An 8-noded locking-free degenerated isoparametric shell element is presented. A revised interpolation for shear strain terms was constructed in natural co-ordinate system such that all necessary modes (translation, ro...An 8-noded locking-free degenerated isoparametric shell element is presented. A revised interpolation for shear strain terms was constructed in natural co-ordinate system such that all necessary modes (translation, rotation and constant curvature) are preserved, which can be used to eliminate shear locking. A revised interpolation for membrane strains was produced in the local Cartesian co-ordinate system to overcome membrane locking behavior. The new 8-noded element has the proper rank, with the requisite number of zero eigenvalues each associated with a rigid mode. The element does not exhibit membrane or shear locking for large span-thickness ratio. The element does not form element mechanisms or extra spurious zero energy modes. Therefore, it can be used for both thin and thick shells.展开更多
An approach of the incompatible elements with additional internal shear strain is,in the presem paper,suggested and applied to geometrically nonlinear analysis of Mi-ndlin plate bending problem.It provides a quite cov...An approach of the incompatible elements with additional internal shear strain is,in the presem paper,suggested and applied to geometrically nonlinear analysis of Mi-ndlin plate bending problem.It provides a quite covenient way to avoid the whear loc-king troubles.An energy consistency condition for this kind of C°elements is offered.The nonlinear element formulations and some numerical results are presented.展开更多
The newly proposed element energy projection(EEP) method has been applied to the computation of super_convergent nodal stresses of Timoshenko beam elements.General formulas based on element projection theorem were der...The newly proposed element energy projection(EEP) method has been applied to the computation of super_convergent nodal stresses of Timoshenko beam elements.General formulas based on element projection theorem were derived and illustrative numerical examples using two typical elements were given.Both the analysis and examples show that EEP method also works very well for the problems with vector function solutions.The EEP method gives super_convergent nodal stresses,which are well comparable to the nodal displacements in terms of both convergence rate and error magnitude.And in addition,it can overcome the “shear locking” difficulty for stresses even when the displacements are badly affected.This research paves the way for application of the EEP method to general one_dimensional systems of ordinary differential equations.展开更多
A force-based quadrilateral plate element( 4NQP13) for the analysis of the plate bending problems using large increment method( LIM) was proposed. The LIM, a force-based finite element method( FEM),has been successful...A force-based quadrilateral plate element( 4NQP13) for the analysis of the plate bending problems using large increment method( LIM) was proposed. The LIM, a force-based finite element method( FEM),has been successfully developed for the analysis of truss,beam,frame,and 2D continua problems. In these analyses,LIMcan provide more precise stress results and less computational time consumption compared with displacement-based FEM. The plate element was based on the Mindlin-Reissner plate theory which took into account the transverse shear effects.Numerical examples were presented to study its performance including accuracy and convergence behavior,and the results were compared with the results have been obtained from the displacementbased quadrilateral plate elements and the analytical solutions. The4NQP13 element can analyze the moderately thick plates and the thin plates using LIMand is free from spurious zero energy modes and free from shear locking for thin plate analysis.展开更多
Many displacement-based quadrilateral plate elements based on Mindlin-Reissner plate theory have been proposed to analyze the thin and moderately thick plate problems. However, numerical inaccuracies of some elements ...Many displacement-based quadrilateral plate elements based on Mindlin-Reissner plate theory have been proposed to analyze the thin and moderately thick plate problems. However, numerical inaccuracies of some elements appear since the presence of shear locking and spurious zero energy modes for thin plate problems. To overcome these shortcomings, we employ the large increment method(LIM) for the analyses of the plate bending problems, and propose a force-based 8-node quadrilateral plate(8NQP) element which is based on MindlinReissner plate theory and has no extra spurious zero energy mode. Several benchmark plate bending problems are presented to illustrate the accuracy and convergence of the plate element by comparing with the analytical solutions and displacement-based plate elements. The results show that the 8-node plate element produces fast convergence and accurate stress distributions in both the moderately thick and thin plate bending problems. The plate element is insensitive to mesh distortion and it can avoid the shear locking for thin plate analysis.展开更多
文摘An 8-noded locking-free degenerated isoparametric shell element is presented. A revised interpolation for shear strain terms was constructed in natural co-ordinate system such that all necessary modes (translation, rotation and constant curvature) are preserved, which can be used to eliminate shear locking. A revised interpolation for membrane strains was produced in the local Cartesian co-ordinate system to overcome membrane locking behavior. The new 8-noded element has the proper rank, with the requisite number of zero eigenvalues each associated with a rigid mode. The element does not exhibit membrane or shear locking for large span-thickness ratio. The element does not form element mechanisms or extra spurious zero energy modes. Therefore, it can be used for both thin and thick shells.
文摘An approach of the incompatible elements with additional internal shear strain is,in the presem paper,suggested and applied to geometrically nonlinear analysis of Mi-ndlin plate bending problem.It provides a quite covenient way to avoid the whear loc-king troubles.An energy consistency condition for this kind of C°elements is offered.The nonlinear element formulations and some numerical results are presented.
文摘The newly proposed element energy projection(EEP) method has been applied to the computation of super_convergent nodal stresses of Timoshenko beam elements.General formulas based on element projection theorem were derived and illustrative numerical examples using two typical elements were given.Both the analysis and examples show that EEP method also works very well for the problems with vector function solutions.The EEP method gives super_convergent nodal stresses,which are well comparable to the nodal displacements in terms of both convergence rate and error magnitude.And in addition,it can overcome the “shear locking” difficulty for stresses even when the displacements are badly affected.This research paves the way for application of the EEP method to general one_dimensional systems of ordinary differential equations.
基金National Natural Science Foundation of China(No.10872128)
文摘A force-based quadrilateral plate element( 4NQP13) for the analysis of the plate bending problems using large increment method( LIM) was proposed. The LIM, a force-based finite element method( FEM),has been successfully developed for the analysis of truss,beam,frame,and 2D continua problems. In these analyses,LIMcan provide more precise stress results and less computational time consumption compared with displacement-based FEM. The plate element was based on the Mindlin-Reissner plate theory which took into account the transverse shear effects.Numerical examples were presented to study its performance including accuracy and convergence behavior,and the results were compared with the results have been obtained from the displacementbased quadrilateral plate elements and the analytical solutions. The4NQP13 element can analyze the moderately thick plates and the thin plates using LIMand is free from spurious zero energy modes and free from shear locking for thin plate analysis.
基金the National Natural Science Foundation of China(No.10872128)
文摘Many displacement-based quadrilateral plate elements based on Mindlin-Reissner plate theory have been proposed to analyze the thin and moderately thick plate problems. However, numerical inaccuracies of some elements appear since the presence of shear locking and spurious zero energy modes for thin plate problems. To overcome these shortcomings, we employ the large increment method(LIM) for the analyses of the plate bending problems, and propose a force-based 8-node quadrilateral plate(8NQP) element which is based on MindlinReissner plate theory and has no extra spurious zero energy mode. Several benchmark plate bending problems are presented to illustrate the accuracy and convergence of the plate element by comparing with the analytical solutions and displacement-based plate elements. The results show that the 8-node plate element produces fast convergence and accurate stress distributions in both the moderately thick and thin plate bending problems. The plate element is insensitive to mesh distortion and it can avoid the shear locking for thin plate analysis.