The distributed hybrid processing optimization problem of non-cooperative targets is an important research direction for future networked air-defense and anti-missile firepower systems. In this paper, the air-defense ...The distributed hybrid processing optimization problem of non-cooperative targets is an important research direction for future networked air-defense and anti-missile firepower systems. In this paper, the air-defense anti-missile targets defense problem is abstracted as a nonconvex constrained combinatorial optimization problem with the optimization objective of maximizing the degree of contribution of the processing scheme to non-cooperative targets, and the constraints mainly consider geographical conditions and anti-missile equipment resources. The grid discretization concept is used to partition the defense area into network nodes, and the overall defense strategy scheme is described as a nonlinear programming problem to solve the minimum defense cost within the maximum defense capability of the defense system network. In the solution of the minimum defense cost problem, the processing scheme, equipment coverage capability, constraints and node cost requirements are characterized, then a nonlinear mathematical model of the non-cooperative target distributed hybrid processing optimization problem is established, and a local optimal solution based on the sequential quadratic programming algorithm is constructed, and the optimal firepower processing scheme is given by using the sequential quadratic programming method containing non-convex quadratic equations and inequality constraints. Finally, the effectiveness of the proposed method is verified by simulation examples.展开更多
A kind of direct methods is presented for the solution of optimal control problems with state constraints. These methods are sequential quadratic programming methods. At every iteration a quadratic programming which i...A kind of direct methods is presented for the solution of optimal control problems with state constraints. These methods are sequential quadratic programming methods. At every iteration a quadratic programming which is obtained by quadratic approximation to Lagrangian function and linear approximations to constraints is solved to get a search direction for a merit function. The merit function is formulated by augmenting the Lagrangian function with a penalty term. A line search is carried out along the search direction to determine a step length such that the merit function is decreased. The methods presented in this paper include continuous sequential quadratic programming methods and discreate sequential quadratic programming methods.展开更多
In order to slove the large-scale nonlinear programming (NLP) problems efficiently, an efficient optimization algorithm based on reduced sequential quadratic programming (rSQP) and automatic differentiation (AD)...In order to slove the large-scale nonlinear programming (NLP) problems efficiently, an efficient optimization algorithm based on reduced sequential quadratic programming (rSQP) and automatic differentiation (AD) is presented in this paper. With the characteristics of sparseness, relatively low degrees of freedom and equality constraints utilized, the nonlinear programming problem is solved by improved rSQP solver. In the solving process, AD technology is used to obtain accurate gradient information. The numerical results show that the combined algorithm, which is suitable for large-scale process optimization problems, can calculate more efficiently than rSQP itself.展开更多
In this paper,a computation framework for addressing combined economic and emission dispatch(CEED)problem with valve-point effects as well as stochastic wind power considering unit commitment(UC)using a hybrid approac...In this paper,a computation framework for addressing combined economic and emission dispatch(CEED)problem with valve-point effects as well as stochastic wind power considering unit commitment(UC)using a hybrid approach connecting sequential quadratic programming(SQP)and particle swarm optimization(PSO)is proposed.The CEED problem aims to minimize the scheduling cost and greenhouse gases(GHGs)emission cost.Here the GHGs include carbon dioxide(CO_(2)),nitrogen dioxide(NO_(2)),and sulphur oxides(SO_(x)).A dispatch model including both thermal generators and wind farms is developed.The probability of stochastic wind power based on the Weibull distribution is included in the CEED model.The model is tested on a standard system involving six thermal units and two wind farms.A set of numerical case studies are reported.The performance of the hybrid computational method is validated by comparing with other solvers on the test system.展开更多
In this paper, we propose a new hybrid method called SQPBSA which combines backtracking search optimization algorithm (BSA) and sequential quadratic programming (SQP). BSA, as an exploration search engine, gives a...In this paper, we propose a new hybrid method called SQPBSA which combines backtracking search optimization algorithm (BSA) and sequential quadratic programming (SQP). BSA, as an exploration search engine, gives a good direction to the global optimal region, while SQP is used as a local search technique to exploit the optimal solution. The experiments are carried on two suits of 28 functions proposed in the CEC-2013 competitions to verify the performance of SQPBSA. The results indicate the proposed method is effective and competitive.展开更多
This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encounter...This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.展开更多
The real-time capability of integrated flight/propulsion optimal control (IFPOC) is studied. An appli- cation is proposed for IFPOC by combining the onboard hybrid aero-engine model with sequential quadratic pro- gr...The real-time capability of integrated flight/propulsion optimal control (IFPOC) is studied. An appli- cation is proposed for IFPOC by combining the onboard hybrid aero-engine model with sequential quadratic pro- gramming (SQP). Firstly, a steady-state hybrid aero-engine model is designed in the whole flight envelope with a dramatic enhancement of real-time capability. Secondly, the aero-engine performance seeking control including the maximum thrust mode and the minimum fuel-consumption mode is performed by SQP. Finally, digital simu- lations for cruise and accelerating flight are carried out. Results show that the proposed method improves real- time capability considerably with satisfactory effectiveness of optimization.展开更多
An approach for parameter estimation of proportional-integral-derivative(PID) control system using a new nonlinear programming(NLP) algorithm was proposed.SQP/IIPM algorithm is a sequential quadratic programming(SQP) ...An approach for parameter estimation of proportional-integral-derivative(PID) control system using a new nonlinear programming(NLP) algorithm was proposed.SQP/IIPM algorithm is a sequential quadratic programming(SQP) based algorithm that derives its search directions by solving quadratic programming(QP) subproblems via an infeasible interior point method(IIPM) and evaluates step length adaptively via a simple line search and/or a quadratic search algorithm depending on the termination of the IIPM solver.The task of tuning PI/PID parameters for the first-and second-order systems was modeled as constrained NLP problem. SQP/IIPM algorithm was applied to determining the optimum parameters for the PI/PID control systems.To assess the performance of the proposed method,a Matlab simulation of PID controller tuning was conducted to compare the proposed SQP/IIPM algorithm with the gain and phase margin(GPM) method and Ziegler-Nichols(ZN) method.The results reveal that,for both step and impulse response tests,the PI/PID controller using SQP/IIPM optimization algorithm consistently reduce rise time,settling-time and remarkably lower overshoot compared to GPM and ZN methods,and the proposed method improves the robustness and effectiveness of numerical optimization of PID control systems.展开更多
A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems a...A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems and minimization of factor of safety in slope stability analysis. The new algorithm combines the global exploration ability of the GSA to converge rapidly to a near optimum solution. In addition, it uses the accurate local exploitation ability of the SQP to accelerate the search process and find an accurate solution. A set of five well-known benchmark optimization problems was used to validate the performance of the GSA-SQP as a global optimization algorithm and facilitate comparison with the classical GSA. In addition, the effectiveness of the proposed method for slope stability analysis was investigated using three ease studies of slope stability problems from the literature. The factor of safety of earth slopes was evaluated using the Morgenstern-Price method. The numerical experiments demonstrate that the hybrid algorithm converges faster to a significantly more accurate final solution for a variety of benchmark test functions and slope stability problems.展开更多
The performance of analytical derivative and sparse matrix techniques applied to a traditional dense sequential quadratic programming (SQP) is studied, and the strategy utilizing those techniques is also presented.Com...The performance of analytical derivative and sparse matrix techniques applied to a traditional dense sequential quadratic programming (SQP) is studied, and the strategy utilizing those techniques is also presented.Computational results on two typical chemical optimization problems demonstrate significant enhancement in efficiency, which shows this strategy is promising and suitable for large-scale process optimization problems.展开更多
A heuristic technique is developed for a nonlinear magnetohydrodynamics (MHD) Jeffery-Hamel problem with the help of the feed-forward artificial neural net- work (ANN) optimized with the genetic algorithm (GA) a...A heuristic technique is developed for a nonlinear magnetohydrodynamics (MHD) Jeffery-Hamel problem with the help of the feed-forward artificial neural net- work (ANN) optimized with the genetic algorithm (GA) and the sequential quadratic programming (SQP) method. The twodimensional (2D) MHD Jeffery-Hamel problem is transformed into a higher order boundary value problem (BVP) of ordinary differential equations (ODEs). The mathematical model of the transformed BVP is formulated with the ANN in an unsupervised manner. The training of the weights of the ANN is carried out with the evolutionary calculation based on the GA hybridized with the SQP method for the rapid local convergence. The proposed scheme is evaluated on the variants of the Jeffery-Hamel flow by varying the Reynold number, the Hartmann number, and the an- gles of the walls. A large number of simulations are performed with an extensive analysis to validate the accuracy, convergence, and effectiveness of the scheme. The comparison of the standard numerical solution and the analytic solution establishes the correctness of the proposed designed methodologies.展开更多
The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by...The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by the lengths and relative angles of elements,is critical to achieving smooth deployment to a desired span,while the section profiles of each element must satisfy structural dynamic performances in each deploying state.Dynamic characteristics of deployable structures in the initial state,the final state and also the middle deploying states are all crucial to the structural dynamic performances.The shape was represented by the nodal coordinates and the profiles of cross sections were represented by the diameters and thicknesses.SQP(sequential quadratic programming) method was used to explore the design space and identify the minimum mass solutions that satisfy kinematic and structural dynamic constraints.The optimization model and methodology were tested on the case-study of a deployable pantograph.This strategy can be easily extended to design a wide range of deployable structures,including deployable antenna structures,foldable solar sails,expandable bridges and retractable gymnasium roofs.展开更多
How to establish a self‐equilibrium configuration is vital for further kinematics and dynamics analyses of tensegrity mechanism.In this study,for investigating tensegrity form‐finding problems,a concise and efficien...How to establish a self‐equilibrium configuration is vital for further kinematics and dynamics analyses of tensegrity mechanism.In this study,for investigating tensegrity form‐finding problems,a concise and efficient dynamic relaxation‐noise tolerant zeroing neural network(DR‐NTZNN)form‐finding algorithm is established through analysing the physical properties of tensegrity structures.In addition,the non‐linear constrained opti-misation problem which transformed from the form‐finding problem is solved by a sequential quadratic programming algorithm.Moreover,the noise may produce in the form‐finding process that includes the round‐off errors which are brought by the approximate matrix and restart point calculating course,disturbance caused by external force and manufacturing error when constructing a tensegrity structure.Hence,for the purpose of suppressing the noise,a noise tolerant zeroing neural network is presented to solve the search direction,which can endow the anti‐noise capability to the form‐finding model and enhance the calculation capability.Besides,the dynamic relaxation method is contributed to seek the nodal coordinates rapidly when the search direction is acquired.The numerical results show the form‐finding model has a huge capability for high‐dimensional free form cable‐strut mechanisms with complicated topology.Eventually,comparing with other existing form‐finding methods,the contrast simulations reveal the excellent anti‐noise performance and calculation capacity of DR‐NTZNN form‐finding algorithm.展开更多
Rectisol process is more efficient in comparison with other physical or chemical absorption methods for gas purification. To implement a real time simulation of Rectisol process, thermodynamic model and simulation str...Rectisol process is more efficient in comparison with other physical or chemical absorption methods for gas purification. To implement a real time simulation of Rectisol process, thermodynamic model and simulation strategy are needed. In this paper, a method of modified statistical associated fluid theory with perturbation theory is used to predict thermodynamic behavior of process. As Rectisol process is a highly heat-integrated process with many loops, a method of equation oriented strategy, sequential quadratic programming, is used as the solver and the process converges perfectly. Then analyses are conducted with this simulator.展开更多
There are a variety of Internet of Things(IoT)applications that cover different aspects of daily life.Each of these applications has different criteria and sub-criteria,making it difficult for the user to choose.This ...There are a variety of Internet of Things(IoT)applications that cover different aspects of daily life.Each of these applications has different criteria and sub-criteria,making it difficult for the user to choose.This requires an automated approach to select IoT applications by considering criteria.This paper presents a novel recommendation system for presenting applications on the IoT.First,using the analytic hierarchy process(AHP),a multi-layer architecture of the criteria and sub-criteria in IoT applications is presented.This architecture is used to evaluate and rank IoT applications.As a result,finding the weight of the criteria and subcriteria requires a metaheuristic approach.In this paper,a sequential quadratic programming algorithm is used to find the optimal weight of the criteria and sub-criteria automatically.To the best of our knowledge,this is the first study to use an analysis of metaheuristic criteria and sub-criteria to design an IoT application recommendation system.The evaluations and comparisons in the experimental results section show that the proposed method is a comprehensive and reliable model for the construction of an IoT applications recommendation system.展开更多
Loading distribution for heavy plate mill is to find optimal control solutions under the granted performance indicators and constraints including mill capacity and hypothesis of rolling models.The solutions are quite ...Loading distribution for heavy plate mill is to find optimal control solutions under the granted performance indicators and constraints including mill capacity and hypothesis of rolling models.The solutions are quite different for different performance indicators.In the article,the performance indicators and sequential quadratic programming(SQP for short below) methods employed in 5 000 mm heavy plate mill of BaoSteel are penetratingly analyzed.Generally,the SQP method is an effective and fast way to solve the nonlinear programming problems with small or medium scale constraints.Early in 1976,Han put forward the SQP method for the first time and Powell made it perfect and accomplished the algorithm in 1977.In fact, SQP method was to turn a nonlinear programming problem to a series of sub set of quadratic programming problems.In the algorithm,each iteration step is to solve one quadratic programming problem.The optimal solutions will be gradually approached after quadratic programming problems were totally solved.When solving the quadratic programming problem,the active set strategy were employed which turned the constrained quadratic programming problem to unconstrained quadratic programming problem.The active set strategy made the whole quadratic programming problem be solved by a least square problem.And finally, the matrix of the least square problem would be decomposed by Q matrix and R matrix.After Q matrix and R matrix were obtained,the optimal solutions would be finally found.For loading distribution,the performance indicators were composed by plate shape and draft of each pass.Plate shape is represented by rolling force gradually reduced pass by pass with a tunable factor.The mill capacity is another performance indicator represented by draft of each pass.For heavy plate mill,the mill capacity here is the motor moment. For heavy draft,the motor would be overloaded especially for the first several passes;for small draft,the motor would be loaded slightly.All these would not be permitted to happen when calculating the loading distribution.The mill capacity indicator made the loading of mill just be in the middle,not too much and not too low.In the article,these two performance indicators were analyzed in detail.Examples of loading distribution results with different performance indicators were given by the SQP method.When making changes to the performance indicators,there would be different solutions to the loading distribution.For the optimal solutions to the mill,there was supposed to make changes to the factors of the performance indicators or upgrade the accuracy of the mathematical models of the rolling process.展开更多
In this study,the design of a computational heuristic based on the nonlinear Liénard model is presented using the efficiency of artificial neural networks(ANNs)along with the hybridization procedures of global an...In this study,the design of a computational heuristic based on the nonlinear Liénard model is presented using the efficiency of artificial neural networks(ANNs)along with the hybridization procedures of global and local search approaches.The global search genetic algorithm(GA)and local search sequential quadratic programming scheme(SQPS)are implemented to solve the nonlinear Liénard model.An objective function using the differential model and boundary conditions is designed and optimized by the hybrid computing strength of the GA-SQPS.The motivation of the ANN procedures along with GA-SQPS comes to present reliable,feasible and precise frameworks to tackle stiff and highly nonlinear differentialmodels.The designed procedures of ANNs along with GA-SQPS are applied for three highly nonlinear differential models.The achieved numerical outcomes on multiple trials using the designed procedures are compared to authenticate the correctness,viability and efficacy.Moreover,statistical performances based on different measures are also provided to check the reliability of the ANN along with GASQPS.展开更多
A numerical method for the optimum motion of an undulatory swimming plate is presented. The optimum problem is stated as minimizing the power input under the condition of fixed thrust. The problem is singular for the ...A numerical method for the optimum motion of an undulatory swimming plate is presented. The optimum problem is stated as minimizing the power input under the condition of fixed thrust. The problem is singular for the invisible modes, and therefore the commonly used Lagrange multiplier method cannot predict an optimum solution but just a saddle point. To eliminate the singularity, an additional amplitude inequality constraint is added to the problem. A numerical optimization code with a sequential quadratic programming method is used to solve the problem. The method is applied to several cases of the motion of two-dimensional and three-dimensional undulatory plates, and the optimum results are obtained.展开更多
A dynamic programming-sequential quadratic programming(DP-SQP)combined algorithm is proposed to address the problem that the traditional continuous control method has high computational complexity and is easy to fall ...A dynamic programming-sequential quadratic programming(DP-SQP)combined algorithm is proposed to address the problem that the traditional continuous control method has high computational complexity and is easy to fall into local optimal solution.To solve the globally optimal control law sequence,we use the dynamic programming algorithm to discretize the separation control decision-making process into a series of sub-stages based on the time characteristics of the separation allocation model,and recursion from the end stage to the initial stage.The sequential quadratic programming algorithm is then used to solve the optimal return function and the optimal control law for each sub-stage.Comparative simulations of the combined algorithm and the traditional algorithm are designed to validate the superiority of the combined algorithm.Aircraft-following and cross-conflict simulation examples are created to demonstrate the combined algorithm’s adaptability to various conflict scenarios.The simulation results demonstrate the separation deploy strategy’s effectiveness,efficiency,and adaptability.展开更多
In [4], Fletcher and Leyffer present a new method that solves nonlinear programming problems without a penalty function by SQP-Filter algorithm. It has attracted much attention due to its good numerical results. In th...In [4], Fletcher and Leyffer present a new method that solves nonlinear programming problems without a penalty function by SQP-Filter algorithm. It has attracted much attention due to its good numerical results. In this paper we propose a new SQP-Filter method which can overcome Maratos effect more effectively. We give stricter acceptant criteria when the iterative points are far from the optimal points and looser ones vice-versa. About this new method, the proof of global convergence is also presented under standard assumptions. Numerical results show that our method is efficient.展开更多
基金supported by the National Natural Science Foundation of China (61903025)the Fundamental Research Funds for the Cent ral Universities (FRF-IDRY-20-013)。
文摘The distributed hybrid processing optimization problem of non-cooperative targets is an important research direction for future networked air-defense and anti-missile firepower systems. In this paper, the air-defense anti-missile targets defense problem is abstracted as a nonconvex constrained combinatorial optimization problem with the optimization objective of maximizing the degree of contribution of the processing scheme to non-cooperative targets, and the constraints mainly consider geographical conditions and anti-missile equipment resources. The grid discretization concept is used to partition the defense area into network nodes, and the overall defense strategy scheme is described as a nonlinear programming problem to solve the minimum defense cost within the maximum defense capability of the defense system network. In the solution of the minimum defense cost problem, the processing scheme, equipment coverage capability, constraints and node cost requirements are characterized, then a nonlinear mathematical model of the non-cooperative target distributed hybrid processing optimization problem is established, and a local optimal solution based on the sequential quadratic programming algorithm is constructed, and the optimal firepower processing scheme is given by using the sequential quadratic programming method containing non-convex quadratic equations and inequality constraints. Finally, the effectiveness of the proposed method is verified by simulation examples.
文摘A kind of direct methods is presented for the solution of optimal control problems with state constraints. These methods are sequential quadratic programming methods. At every iteration a quadratic programming which is obtained by quadratic approximation to Lagrangian function and linear approximations to constraints is solved to get a search direction for a merit function. The merit function is formulated by augmenting the Lagrangian function with a penalty term. A line search is carried out along the search direction to determine a step length such that the merit function is decreased. The methods presented in this paper include continuous sequential quadratic programming methods and discreate sequential quadratic programming methods.
文摘In order to slove the large-scale nonlinear programming (NLP) problems efficiently, an efficient optimization algorithm based on reduced sequential quadratic programming (rSQP) and automatic differentiation (AD) is presented in this paper. With the characteristics of sparseness, relatively low degrees of freedom and equality constraints utilized, the nonlinear programming problem is solved by improved rSQP solver. In the solving process, AD technology is used to obtain accurate gradient information. The numerical results show that the combined algorithm, which is suitable for large-scale process optimization problems, can calculate more efficiently than rSQP itself.
文摘In this paper,a computation framework for addressing combined economic and emission dispatch(CEED)problem with valve-point effects as well as stochastic wind power considering unit commitment(UC)using a hybrid approach connecting sequential quadratic programming(SQP)and particle swarm optimization(PSO)is proposed.The CEED problem aims to minimize the scheduling cost and greenhouse gases(GHGs)emission cost.Here the GHGs include carbon dioxide(CO_(2)),nitrogen dioxide(NO_(2)),and sulphur oxides(SO_(x)).A dispatch model including both thermal generators and wind farms is developed.The probability of stochastic wind power based on the Weibull distribution is included in the CEED model.The model is tested on a standard system involving six thermal units and two wind farms.A set of numerical case studies are reported.The performance of the hybrid computational method is validated by comparing with other solvers on the test system.
基金Acknowledgements This work was supported by the NSFC-Guangdong Joint Fund (U1201258), the National Natural Science Foundation of China (Grant No. 61573219), the Shandong Natural Science Funds for Distinguished Young Scholars (JQ201316), the Fundamental Research Funds of Shandong University (2014JC028), and the Natural Science Foundation of Fujian Province of China (2016J01280).
文摘In this paper, we propose a new hybrid method called SQPBSA which combines backtracking search optimization algorithm (BSA) and sequential quadratic programming (SQP). BSA, as an exploration search engine, gives a good direction to the global optimal region, while SQP is used as a local search technique to exploit the optimal solution. The experiments are carried on two suits of 28 functions proposed in the CEC-2013 competitions to verify the performance of SQPBSA. The results indicate the proposed method is effective and competitive.
基金financially supported by the National Key R&D Program (2022YFB4201302)Guang Dong Basic and Applied Basic Research Foundation (2022A1515240057)the Huaneng Technology Funds (HNKJ20-H88).
文摘This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.
基金Supported by the Aeronautical Science Foundation of China(2010ZB52011)the Funding of Jiangsu Innovation Program for Graduate Education(CXLX11-0213)the Nanjing University of Aeronautics and Astronautics Research Funding(NS2010055)~~
文摘The real-time capability of integrated flight/propulsion optimal control (IFPOC) is studied. An appli- cation is proposed for IFPOC by combining the onboard hybrid aero-engine model with sequential quadratic pro- gramming (SQP). Firstly, a steady-state hybrid aero-engine model is designed in the whole flight envelope with a dramatic enhancement of real-time capability. Secondly, the aero-engine performance seeking control including the maximum thrust mode and the minimum fuel-consumption mode is performed by SQP. Finally, digital simu- lations for cruise and accelerating flight are carried out. Results show that the proposed method improves real- time capability considerably with satisfactory effectiveness of optimization.
基金Project(60874070) supported by the National Natural Science Foundation of ChinaProject(20070533131) supported by the National Research Foundation for the Doctoral Program of Higher Education of ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China
文摘An approach for parameter estimation of proportional-integral-derivative(PID) control system using a new nonlinear programming(NLP) algorithm was proposed.SQP/IIPM algorithm is a sequential quadratic programming(SQP) based algorithm that derives its search directions by solving quadratic programming(QP) subproblems via an infeasible interior point method(IIPM) and evaluates step length adaptively via a simple line search and/or a quadratic search algorithm depending on the termination of the IIPM solver.The task of tuning PI/PID parameters for the first-and second-order systems was modeled as constrained NLP problem. SQP/IIPM algorithm was applied to determining the optimum parameters for the PI/PID control systems.To assess the performance of the proposed method,a Matlab simulation of PID controller tuning was conducted to compare the proposed SQP/IIPM algorithm with the gain and phase margin(GPM) method and Ziegler-Nichols(ZN) method.The results reveal that,for both step and impulse response tests,the PI/PID controller using SQP/IIPM optimization algorithm consistently reduce rise time,settling-time and remarkably lower overshoot compared to GPM and ZN methods,and the proposed method improves the robustness and effectiveness of numerical optimization of PID control systems.
文摘A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems and minimization of factor of safety in slope stability analysis. The new algorithm combines the global exploration ability of the GSA to converge rapidly to a near optimum solution. In addition, it uses the accurate local exploitation ability of the SQP to accelerate the search process and find an accurate solution. A set of five well-known benchmark optimization problems was used to validate the performance of the GSA-SQP as a global optimization algorithm and facilitate comparison with the classical GSA. In addition, the effectiveness of the proposed method for slope stability analysis was investigated using three ease studies of slope stability problems from the literature. The factor of safety of earth slopes was evaluated using the Morgenstern-Price method. The numerical experiments demonstrate that the hybrid algorithm converges faster to a significantly more accurate final solution for a variety of benchmark test functions and slope stability problems.
基金Supported by the National Natural Science Foundation of China(No.29906010).
文摘The performance of analytical derivative and sparse matrix techniques applied to a traditional dense sequential quadratic programming (SQP) is studied, and the strategy utilizing those techniques is also presented.Computational results on two typical chemical optimization problems demonstrate significant enhancement in efficiency, which shows this strategy is promising and suitable for large-scale process optimization problems.
文摘A heuristic technique is developed for a nonlinear magnetohydrodynamics (MHD) Jeffery-Hamel problem with the help of the feed-forward artificial neural net- work (ANN) optimized with the genetic algorithm (GA) and the sequential quadratic programming (SQP) method. The twodimensional (2D) MHD Jeffery-Hamel problem is transformed into a higher order boundary value problem (BVP) of ordinary differential equations (ODEs). The mathematical model of the transformed BVP is formulated with the ANN in an unsupervised manner. The training of the weights of the ANN is carried out with the evolutionary calculation based on the GA hybridized with the SQP method for the rapid local convergence. The proposed scheme is evaluated on the variants of the Jeffery-Hamel flow by varying the Reynold number, the Hartmann number, and the an- gles of the walls. A large number of simulations are performed with an extensive analysis to validate the accuracy, convergence, and effectiveness of the scheme. The comparison of the standard numerical solution and the analytic solution establishes the correctness of the proposed designed methodologies.
基金Project(030103) supported by the Weaponry Equipment Pre-Research Key Foundation of ChinaProject(69982009) supported by the National Natural Science Foundation of China
文摘The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by the lengths and relative angles of elements,is critical to achieving smooth deployment to a desired span,while the section profiles of each element must satisfy structural dynamic performances in each deploying state.Dynamic characteristics of deployable structures in the initial state,the final state and also the middle deploying states are all crucial to the structural dynamic performances.The shape was represented by the nodal coordinates and the profiles of cross sections were represented by the diameters and thicknesses.SQP(sequential quadratic programming) method was used to explore the design space and identify the minimum mass solutions that satisfy kinematic and structural dynamic constraints.The optimization model and methodology were tested on the case-study of a deployable pantograph.This strategy can be easily extended to design a wide range of deployable structures,including deployable antenna structures,foldable solar sails,expandable bridges and retractable gymnasium roofs.
基金supported in part by the National Natural Science Foundation of China under grants 61873304,62173048,62106023in part by the China Postdoctoral Science Foundation Funded Project under grants 2018M641784 and 2019T120240+1 种基金also in part by the Key Science and Technology Projects of Jilin Province,China,under grant 20210201106GXalso in part by the Changchun Science and Technology Project under grant 21ZY41.
文摘How to establish a self‐equilibrium configuration is vital for further kinematics and dynamics analyses of tensegrity mechanism.In this study,for investigating tensegrity form‐finding problems,a concise and efficient dynamic relaxation‐noise tolerant zeroing neural network(DR‐NTZNN)form‐finding algorithm is established through analysing the physical properties of tensegrity structures.In addition,the non‐linear constrained opti-misation problem which transformed from the form‐finding problem is solved by a sequential quadratic programming algorithm.Moreover,the noise may produce in the form‐finding process that includes the round‐off errors which are brought by the approximate matrix and restart point calculating course,disturbance caused by external force and manufacturing error when constructing a tensegrity structure.Hence,for the purpose of suppressing the noise,a noise tolerant zeroing neural network is presented to solve the search direction,which can endow the anti‐noise capability to the form‐finding model and enhance the calculation capability.Besides,the dynamic relaxation method is contributed to seek the nodal coordinates rapidly when the search direction is acquired.The numerical results show the form‐finding model has a huge capability for high‐dimensional free form cable‐strut mechanisms with complicated topology.Eventually,comparing with other existing form‐finding methods,the contrast simulations reveal the excellent anti‐noise performance and calculation capacity of DR‐NTZNN form‐finding algorithm.
基金Supported by the National Basic Research Program of China(2013CB733600)
文摘Rectisol process is more efficient in comparison with other physical or chemical absorption methods for gas purification. To implement a real time simulation of Rectisol process, thermodynamic model and simulation strategy are needed. In this paper, a method of modified statistical associated fluid theory with perturbation theory is used to predict thermodynamic behavior of process. As Rectisol process is a highly heat-integrated process with many loops, a method of equation oriented strategy, sequential quadratic programming, is used as the solver and the process converges perfectly. Then analyses are conducted with this simulator.
文摘There are a variety of Internet of Things(IoT)applications that cover different aspects of daily life.Each of these applications has different criteria and sub-criteria,making it difficult for the user to choose.This requires an automated approach to select IoT applications by considering criteria.This paper presents a novel recommendation system for presenting applications on the IoT.First,using the analytic hierarchy process(AHP),a multi-layer architecture of the criteria and sub-criteria in IoT applications is presented.This architecture is used to evaluate and rank IoT applications.As a result,finding the weight of the criteria and subcriteria requires a metaheuristic approach.In this paper,a sequential quadratic programming algorithm is used to find the optimal weight of the criteria and sub-criteria automatically.To the best of our knowledge,this is the first study to use an analysis of metaheuristic criteria and sub-criteria to design an IoT application recommendation system.The evaluations and comparisons in the experimental results section show that the proposed method is a comprehensive and reliable model for the construction of an IoT applications recommendation system.
文摘Loading distribution for heavy plate mill is to find optimal control solutions under the granted performance indicators and constraints including mill capacity and hypothesis of rolling models.The solutions are quite different for different performance indicators.In the article,the performance indicators and sequential quadratic programming(SQP for short below) methods employed in 5 000 mm heavy plate mill of BaoSteel are penetratingly analyzed.Generally,the SQP method is an effective and fast way to solve the nonlinear programming problems with small or medium scale constraints.Early in 1976,Han put forward the SQP method for the first time and Powell made it perfect and accomplished the algorithm in 1977.In fact, SQP method was to turn a nonlinear programming problem to a series of sub set of quadratic programming problems.In the algorithm,each iteration step is to solve one quadratic programming problem.The optimal solutions will be gradually approached after quadratic programming problems were totally solved.When solving the quadratic programming problem,the active set strategy were employed which turned the constrained quadratic programming problem to unconstrained quadratic programming problem.The active set strategy made the whole quadratic programming problem be solved by a least square problem.And finally, the matrix of the least square problem would be decomposed by Q matrix and R matrix.After Q matrix and R matrix were obtained,the optimal solutions would be finally found.For loading distribution,the performance indicators were composed by plate shape and draft of each pass.Plate shape is represented by rolling force gradually reduced pass by pass with a tunable factor.The mill capacity is another performance indicator represented by draft of each pass.For heavy plate mill,the mill capacity here is the motor moment. For heavy draft,the motor would be overloaded especially for the first several passes;for small draft,the motor would be loaded slightly.All these would not be permitted to happen when calculating the loading distribution.The mill capacity indicator made the loading of mill just be in the middle,not too much and not too low.In the article,these two performance indicators were analyzed in detail.Examples of loading distribution results with different performance indicators were given by the SQP method.When making changes to the performance indicators,there would be different solutions to the loading distribution.For the optimal solutions to the mill,there was supposed to make changes to the factors of the performance indicators or upgrade the accuracy of the mathematical models of the rolling process.
文摘In this study,the design of a computational heuristic based on the nonlinear Liénard model is presented using the efficiency of artificial neural networks(ANNs)along with the hybridization procedures of global and local search approaches.The global search genetic algorithm(GA)and local search sequential quadratic programming scheme(SQPS)are implemented to solve the nonlinear Liénard model.An objective function using the differential model and boundary conditions is designed and optimized by the hybrid computing strength of the GA-SQPS.The motivation of the ANN procedures along with GA-SQPS comes to present reliable,feasible and precise frameworks to tackle stiff and highly nonlinear differentialmodels.The designed procedures of ANNs along with GA-SQPS are applied for three highly nonlinear differential models.The achieved numerical outcomes on multiple trials using the designed procedures are compared to authenticate the correctness,viability and efficacy.Moreover,statistical performances based on different measures are also provided to check the reliability of the ANN along with GASQPS.
文摘A numerical method for the optimum motion of an undulatory swimming plate is presented. The optimum problem is stated as minimizing the power input under the condition of fixed thrust. The problem is singular for the invisible modes, and therefore the commonly used Lagrange multiplier method cannot predict an optimum solution but just a saddle point. To eliminate the singularity, an additional amplitude inequality constraint is added to the problem. A numerical optimization code with a sequential quadratic programming method is used to solve the problem. The method is applied to several cases of the motion of two-dimensional and three-dimensional undulatory plates, and the optimum results are obtained.
基金supported in part by the National Natural Science Foundation of China(Nos.61773202,52072174)the Foundation of National Defense Science and Technology Key Laboratory of Avionics System Integrated Technology of China Institute of Aeronautical Radio Electronics(No.6142505180407)+1 种基金the Open Fund for Civil Aviation General Aviation Operation Key Laboratory of China Civil Aviation Management Cadre Institute(No.CAMICKFJJ-2019-04)the National key R&D plan(No.2021YFB1600500)。
文摘A dynamic programming-sequential quadratic programming(DP-SQP)combined algorithm is proposed to address the problem that the traditional continuous control method has high computational complexity and is easy to fall into local optimal solution.To solve the globally optimal control law sequence,we use the dynamic programming algorithm to discretize the separation control decision-making process into a series of sub-stages based on the time characteristics of the separation allocation model,and recursion from the end stage to the initial stage.The sequential quadratic programming algorithm is then used to solve the optimal return function and the optimal control law for each sub-stage.Comparative simulations of the combined algorithm and the traditional algorithm are designed to validate the superiority of the combined algorithm.Aircraft-following and cross-conflict simulation examples are created to demonstrate the combined algorithm’s adaptability to various conflict scenarios.The simulation results demonstrate the separation deploy strategy’s effectiveness,efficiency,and adaptability.
文摘In [4], Fletcher and Leyffer present a new method that solves nonlinear programming problems without a penalty function by SQP-Filter algorithm. It has attracted much attention due to its good numerical results. In this paper we propose a new SQP-Filter method which can overcome Maratos effect more effectively. We give stricter acceptant criteria when the iterative points are far from the optimal points and looser ones vice-versa. About this new method, the proof of global convergence is also presented under standard assumptions. Numerical results show that our method is efficient.