assess Risks,and deliver the state-of-the-art Knowledge of looming disaster in advance catastrophes along with useful Recommendations on the level of risks for decision making regarding engineering design,insurance,and emergency management.
基金the University of Punjab for providing support for this research
文摘The building code of any country is considered to be a basic technical guidance document for the seismic design of structures.However,building codes are typically developed for the whole country,without considering site specific models that incorporate detailed site-specific data.Therefore,the adequacy of the design spectrum for building codes may sometimes be questionable.To study the sufficiency of the building codes of Pakistan(BCP-SP-2007),a deterministic seismic hazard analysis(DSHA)based spectrum was developed for a site in the Muzaffargarh area,Pakistan,using an updated earthquake catalogue,seismic source model,and a next generation attenuation model(NGA-WEST-2).Further,an International Building Code(IBC-2000)spectrum was developed for the study area to compare the results.The DSHA-based response spectrum resulted in a peak ground acceleration(PGA)value of 0.21 g for the Chaudwan fault.The evaluation of BCP-SP-2007 and IBC-2000 spectra provided a critical assessment for analyzing the associated margins.A comparison with the DSHA-based response spectrum showed that the BCP-SP-2007 design spectrum mostly overlapped with the DSHA spectrum unlike IBC-2000.However,special attention is needed for designing buildings in the study area when considering earthquake periods longer than 1 s,and the BCP-SP-2007 spectrum can be enhanced when considering a period range of 0.12-0.64 s.Finally,BCP-SP-2007 is based on a probabilistic approach and its comparison with deterministic results showed the significance of both methods in terms of design.
文摘It is pointed out in this paper that the concept of scenario earthquake, expectant earthquake or proposed earthquake suggested by Kameda Nojima (1988) is not probability consistent due to unfit understanding for the aseismic design standard of probabilistic method. The corresponding concept proposed by QI FENG LUO meets the meaning of probability consistent, but it is still in a meaning of average so the result is not good enough. On the basis of above analysis, a concept of probability consistent conservative earthquakes is suggested. And a new method selecting aseismic objective earthquake with physical meaning is proposed on the basis of probabilistic method. After seismic hazard is analysed by certain control parameters, such as peak acceleration, we can determine the aseismic standard according to certain probabilistic level. Based on the attenuation law and the potential sources, we can find out some earthquakes or their combinations of magnitudes and distances. Such earthquakes or combinations are probability consistent for this control parameter. Based on above parameter, we suggest considering the destructive effects of other parameters (such as response spectrum), and selecting conservative earthquakes to replace the average earthquake and meet the requirements of aseismic design better.
基金The One Hundred Individual Program of Chinese Academy of Sciences and National Natural Science Foundation of China (40574022).
文摘In this study, a composite source model has been used to calculate the realistic strong ground motions in Beijing area, caused by 1679 Ms8.0 earthquake in Sanhe-Pinggu. The results could provide us the useful physical parameters for the future seismic hazard analysis in this area. Considering the regional geological/geophysical background, we simulated the scenario earthquake with an associated ground motions in the area ranging from 39.3°N to 41. 1°N in latitude and from 115.35°E to 117.55°E in longitude. Some of the key factors which could influence the characteristics of strong ground motion have been discussed, and the resultant peak ground acceleration (PGA) distribution and the peak ground velocity (PGV) distribution around Beijing area also have been made as well. A comparison of the simulated result with the results derived from the attenuation relation has been made, and a sufficient discussion about the advantages and disadvantages of composite source model also has been given in this study. The numerical results, such as the PGA, PGV, peak ground displacement (PGD), and the three-component time-histories developed for Beijing area, have a potential application in earthquake engineering field and building code design, especially for the evaluation of critical constructions, government decision making and the seismic hazard assessment by financial/insurance companies.
基金The support of the Fundamental Research Funds from the Central Universities,CHD(Grant No.300102282103)Natural Science Basic Research Program of Shaanxi(Program No.2023-JC-QN-0512)Harbin Institute of Technology(Shenzhen)。
文摘The estimated seismic hazard based on the delineated seismic source model is used as the basis to assign the seismic design loads in Canadian structural design codes.An alternative for the estimation is based on a spatially smoothed source model.However,a quantification of differences in the Canadian seismic hazard maps(CanSHMs)obtained based on the delineated seismic source model and spatially smoothed model is unavailable.The quantification is valuable to identify epistemic uncertainty in the estimated seismic hazard and the degree of uncertainty in the CanSHMs.In the present study,we developed seismic source models using spatial smoothing and historical earthquake catalogue.We quantified the differences in the estimated Canadian seismic hazard by considering the delineated source model and spatially smoothed source models.For the development of the spatially smoothed seismic source models,we considered spatial kernel smoothing techniques with or without adaptive bandwidth.The results indicate that the use of the delineated seismic source model could lead to under or over-estimation of the seismic hazard as compared to those estimated based on spatially smoothed seismic source models.This suggests that an epistemic uncertainty caused by the seismic source models should be considered to map the seismic hazard.
文摘This paper points out that it is theoretically wrong for the traditional method to determine cumulatiove b value using linear regression and derive earthquake recurrence relation according to probability distribution or density function. As a result, it always systematically overestimated b value so as to underestimate the frequencies of the part of larger earthquakes. The smaller the actual b in the research area, or the smaller the magnitude range of the data in regression, or the smaller the magnitude interval, the larger the above deviation. So for an area with lower upper bound magnitude, if only historic earthquake data are used to determine b value by regression method, the b value will be obviously overestimated and systematic deviation of seismic hazard will be arised because the lower bound magnitude of reliable data is high and the magnitude range of data is small. In this paper, it is suggested to substitude cumulative b value without upper bound magnitude for conventional cumulative b value with upper bound magnitude, and the regression method is devloped to determine b value without upper bound magnitude.