The statistic properties of photon emissions from single semiconductor quantum dots with V-type leveldriven by pulses are investigated theoretically.Based on quantum regression theorem and master equations,the dynamic...The statistic properties of photon emissions from single semiconductor quantum dots with V-type leveldriven by pulses are investigated theoretically.Based on quantum regression theorem and master equations,the dynamicequations of the second-order correlation function of the photon emissions are deduced.The calculated results reveal thatthe efficiency of single photon emissions from two orthogonal polarization eigenstates(|x〉and |y〉)reaches the maximumwhen the input pulses area is about π,and the probability of the cross-polarized single photon emission from |x〉and |y〉decreases with increasing of pulse width.展开更多
This work mainly investigated the influences of some factors, such as, synthesis methods, precursor alteraatives, and vacuum heat-treating process, etc, on the fluorescent characteristics of the semiconductor quantum ...This work mainly investigated the influences of some factors, such as, synthesis methods, precursor alteraatives, and vacuum heat-treating process, etc, on the fluorescent characteristics of the semiconductor quantum dots synthesized by aqueous phase. The research results indicate that the fluorescent characteristic of water- solution sample prepared from Na2 SO3 precursor was sensitive to water bath heating time, and specially, its photohuninescence spectrum shows the unique phenomenon of double excitation and emission peaks. Meanwhile, the fluorescent characteristic of water- solution sample prepared from NaBH4 precursor is slightly influenced by water bath heating time, and the sugface of CdSe quantum dots could be passivated by the excessive amount of NaBH4 precursor, which results in the effective decrease of surface traps and great enhancement of quantum yield. Furthermore, the fluorescent emission peaks of samples could be sharpened by vacuum heat-treating process, with its spectral full width at half of maximum (FWHM) around 30- 40 run, so the emission peaks become redshifi, of which the intensity greatly increases.展开更多
Semiconductor quantum dots are promising hosts for qubits to build a quantum processor. In the last twenty years, in- tensive researches have been carried out and diverse kinds of qubits based on different types of se...Semiconductor quantum dots are promising hosts for qubits to build a quantum processor. In the last twenty years, in- tensive researches have been carried out and diverse kinds of qubits based on different types of semiconductor quantum dots were developed. Recent advances prove high fidelity single and two qubit gates, and even prototype quantum algorithms. These breakthroughs motivate further research on realizing a fault tolerant quantum computer. In this paper we review the main principles of various semiconductor quantum dot based qubits and the latest associated experimental results. Finally the future trends of those qubits will be discussed.展开更多
Thirty years of effort in semiconductor quantum dots has resulted in significant developments in the control of spin quantum bits(qubits). The natural two-energy level of spin states provides a path toward quantum i...Thirty years of effort in semiconductor quantum dots has resulted in significant developments in the control of spin quantum bits(qubits). The natural two-energy level of spin states provides a path toward quantum information processing. In particular, the experimental implementation of spin control with high fidelity provides the possibility of realizing quantum computing. In this review, we will discuss the basic elements of spin qubits in semiconductor quantum dots and summarize some important experiments that have demonstrated the direct manipulation of spin states with an applied electric field and/or magnetic field. The results of recent experiments on spin qubits reveal a bright future for quantum information processing.展开更多
The temperature and LO phonon effects of the bipolaron in polar semiconductor quantum dots (QDs) are studied by using the Tokuda modified linear-combination operator method and the Lee-Low-Pines variational method. ...The temperature and LO phonon effects of the bipolaron in polar semiconductor quantum dots (QDs) are studied by using the Tokuda modified linear-combination operator method and the Lee-Low-Pines variational method. The expressions for the mean number ofLO phonons and the effective mass of the bipolaron are derived. Numerical results show that the mean number of LO phonons of the bipolaron decreases with increasing the temperature and the relative distance r between two electrons, but increases with increasing the electron-phonon coupling strength a The effective mass of the bipolaron M* increases rapidly with increasing the relative distance r between two electrons when r is smaller, and it reaches a maximum at r ≈ 4.05rp, while after that, 34* decreases slowly with increasing r. The effective mass of the bipolaron M' decreases with increasing the temperature. The electron-phonon coupling strength a markedly influences the changes of mean number of LO phonons and the effective mass M* with the relative distance r and the temperature parameter y.展开更多
A new facile method for preparing water-soluble near-infrared (NIR)-emitting PbS quantum dots (QDs) is proposed by using N-acetyl-L-cysteine (NAC, a derivate of L-cysteine) as its stabilizer. The influence of th...A new facile method for preparing water-soluble near-infrared (NIR)-emitting PbS quantum dots (QDs) is proposed by using N-acetyl-L-cysteine (NAC, a derivate of L-cysteine) as its stabilizer. The influence of the precursor Pb/S molar ratio, the Pb/NAC molar ratio, and the pH of original solution on optical properties is explored. Results show that aqueous PbS QDs with strong NIR fluorescence can be prepared and their photoluminescence emission peaks can be tuned from 895 nm to 970 nm. Studies indicate that such aqueous QDs have a potential application in biomedical imaging, especially in noninvasive in vivo fluorescence imaging. In addition, the resulting PbS QDs are further characterized by a transmission electron microscopy and X-ray diffraction analysis.展开更多
Size-dependence of optical properties and energy relaxation in CdSe/ZnS quantum dots (QDs) were investigated by two-colour femtosecond (fs) pump-probe (400/800 nm) and picosecond time-resolved photoluminescence ...Size-dependence of optical properties and energy relaxation in CdSe/ZnS quantum dots (QDs) were investigated by two-colour femtosecond (fs) pump-probe (400/800 nm) and picosecond time-resolved photoluminescence (ps TRPL) experiments. Pump-probe measurement results show that there are two components for the excited carriers relaxation, the fast one with a time constant of several ps arises from the Auger-type recombination, which shows almost particle sizeindependence. The slow relaxation component with a time constant of several decades of ns can be clearly determined with ps TRPL spectroscopy in which the slow relaxation process shows strong particle size-dependence. The decay time constants increase from 21 to 34 ns with the decrease of particle size from 3.2 to 2.1 nm. The room-temperature decay lifetime is due to the thermal mixing of bright and dark excitons, and the size-dependence of slow relaxation process can be explained very well in terms of simple three-level model.展开更多
The single photon scattering properties in a pair of waveguides coupled by a whispering-gallery resonator in- teracting with a semiconductor quantum dot are investigated theoretically. The two waveguides support four ...The single photon scattering properties in a pair of waveguides coupled by a whispering-gallery resonator in- teracting with a semiconductor quantum dot are investigated theoretically. The two waveguides support four possible ports for an incident single photon. The quantum dot is considered a V-type system. The incident direction-dependent single photon scattering properties are studied and equal-output probability from the four ports for a single photon incident is discussed. The influences of backscattering between the two modes of the whispering-gallery resonator for incident direction-dependent single photon scattering properties are also pre- sented.展开更多
This paper demonstrates experimentally and numerically that a significant modification of spontaneous emission rate can be achieved near the surface of a three-dimensional photonic crystal. In experiments, semiconduct...This paper demonstrates experimentally and numerically that a significant modification of spontaneous emission rate can be achieved near the surface of a three-dimensional photonic crystal. In experiments, semiconductor coreshell quantum dots are intentionally confined in a thin polymer film on which a three-dimensional colloidal photonic crystal is fabricated. The spontaneous emission rate of quantum dots is characterised by conventional and time-resolved photoluminescence (PL) measurements. The modification of the spontaneous emission rate, which is reflected in the change of spectral shape and PL lifetime, is clearly observed. While an obvious increase in the PL lifetime is found at most wavelengths in the band gap, a significant reduction in the PL lifetime by one order of magnitude is observed at the short-wavelength band edge. Numerical simulation reveals a periodic modulation of spontaneous emission rate with decreasing modulation strength when an emitter is moved away from the surface of the photonic crystal. It is supported by the fact that the modification of spontaneous emission rate is not pronounced for quantum dots distributed in a thick polymer film where both enhancement and suppression are present simultaneously. This finding provides a simple and effective way for improving the performance of light emitting devices.展开更多
The linear optical properties and Kerr nonlinear optical response in a four-level loop configuration GaAs/A1GaAs semiconductor quantum dot are analytically studied with the phonon-assisted transition (PAT). It is sh...The linear optical properties and Kerr nonlinear optical response in a four-level loop configuration GaAs/A1GaAs semiconductor quantum dot are analytically studied with the phonon-assisted transition (PAT). It is shown that the changes among a single electromagnetically induced transparency (EIT) window, a double EIT window and the amplification of the probe field in the absorption curves can be controlled by varying the strength of PAT to. Meanwhile, double switching from the anomalous dispersion regime to the normal dispersion regime can likely be achieved by increasing the Rabi energy of the external optical control field. Furthermore, we demonstrate that the group velocity of the probe field can be practically regulated by varying the PAT and the intensity of the optical control field. In the nonlinear case, it is shown that the large SPM and XPM can be achieved as linear absorption vanishes simultaneously, and the PAT can suppress both third-order self-Kerr and the cross-Kerr nonlinear effect of the QD. Our study is much more practical than its atomic counterpart due to its flexible design and the controllable interference strength, and may provide some new possibilities for technological applications.展开更多
In this theoretical work,we describe a mechanism for the coupling between a plane structure consisting of four quantum dots and a resonator.We systematically study the dependence of the quadruple coupling strength and...In this theoretical work,we describe a mechanism for the coupling between a plane structure consisting of four quantum dots and a resonator.We systematically study the dependence of the quadruple coupling strength and the qubit decoherence rate and point out the optimized operating position of the hybrid system.According to the transmission given by the input-output theory,the signatures in the resonator spectrum are predicted.Furthermore,based on the parameters already achieved in previous works,we prove that the device described in this paper can achieve the strong coupling limit,i.e.,this approach can be used for system extension under the existing technical conditions.Our results show an effective and promotable approach to couple quantum dot structures in plane with the resonator and propose a meaningful extension method.展开更多
A magnetic field-controlled spin-current diode is theoretically proposed,which consists of a junction with an interacting quantum dot sandwiched between a pair of nonmagnetic electrodes.By applying a spin bias VS acro...A magnetic field-controlled spin-current diode is theoretically proposed,which consists of a junction with an interacting quantum dot sandwiched between a pair of nonmagnetic electrodes.By applying a spin bias VS across the junction,a pure spin current can be obtained in a certain gate voltage regime,regardless of whether the Coulomb repulsion energy exists.More interestingly,if we applied an external magnetic field on the quantum dot,we observed a clear asymmetry in the spectrum of spin current IS as a function of spin bias,while the charge current always decays to zero in the Coulomb blockade regime.Such asymmetry in the current profile suggests a spin diode-like behavior with respect to the spin bias,while the net charge through the device is almost zero.Different from the traditional charge current diode,this design can change the polarity direction and rectifying ability by adjusting the external magnetic field,which is very convenient.This device scheme can be compatible with current technologies and has potential applications in spintronics or quantum processing.展开更多
By using CdSe/ZnS quantum dots (QDs), we study the effect of cavity quantum electrodynamics on the coupling of the microtoroid cavity. When with whispering gallery (WG) modes, the microtoroid cavity demonstrates h...By using CdSe/ZnS quantum dots (QDs), we study the effect of cavity quantum electrodynamics on the coupling of the microtoroid cavity. When with whispering gallery (WG) modes, the microtoroid cavity demonstrates high quality factor and small mode volume at visible wavelengths. Accordingly, fiber tapers allow QDs to adhere into the cavity and further permit the control of site-selected coupling. From the luminescence spectra, QDs are modulated effectively by cavity modes, Variable modulations are observed by changing QD coupling conditions. Therefore, based on experimental and theoretical research, strong and tunable Purcell enhancement can be realized by this system.展开更多
The binding energy and Stark effect energy shifts of a shallow donor impurity state in a strained GaN/AlxGa1-xN spherical finite-potential quantum dot (QD) are calculated using a variational method based on the effect...The binding energy and Stark effect energy shifts of a shallow donor impurity state in a strained GaN/AlxGa1-xN spherical finite-potential quantum dot (QD) are calculated using a variational method based on the effective mass approximation. The binding energy is computed as a function of dot size and hydrostatic pressure. The numerical results show that the binding energy of the impurity state increases, attains a maximum value, and then decreases as the QD radius increases for any electric field. Moreover, the binding energy increases with the pressure for any size of dot. The Stark shift of the impurity energy for large dot size is much larger than that for the small dot size, and it is enhanced by the increase of electric field. We compare the binding energy of impurity state with and without strain effects, and the results show that the strain effects enhance the impurity binding energy considerably, especially for the small QD size. We also take the dielectric mismatch into account in our work.展开更多
SiO2 thin films containing Si1-xGex quantum dots (QDs) are prepared by ion implantation and annealing treatment. The photoluminescence (PL) and microstructural properties of thin films are investigated. The sample...SiO2 thin films containing Si1-xGex quantum dots (QDs) are prepared by ion implantation and annealing treatment. The photoluminescence (PL) and microstructural properties of thin films are investigated. The samples exhibit strong PL in the wavelength range of 400-470 nm and relatively weak PL peaks at 730 and 780 nm at room temperature. Blue shift is found for the 400-nm PL peak, and the intensity increases initially and then decreases with the increase of Ge-doping dose. We propose that the 400-470 nm PL band originates from multiple luminescence centers, and the 730- and 780-nm PL peaks are ascribed to the Si=O and GeO luminescence centers.展开更多
We report on the lasing characteristics of a two-color InAs/InP quantum dots(QDs)laser at a low tem-perature.Two lasing peaks with a tunable gap are simultaneously observed.At a low temperature of 80 K,a tunable ran...We report on the lasing characteristics of a two-color InAs/InP quantum dots(QDs)laser at a low tem-perature.Two lasing peaks with a tunable gap are simultaneously observed.At a low temperature of 80 K,a tunable range greater than a 20-nm wavelength is demonstrated by varying the injection current from 30 to 500 mA.Under a special condition,we even observe three lasing peaks,which are in contrast to those observed at room temperature.The temperature coefficient of the lasing wavelength was obtained for the two colors in the 80-280 K temperature range,which is lower than that of the reference quantum well(QW)laser working in the same wavelength region.展开更多
We demonstrate improved peptide linkers which allow both conjugation to biomolecules such as DNA and self-assembly with luminescent semiconductor quantum dots.A hexahistidine peptidyl sequence was generated by standar...We demonstrate improved peptide linkers which allow both conjugation to biomolecules such as DNA and self-assembly with luminescent semiconductor quantum dots.A hexahistidine peptidyl sequence was generated by standard solid phase peptide synthesis and modified with the succinimidyl ester of iodoacetamide to yield a thiol-reactive iodoacetyl polyhistidine linker.The reactive peptide was conjugated to dye-labeled thiolated DNA which was utilized as a model target biomolecule.Agarose gel electrophoresis and fluorescence resonance energy transfer analysis confirmed that the linker allowed the DNA to self-assemble with quantum dots via metal-affinity driven coordination.In contrast to previous peptidyl linkers that were based on disulfide exchange and were thus labile to reduction,the reactive haloacetyl chemistry demonstrated here results in a more stable thioether bond linking the DNA to the peptide which can withstand strongly reducing environments such as the intracellular cytoplasm.As thiol groups occur naturally in proteins,can be engineered into cloned proteins,inserted into nascent peptides or added to DNA during synthesis,the chemistry demonstrated here can provide a simple method for self-assembling a variety of stable quantum dot bioconjugates.展开更多
Hybrid qubits enable the hybridization of charge and spin degrees of freedom,which provides a way to realize both a relatively long coherence time and rapid qubit manipulation.Here,we use microwave driving to demonstr...Hybrid qubits enable the hybridization of charge and spin degrees of freedom,which provides a way to realize both a relatively long coherence time and rapid qubit manipulation.Here,we use microwave driving to demonstrate the coherent operation of a tunable hybrid qubit,including X-rotation,Z-rotation,and rotation around an arbitrary axis in the X-Y panel of the Bloch sphere.Moreover,the coherence properties of the qubit and its tunability are studied.The measured coherence time of the X-rotation reaches~14.3 ns.While for the Z-rotation,the maximum decoherence time is~5.8 ns due to the larger sensitivity to noise.By employing the Hahn echo sequence to mitigate the influence of the low-frequency noise,we have improved the qubit coherence time from~5.8 ns to~15.0 ns.Our results contribute to a further understanding of the hybrid qubit and a step towards achieving high-fidelity qubit gates in the hybrid qubit.展开更多
Semiconductor quantum dot structure provides a promising basis for quantum information processing, within which to reveal the quantum phase and charge transport is one of the most important issues. In this paper, by m...Semiconductor quantum dot structure provides a promising basis for quantum information processing, within which to reveal the quantum phase and charge transport is one of the most important issues. In this paper, by means of the numerical renormalization group technique, we study the quantum phase transition and the charge transport for a parallel triple dot device in the strongly correlated limit, focusing on the effect of inter-dot hopping t beyond the Kondo regime. We find the quantum behaviors depend closely on the initial electron number on the dots, and the present model may map to single,double, and side-coupled impurity models in different parameter spaces. An orbital spin-1/2 Kondo effect between the conduction leads and the bonding orbital, and several magnetic-frustration phases are demonstrated when t is adjusted to different regimes. To understand these phenomena, a canonical transformation of the energy levels is given, and important physical quantities with respect to increasing t and necessary theoretical discussions are shown.展开更多
The authors regret that one of the coauthors was inadvertently omitted in the previous paper. E. Varene was a member of the Institut fur Festk6rperphysik at the Technische Universitat Berlin and contributed to the res...The authors regret that one of the coauthors was inadvertently omitted in the previous paper. E. Varene was a member of the Institut fur Festk6rperphysik at the Technische Universitat Berlin and contributed to the results on cross-phase modulation.展开更多
基金National Natural Science Foundation of China under Grant Nos.10534030 and CAST200729
文摘The statistic properties of photon emissions from single semiconductor quantum dots with V-type leveldriven by pulses are investigated theoretically.Based on quantum regression theorem and master equations,the dynamicequations of the second-order correlation function of the photon emissions are deduced.The calculated results reveal thatthe efficiency of single photon emissions from two orthogonal polarization eigenstates(|x〉and |y〉)reaches the maximumwhen the input pulses area is about π,and the probability of the cross-polarized single photon emission from |x〉and |y〉decreases with increasing of pulse width.
文摘This work mainly investigated the influences of some factors, such as, synthesis methods, precursor alteraatives, and vacuum heat-treating process, etc, on the fluorescent characteristics of the semiconductor quantum dots synthesized by aqueous phase. The research results indicate that the fluorescent characteristic of water- solution sample prepared from Na2 SO3 precursor was sensitive to water bath heating time, and specially, its photohuninescence spectrum shows the unique phenomenon of double excitation and emission peaks. Meanwhile, the fluorescent characteristic of water- solution sample prepared from NaBH4 precursor is slightly influenced by water bath heating time, and the sugface of CdSe quantum dots could be passivated by the excessive amount of NaBH4 precursor, which results in the effective decrease of surface traps and great enhancement of quantum yield. Furthermore, the fluorescent emission peaks of samples could be sharpened by vacuum heat-treating process, with its spectral full width at half of maximum (FWHM) around 30- 40 run, so the emission peaks become redshifi, of which the intensity greatly increases.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFA0301700)the National Natural Science Foundation of China(Grant Nos.61674132,11674300,11575172,and 11625419)the Fundamental Research Fund for the Central Universities
文摘Semiconductor quantum dots are promising hosts for qubits to build a quantum processor. In the last twenty years, in- tensive researches have been carried out and diverse kinds of qubits based on different types of semiconductor quantum dots were developed. Recent advances prove high fidelity single and two qubit gates, and even prototype quantum algorithms. These breakthroughs motivate further research on realizing a fault tolerant quantum computer. In this paper we review the main principles of various semiconductor quantum dot based qubits and the latest associated experimental results. Finally the future trends of those qubits will be discussed.
基金Project supported by the National Key R&D Program of China(Grant No.2016YFA0301700)the National Natural Science Foundation of China(Grant Nos.11674300,61674132,11575172,and 11625419)the Fundamental Research Fund for the Central Universities,China
文摘Thirty years of effort in semiconductor quantum dots has resulted in significant developments in the control of spin quantum bits(qubits). The natural two-energy level of spin states provides a path toward quantum information processing. In particular, the experimental implementation of spin control with high fidelity provides the possibility of realizing quantum computing. In this review, we will discuss the basic elements of spin qubits in semiconductor quantum dots and summarize some important experiments that have demonstrated the direct manipulation of spin states with an applied electric field and/or magnetic field. The results of recent experiments on spin qubits reveal a bright future for quantum information processing.
基金supported by the Science and Technology Development Plan of Qinhuangdao(No.201101A027)
文摘The temperature and LO phonon effects of the bipolaron in polar semiconductor quantum dots (QDs) are studied by using the Tokuda modified linear-combination operator method and the Lee-Low-Pines variational method. The expressions for the mean number ofLO phonons and the effective mass of the bipolaron are derived. Numerical results show that the mean number of LO phonons of the bipolaron decreases with increasing the temperature and the relative distance r between two electrons, but increases with increasing the electron-phonon coupling strength a The effective mass of the bipolaron M* increases rapidly with increasing the relative distance r between two electrons when r is smaller, and it reaches a maximum at r ≈ 4.05rp, while after that, 34* decreases slowly with increasing r. The effective mass of the bipolaron M' decreases with increasing the temperature. The electron-phonon coupling strength a markedly influences the changes of mean number of LO phonons and the effective mass M* with the relative distance r and the temperature parameter y.
基金Supported by the National Natural Science Foundation of China (30800257,30700799)the Scien-tific Research Starting Foundation for Introduced Talented Persons of China Pharmaceutical University~~
文摘A new facile method for preparing water-soluble near-infrared (NIR)-emitting PbS quantum dots (QDs) is proposed by using N-acetyl-L-cysteine (NAC, a derivate of L-cysteine) as its stabilizer. The influence of the precursor Pb/S molar ratio, the Pb/NAC molar ratio, and the pH of original solution on optical properties is explored. Results show that aqueous PbS QDs with strong NIR fluorescence can be prepared and their photoluminescence emission peaks can be tuned from 895 nm to 970 nm. Studies indicate that such aqueous QDs have a potential application in biomedical imaging, especially in noninvasive in vivo fluorescence imaging. In addition, the resulting PbS QDs are further characterized by a transmission electron microscopy and X-ray diffraction analysis.
基金Project supported by the National Natural Science Foundation of China (Grant No 10774099)Science and Technology Commission of Shanghai Municipal (Grant No 06PJ14042)+1 种基金Shanghai Municipal Education Commission (Grant No 06AZ089)the Shanghai Leading Academic Discipline Program (T0104)
文摘Size-dependence of optical properties and energy relaxation in CdSe/ZnS quantum dots (QDs) were investigated by two-colour femtosecond (fs) pump-probe (400/800 nm) and picosecond time-resolved photoluminescence (ps TRPL) experiments. Pump-probe measurement results show that there are two components for the excited carriers relaxation, the fast one with a time constant of several ps arises from the Auger-type recombination, which shows almost particle sizeindependence. The slow relaxation component with a time constant of several decades of ns can be clearly determined with ps TRPL spectroscopy in which the slow relaxation process shows strong particle size-dependence. The decay time constants increase from 21 to 34 ns with the decrease of particle size from 3.2 to 2.1 nm. The room-temperature decay lifetime is due to the thermal mixing of bright and dark excitons, and the size-dependence of slow relaxation process can be explained very well in terms of simple three-level model.
基金Supported by the National Natural Science Foundation of China under Grant No 11105001the Anhui Provincial Natural Science Foundation under Grant Nos 1408085QA22 and 1608085MA09
文摘The single photon scattering properties in a pair of waveguides coupled by a whispering-gallery resonator in- teracting with a semiconductor quantum dot are investigated theoretically. The two waveguides support four possible ports for an incident single photon. The quantum dot is considered a V-type system. The incident direction-dependent single photon scattering properties are studied and equal-output probability from the four ports for a single photon incident is discussed. The influences of backscattering between the two modes of the whispering-gallery resonator for incident direction-dependent single photon scattering properties are also pre- sented.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10974060 and 10774050)the Program for Innovative Research Team of the Higher Education in Guangdong,China (Grant No. 06CXTD005)
文摘This paper demonstrates experimentally and numerically that a significant modification of spontaneous emission rate can be achieved near the surface of a three-dimensional photonic crystal. In experiments, semiconductor coreshell quantum dots are intentionally confined in a thin polymer film on which a three-dimensional colloidal photonic crystal is fabricated. The spontaneous emission rate of quantum dots is characterised by conventional and time-resolved photoluminescence (PL) measurements. The modification of the spontaneous emission rate, which is reflected in the change of spectral shape and PL lifetime, is clearly observed. While an obvious increase in the PL lifetime is found at most wavelengths in the band gap, a significant reduction in the PL lifetime by one order of magnitude is observed at the short-wavelength band edge. Numerical simulation reveals a periodic modulation of spontaneous emission rate with decreasing modulation strength when an emitter is moved away from the surface of the photonic crystal. It is supported by the fact that the modification of spontaneous emission rate is not pronounced for quantum dots distributed in a thick polymer film where both enhancement and suppression are present simultaneously. This finding provides a simple and effective way for improving the performance of light emitting devices.
基金supported by the National Natural Science Foundation of China(Grant No.61367003)the Scientific Research Fund of Hunan Provincial Education Department,China(Grant No.12A140)the Scientific Research Fund of Guizhou Provincial Education Department,China(Grant Nos.KY[2015]384 and KY[2015]446)
文摘The linear optical properties and Kerr nonlinear optical response in a four-level loop configuration GaAs/A1GaAs semiconductor quantum dot are analytically studied with the phonon-assisted transition (PAT). It is shown that the changes among a single electromagnetically induced transparency (EIT) window, a double EIT window and the amplification of the probe field in the absorption curves can be controlled by varying the strength of PAT to. Meanwhile, double switching from the anomalous dispersion regime to the normal dispersion regime can likely be achieved by increasing the Rabi energy of the external optical control field. Furthermore, we demonstrate that the group velocity of the probe field can be practically regulated by varying the PAT and the intensity of the optical control field. In the nonlinear case, it is shown that the large SPM and XPM can be achieved as linear absorption vanishes simultaneously, and the PAT can suppress both third-order self-Kerr and the cross-Kerr nonlinear effect of the QD. Our study is much more practical than its atomic counterpart due to its flexible design and the controllable interference strength, and may provide some new possibilities for technological applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.92265113,12074368,and 12034018).
文摘In this theoretical work,we describe a mechanism for the coupling between a plane structure consisting of four quantum dots and a resonator.We systematically study the dependence of the quadruple coupling strength and the qubit decoherence rate and point out the optimized operating position of the hybrid system.According to the transmission given by the input-output theory,the signatures in the resonator spectrum are predicted.Furthermore,based on the parameters already achieved in previous works,we prove that the device described in this paper can achieve the strong coupling limit,i.e.,this approach can be used for system extension under the existing technical conditions.Our results show an effective and promotable approach to couple quantum dot structures in plane with the resonator and propose a meaningful extension method.
基金Project supported by the National Natural Science Foundation of China(Grant No.11404322)the Natural Science Foundation of Huai’an(Grant No.HAB202150).
文摘A magnetic field-controlled spin-current diode is theoretically proposed,which consists of a junction with an interacting quantum dot sandwiched between a pair of nonmagnetic electrodes.By applying a spin bias VS across the junction,a pure spin current can be obtained in a certain gate voltage regime,regardless of whether the Coulomb repulsion energy exists.More interestingly,if we applied an external magnetic field on the quantum dot,we observed a clear asymmetry in the spectrum of spin current IS as a function of spin bias,while the charge current always decays to zero in the Coulomb blockade regime.Such asymmetry in the current profile suggests a spin diode-like behavior with respect to the spin bias,while the net charge through the device is almost zero.Different from the traditional charge current diode,this design can change the polarity direction and rectifying ability by adjusting the external magnetic field,which is very convenient.This device scheme can be compatible with current technologies and has potential applications in spintronics or quantum processing.
基金supported by the National Fundamental Research Program of China (No. 2006CB921900)the National Natural Science Foundation of China (Nos. 60537020 and 60621064)the Knowledge Innovation Project of the Chinese Academy of Sciences
文摘By using CdSe/ZnS quantum dots (QDs), we study the effect of cavity quantum electrodynamics on the coupling of the microtoroid cavity. When with whispering gallery (WG) modes, the microtoroid cavity demonstrates high quality factor and small mode volume at visible wavelengths. Accordingly, fiber tapers allow QDs to adhere into the cavity and further permit the control of site-selected coupling. From the luminescence spectra, QDs are modulated effectively by cavity modes, Variable modulations are observed by changing QD coupling conditions. Therefore, based on experimental and theoretical research, strong and tunable Purcell enhancement can be realized by this system.
基金supported by the National Natural Science Foundation of China (No.10964006)the Research Funds for the Science and Technology Innovation Team of Inner Mongolia Agricultural University (No. NDPYTD2010-7)
文摘The binding energy and Stark effect energy shifts of a shallow donor impurity state in a strained GaN/AlxGa1-xN spherical finite-potential quantum dot (QD) are calculated using a variational method based on the effective mass approximation. The binding energy is computed as a function of dot size and hydrostatic pressure. The numerical results show that the binding energy of the impurity state increases, attains a maximum value, and then decreases as the QD radius increases for any electric field. Moreover, the binding energy increases with the pressure for any size of dot. The Stark shift of the impurity energy for large dot size is much larger than that for the small dot size, and it is enhanced by the increase of electric field. We compare the binding energy of impurity state with and without strain effects, and the results show that the strain effects enhance the impurity binding energy considerably, especially for the small QD size. We also take the dielectric mismatch into account in our work.
基金This work was supported by the National Natural Science Foundation of China(Nos.10605007 and 10604003)Beijing Nova Project(No.2006B15)+1 种基金Beijing Municipal Science and Technology Commission,the Program for New Century Excellent Talents in University(No.NCET-07-0045)the of Beam Technology and Foundation of Key Laboratory Materials Modification of Ministry of Education,Beijing Normal University
文摘SiO2 thin films containing Si1-xGex quantum dots (QDs) are prepared by ion implantation and annealing treatment. The photoluminescence (PL) and microstructural properties of thin films are investigated. The samples exhibit strong PL in the wavelength range of 400-470 nm and relatively weak PL peaks at 730 and 780 nm at room temperature. Blue shift is found for the 400-nm PL peak, and the intensity increases initially and then decreases with the increase of Ge-doping dose. We propose that the 400-470 nm PL band originates from multiple luminescence centers, and the 730- and 780-nm PL peaks are ascribed to the Si=O and GeO luminescence centers.
基金supported by the Foundation of Shenzhen’s Institute of Information Technology underGrant No.YB201006
文摘We report on the lasing characteristics of a two-color InAs/InP quantum dots(QDs)laser at a low tem-perature.Two lasing peaks with a tunable gap are simultaneously observed.At a low temperature of 80 K,a tunable range greater than a 20-nm wavelength is demonstrated by varying the injection current from 30 to 500 mA.Under a special condition,we even observe three lasing peaks,which are in contrast to those observed at room temperature.The temperature coefficient of the lasing wavelength was obtained for the two colors in the 80-280 K temperature range,which is lower than that of the reference quantum well(QW)laser working in the same wavelength region.
基金The authors acknowledge Stephen Lee and Ilya Elashvilli of the CB Directorate/Physical S&T Division(DTRA),ONR,NRL,and the NRLNSI for financial support.
文摘We demonstrate improved peptide linkers which allow both conjugation to biomolecules such as DNA and self-assembly with luminescent semiconductor quantum dots.A hexahistidine peptidyl sequence was generated by standard solid phase peptide synthesis and modified with the succinimidyl ester of iodoacetamide to yield a thiol-reactive iodoacetyl polyhistidine linker.The reactive peptide was conjugated to dye-labeled thiolated DNA which was utilized as a model target biomolecule.Agarose gel electrophoresis and fluorescence resonance energy transfer analysis confirmed that the linker allowed the DNA to self-assemble with quantum dots via metal-affinity driven coordination.In contrast to previous peptidyl linkers that were based on disulfide exchange and were thus labile to reduction,the reactive haloacetyl chemistry demonstrated here results in a more stable thioether bond linking the DNA to the peptide which can withstand strongly reducing environments such as the intracellular cytoplasm.As thiol groups occur naturally in proteins,can be engineered into cloned proteins,inserted into nascent peptides or added to DNA during synthesis,the chemistry demonstrated here can provide a simple method for self-assembling a variety of stable quantum dot bioconjugates.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.92265113,12074368,and 12034018)the USTC Tang Scholarship。
文摘Hybrid qubits enable the hybridization of charge and spin degrees of freedom,which provides a way to realize both a relatively long coherence time and rapid qubit manipulation.Here,we use microwave driving to demonstrate the coherent operation of a tunable hybrid qubit,including X-rotation,Z-rotation,and rotation around an arbitrary axis in the X-Y panel of the Bloch sphere.Moreover,the coherence properties of the qubit and its tunability are studied.The measured coherence time of the X-rotation reaches~14.3 ns.While for the Z-rotation,the maximum decoherence time is~5.8 ns due to the larger sensitivity to noise.By employing the Hahn echo sequence to mitigate the influence of the low-frequency noise,we have improved the qubit coherence time from~5.8 ns to~15.0 ns.Our results contribute to a further understanding of the hybrid qubit and a step towards achieving high-fidelity qubit gates in the hybrid qubit.
基金Project supported by the National Natural Science Foundation of China(Grant No.11504102)the Scientific Research Items Foundation of Hubei Educational Committee(Grant Nos.Q20161803 and D20171803)the Doctoral Scientific Research Foundation of Hubei University of Automotive Technology(Grant No.BK201407)
文摘Semiconductor quantum dot structure provides a promising basis for quantum information processing, within which to reveal the quantum phase and charge transport is one of the most important issues. In this paper, by means of the numerical renormalization group technique, we study the quantum phase transition and the charge transport for a parallel triple dot device in the strongly correlated limit, focusing on the effect of inter-dot hopping t beyond the Kondo regime. We find the quantum behaviors depend closely on the initial electron number on the dots, and the present model may map to single,double, and side-coupled impurity models in different parameter spaces. An orbital spin-1/2 Kondo effect between the conduction leads and the bonding orbital, and several magnetic-frustration phases are demonstrated when t is adjusted to different regimes. To understand these phenomena, a canonical transformation of the energy levels is given, and important physical quantities with respect to increasing t and necessary theoretical discussions are shown.
文摘The authors regret that one of the coauthors was inadvertently omitted in the previous paper. E. Varene was a member of the Institut fur Festk6rperphysik at the Technische Universitat Berlin and contributed to the results on cross-phase modulation.