期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
ON DOUBLE SINE AND COSINE TRANSFORMS,LIPSCHITZ AND ZYGMUND CLASSES
1
作者 Vanda Flp Ferenc Móricz 《Analysis in Theory and Applications》 2011年第4期351-364,共14页
We consider complex-valued functions f ∈ L^1 (R^2+), where R+ := [0,∞), and prove sufficient conditions under which the double sine Fourier transform fss and the double cosine Fourier transform fcc belong to o... We consider complex-valued functions f ∈ L^1 (R^2+), where R+ := [0,∞), and prove sufficient conditions under which the double sine Fourier transform fss and the double cosine Fourier transform fcc belong to one of the two-dimensional Lipschitz classes Lip(a,β) for some 0 〈 α,β ≤ 1; or to one of the Zygmund classes Zyg(α,β) for some 0 〈 α,β ≤ 2. These sufficient conditions are best possible in the sense that they are also necessary for nonnegative-valued functions f ∈ L^1 (R^2+). 展开更多
关键词 double sine and cosine Fourier transform Lipschitz class Lip(α β) 0 α β 1 Zygmund class Zyg( α β) 0 α β ≤2.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部