Excitation and propagation of Lamb waves by using rectangular and circular piezoelectric transducers surface- bonded to an isotropic plate are investigated in this work. Analytical stain wave solutions are derived for...Excitation and propagation of Lamb waves by using rectangular and circular piezoelectric transducers surface- bonded to an isotropic plate are investigated in this work. Analytical stain wave solutions are derived for the two transducer shapes, giving the responses of these transducers in Lamb wave fields. The analytical study is supported by a numericM simulation using the finite element method. Symmetric and antisymmetric components in the wave propagation responses are inspected in detail with respect to test parameters such as the transducer geometry, the length and the excitation frequency. By placing only one piezoelectric transducer on the top or the bottom surface of the plate and weakening the strength of one mode while enhancing the strength of the other modes to find the centre frequency, with which the peak wave amplitude ratio between the SO and A0 modes is maximum, a single mode excitation from the multiple modes of the Lamb waves can be achieved approximately. Experimental data are presented to show the validity of the analyses. The results are used to optimize the Lamb wave detection system.展开更多
A single mode hybrid Ⅲ-Ⅴ/silicon on-chip laser based on the flip-chip bonding technology for on-chip optical interconnection is demonstrated. A single mode Fabry-Perot laser structure with micro-structures on an InP...A single mode hybrid Ⅲ-Ⅴ/silicon on-chip laser based on the flip-chip bonding technology for on-chip optical interconnection is demonstrated. A single mode Fabry-Perot laser structure with micro-structures on an InP ridge waveguide is designed and fabricated on an InP/AIGaInAs multiple quantum well epitaxial layer structure wafer by using i-line lithography. Then, a silicon waveguide platform including a laser mounting stage is designed and fabricated on a silicon-on-insulator substrate. The single mode laser is flip-chip bonded on the laser mounting stage. The lasing light is butt-coupling to the silicon waveguide. The laser power output from a silicon waveguide is 1.3roW, and the threshold is 37mA at room temperature and continuous wave operation.展开更多
This paperdetails experimental work done to quantify stress measurements made optically utilizing ordinary single mode optical fibers. Strain-induced changes of birefringence for ordinary single mode optical fiber res...This paperdetails experimental work done to quantify stress measurements made optically utilizing ordinary single mode optical fibers. Strain-induced changes of birefringence for ordinary single mode optical fiber responses are characterized against standard stress measurements in a well understand configuration. The experimental scheme for this work and the results are presented in detaial. In this paper, POssible applications for this transverse stress character of single mode fibers are also proposed.展开更多
In this paper, we observe experimentally the optical bistability induced by the side-mode injection power and wave- length detuning in a single mode Fabry-P6rot laser diode (SMFP-LD). Results show that the bistabili...In this paper, we observe experimentally the optical bistability induced by the side-mode injection power and wave- length detuning in a single mode Fabry-P6rot laser diode (SMFP-LD). Results show that the bistability characteristics of the dominant and injected modes are strongly dependent on the injected input optical power and wavelength detuning in an SMFP-LD. We observe three types of hysteresis loops: counterclockwise, clockwise, and butterfly hysteresis with various loop widths. In the case of a bistability loop caused by injection power, the transition from counterclockwise to clockwise in the hysteresis direction with the wavelength detuning from 0.028 nm to 0.112 nm is observed in a way of butterfly hys- teresis for the dominant mode by increasing the wavelength detuning. The width of hysteresis loop, induced by wavelength detuning is also changed while the injection power is enhanced from -7 dBm to -5 dBm.展开更多
The density,dynamic modulus,Youngs modulus,tensile strength,extension properties,Fourier transform infrared spectrum and differential scanning calorimetry have been measured and discussed for single mode polymethyl-me...The density,dynamic modulus,Youngs modulus,tensile strength,extension properties,Fourier transform infrared spectrum and differential scanning calorimetry have been measured and discussed for single mode polymethyl-methacrylate optical fiber.The results show that the fiber can provide large strain range for polymeric optical fiber Bragg gratings.展开更多
We demonstrated a scheme of phase-locked terahertz quantum cascade lasers(THz QCLs)array,with a single-mode pulse power of 108 mW at 13 K.The device utilizes a Talbot cavity to achieve phase locking among five ridge l...We demonstrated a scheme of phase-locked terahertz quantum cascade lasers(THz QCLs)array,with a single-mode pulse power of 108 mW at 13 K.The device utilizes a Talbot cavity to achieve phase locking among five ridge lasers with first-order buried distributed feedback(DFB)grating,resulting in nearly five times amplification of the single-mode power.Due to the optimum length of Talbot cavity depends on wavelength,the combination of Talbot cavity with the DFB grating leads to better power amplification than the combination with multimode Fabry-Perot(F-P)cavities.The Talbot cavity facet reflects light back to the ridge array direction and achieves self-imaging in the array,enabling phase-locked operation of ridges.We set the spacing between adjacent elements to be 220μm,much larger than the free-space wavelength,ensuring the operation of the fundamental supermode throughout the laser's dynamic range and obtaining a high-brightness far-field distribution.This scheme provides a new approach for enhancing the single-mode power of THz QCLs.展开更多
The entanglement properties of the system of two two-level atoms interacting with a single-mode vacuum field are explored. The quantum entanglement between two two-level atoms and a single-mode vacuum field is investi...The entanglement properties of the system of two two-level atoms interacting with a single-mode vacuum field are explored. The quantum entanglement between two two-level atoms and a single-mode vacuum field is investigated by using the quantum reduced entropy; the quantum entanglement between two two-level atoms, and that between a single two-level atom and a single-mode vacuum field are studied in terms of the quantum relative entropy. The influences of the atomic dipole-dipole interaction on the quantum entanglement of the system are also discussed. Our results show that three entangled states of two atoms-field, atom-atom, and atom-field can be prepared via two two-level atoms interacting with a single-mode vacuum field.展开更多
This paper presents the design and analysis of optical filters that are placed at the output of directly modulated vertical cavity surface emitting laser (VCSEL) in the process of inexpensive transmitter's implemen...This paper presents the design and analysis of optical filters that are placed at the output of directly modulated vertical cavity surface emitting laser (VCSEL) in the process of inexpensive transmitter's implementation for upcoming generation optical access network. Generation of non return to zero (NRZ) optical signal from the transmitter for 110 km error-free single mode fiber (SMF) transmission at 10 Gb/s with bit error rate (BER) of 10-30 in the absence of the external modulator and encoder was proposed. Effects of super-Gaussian and Butterworth optical filters at VCSEL output were demonstrated to maximize performance of SMF optical systems without need of any dispersion compensation technique.展开更多
A multi-hole vertical-cavity surface-emitting laser (VCSEL) operating in stable single mode with a low threshold current was produced by introducing multi-leaf scallop holes on the top distributed Bragg-refleetor of...A multi-hole vertical-cavity surface-emitting laser (VCSEL) operating in stable single mode with a low threshold current was produced by introducing multi-leaf scallop holes on the top distributed Bragg-refleetor of an oxidation- confined 850 nm VCSEL. The single-mode output power of 2.6 mW, threshold current of 0.6 mA, full width of half maximum lasing spectrum of less than 0.1 nm, side mode suppression ratio of 28.4 dB, and far-field divergence angle of about 10% are obtained. The effects of different hole depths on the optical characteristics are simulated and analysed, including far-field divergence, spectrum and lateral cavity mode. The single-mode performance of this multi-hole device is attributed to the large radiation loss from the inter hole spacing and the scattering loss at the bottom of the holes, particularly for higher order modes.展开更多
Proposed is a novel optical pulse compression technique based on high-doped erbium fiber amplifier and standard single-mode fiber(SMF). We used the amplifier with the erbium ion concentration of 6.3×10-3 to ampli...Proposed is a novel optical pulse compression technique based on high-doped erbium fiber amplifier and standard single-mode fiber(SMF). We used the amplifier with the erbium ion concentration of 6.3×10-3 to amplify a hyperbolic secant pulse from a regeneratively mode-locked fiber laser. The central wavelength, pulsewidth and peak power of the pulse are 1 550 nm, 12.5 ps and 3 mW, respectively. Then the amplified pulse with peak power level corresponding to a higher-order soliton is compressed when it propagates through a 3-km-long single-mode fiber. Studied are the compressed pulses under different pump powers and fiber lengths. The results show that it can get a narrower pulse, and solve the difficulty that pulses at low power can not be compressed directly in the fiber. And the construct is compact.展开更多
Spectral characteristics of the amplified spontaneous emission (ASE) from a novel single mode Er^(3+) doped tellurite fiber with D-type cladding is reported in this letter. When pumped at 980 nm, an ASE source that ha...Spectral characteristics of the amplified spontaneous emission (ASE) from a novel single mode Er^(3+) doped tellurite fiber with D-type cladding is reported in this letter. When pumped at 980 nm, an ASE source that has nearly a 100-nm flat FWHM bandwidth is obtained with a fiber length of 30-60 cm. Variation of ASE spectra with pump powers and fiber lengths are measured. Output power up to 2.0 mW is obtained with a launched pump power of 660 mW.展开更多
An in-fiber Mach-Zehnder interferometer is proposed for the discrimination of strain and temperature.The sensor is based on two cascaded standard single mode fibers using three peanut tapers fabricated by simple splic...An in-fiber Mach-Zehnder interferometer is proposed for the discrimination of strain and temperature.The sensor is based on two cascaded standard single mode fibers using three peanut tapers fabricated by simple splicing.The cascaded structure excites more frequency components,which induce four sets of interference dips in the transmission spectrum.One set of the spectrum dips have different sensitivities to temperature and strain from those of the other three.The sensor can discriminate strain and temperature by monitoring the wavelength shifts of two spectrum dips.Repeated experiments are taken both for strain and temperature increasing and decreasing scenarios.Experimental results show that Dip 1 has an average strain sensitivity of-0.911 pm/με and an average temperature sensitivity of 49.98pm/℃.The strain sensitivity for Dip 2 is negligible and its average temperature sensitivity is 60.52pm/℃.The strain and temperature resolutions are±3.82με and±0.33℃.展开更多
A frequency domain analysis is presented to determine the performance characteristics of a tunable all-optical wavelength converter using four-wave mixing (FWM) in a single mode fiber (SMF) around the zero dispersion ...A frequency domain analysis is presented to determine the performance characteristics of a tunable all-optical wavelength converter using four-wave mixing (FWM) in a single mode fiber (SMF) around the zero dispersion wavelength using two pump lasers. The output converted signal power as well as efficiency evaluated at a bit rate of 10 Gb/s show that the signal power is substantially higher at lower values of wavelength separation.展开更多
To achieve low threshold current as well as high single mode output power, a graded index separate confinement heterostructure (GRIN-SCH) A1GaInAs/A1GaAs quantum well laser with an optimized ridge wave- guide was fa...To achieve low threshold current as well as high single mode output power, a graded index separate confinement heterostructure (GRIN-SCH) A1GaInAs/A1GaAs quantum well laser with an optimized ridge wave- guide was fabricated. The threshold current was reduced to 8 mA. An output power of 76 mW was achieved at 100 mA current at room temperature, with a slope efficiency of 0.83 W/A and a horizon divergent angle of 6.3°. The maximum single mode output power of the device reached as high as 450 mW.展开更多
The 850-nm oxide-confined vertical-cavity surface-emitting lasers with petal-shape holey structures are presented. An area-weighted average refractive index model is given to analyse their effective index profiles, an...The 850-nm oxide-confined vertical-cavity surface-emitting lasers with petal-shape holey structures are presented. An area-weighted average refractive index model is given to analyse their effective index profiles, and the graded index distribution in the holey region is demonstrated. The index step between the optical aperture and the holey region is obtained which is related merely to the etching depth. Four types of holey vertical-cavity surface-emitting lasers with different parameters are fabricated as well as the conventional oxide-confined vertical-cavity surface-emitting laser. Compared with the conventional oxide-confined vertical-cavity surface-emitting laser without etched holes, the holey vertical-cavity surface-emitting laser possesses an improved beam quality due to its graded index distribution, but has a lower output power, higher threshold current and lower slope efficiency. With the hole number increased, the holey vertical-cavity surface-emitting laser can realize the single-mode operation throughout the entire current range, and reduces the beam divergence further. The loss mechanism is used to explain the single-mode characteristic, and the reduced beam divergence is attributed to the shallow etching. High coupling efficiency of 86% to a multi-mode fibre is achieved for the single-mode device in the experiment.展开更多
Transmission of 40Gbit/s NRZ signal was successfully demonstrated over 219km of installed SMF in KT's Daejeon area network. After transmission, the measured power penalty was 0.5dB for all the tributary channels.
The behavior of a single mode optic-fiber interferometric hydrophone with ring resonator is discribed in this paper. The optic-fiber ring resonant hydrophone has rery high optical finesse, and receiving sensitivity le...The behavior of a single mode optic-fiber interferometric hydrophone with ring resonator is discribed in this paper. The optic-fiber ring resonant hydrophone has rery high optical finesse, and receiving sensitivity level about -130 dB (re 1 V/μPa).展开更多
The characteristics of the photonic crystal vertical cavity surface emitting lasers(PhC-VCSELs) were investigated by using the full vector finite-difference time-domain(FDTD) method through the transverse mode los...The characteristics of the photonic crystal vertical cavity surface emitting lasers(PhC-VCSELs) were investigated by using the full vector finite-difference time-domain(FDTD) method through the transverse mode loss analysis. PhC-VCSELs with different photonic crystal structures were analyzed theoretically and experimentally. Through combining the dual mode confinement of oxide aperture and seven-point-defect photonic crystal structure, the PhC-VCSELs with low threshold current of 0.9 mA and maximum output power of 3.1 mW operating in single fundamental mode were demonstrated. Mode loss analysis method was proven as a reliable and useful way to analyze and optimize the PhC-VCSELs.展开更多
We present a stable linear-cavity single longitudinal mode (SLM) erbium-doped silica fiber laser. It consists of four fiber Bragg gratings (FBGs) directly written in a section of photosensitive erbium-doped fiber ...We present a stable linear-cavity single longitudinal mode (SLM) erbium-doped silica fiber laser. It consists of four fiber Bragg gratings (FBGs) directly written in a section of photosensitive erbium-doped fiber (EDF) to form an asymmetric three-cavity structure. The stable SLM operation at a wavelength of 1545.112 nm with a 3-dB bandwidth of 0.012 nm and an optical signal-to-noise ratio (OSNR) of about 60 dB is verified experimentally. Under laboratory conditions, the performance of a power fluctuation of less than 0.05 dB observed from the power meter for 6 h and a wavelength variation of less than 0.01 nm obtained from the optical spectrum analyzer (OSA) for about 1.5 h are demonstrated. The gain fiber length is no longer limited to only several centimeters for SLM operation because of the excellent mode-selecting ability of the asymmetric three-cavity structure. The proposed scheme provides a simple and cost-effective approach to realizing a stable SLM fiber laser.展开更多
Optimization of the high power single-lateral-mode double-trench ridge waveguide semiconductor laser based on InGaAsP/InP quantum-well heterostructures with a separate confinement layer is reported. Two different wave...Optimization of the high power single-lateral-mode double-trench ridge waveguide semiconductor laser based on InGaAsP/InP quantum-well heterostructures with a separate confinement layer is reported. Two different waveguide structures of Fabry-Perot lasers emitting at a wavelength of 1.55 μm are fabricated. The influence of an effective lateral refractive index step on the maximum output power is investigated. A cw single mode output power of 165mW is obtained for a 1-mm-long uncoated laser.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11074164 and 10874110)the Shanghai Leading Academic Discipline Project,China (Grant No.S30108)+1 种基金the Science and Technology Commission of Shanghai Municipality,China (Grant No.08DZ2231100)the Innovation Foundation of Shanghai Municipal Commission of Education,China (Grant No.11YZ17)
文摘Excitation and propagation of Lamb waves by using rectangular and circular piezoelectric transducers surface- bonded to an isotropic plate are investigated in this work. Analytical stain wave solutions are derived for the two transducer shapes, giving the responses of these transducers in Lamb wave fields. The analytical study is supported by a numericM simulation using the finite element method. Symmetric and antisymmetric components in the wave propagation responses are inspected in detail with respect to test parameters such as the transducer geometry, the length and the excitation frequency. By placing only one piezoelectric transducer on the top or the bottom surface of the plate and weakening the strength of one mode while enhancing the strength of the other modes to find the centre frequency, with which the peak wave amplitude ratio between the SO and A0 modes is maximum, a single mode excitation from the multiple modes of the Lamb waves can be achieved approximately. Experimental data are presented to show the validity of the analyses. The results are used to optimize the Lamb wave detection system.
基金Supported by the National Basic Research Program of China under Grant No 2012CB933501the National Natural Science Foundation of China under Grant Nos 61307033,61274070,61137003 and 61321063
文摘A single mode hybrid Ⅲ-Ⅴ/silicon on-chip laser based on the flip-chip bonding technology for on-chip optical interconnection is demonstrated. A single mode Fabry-Perot laser structure with micro-structures on an InP ridge waveguide is designed and fabricated on an InP/AIGaInAs multiple quantum well epitaxial layer structure wafer by using i-line lithography. Then, a silicon waveguide platform including a laser mounting stage is designed and fabricated on a silicon-on-insulator substrate. The single mode laser is flip-chip bonded on the laser mounting stage. The lasing light is butt-coupling to the silicon waveguide. The laser power output from a silicon waveguide is 1.3roW, and the threshold is 37mA at room temperature and continuous wave operation.
文摘This paperdetails experimental work done to quantify stress measurements made optically utilizing ordinary single mode optical fibers. Strain-induced changes of birefringence for ordinary single mode optical fiber responses are characterized against standard stress measurements in a well understand configuration. The experimental scheme for this work and the results are presented in detaial. In this paper, POssible applications for this transverse stress character of single mode fibers are also proposed.
基金supported by the National Natural Science Foundation of China(Grant No.61205111)the Open Foundation of State Key Laboratory of Millimeter Waves,China(Grant No.K201219)the Natural Science Foundation of Chongqing Normal University,China(Grant No.2011XLZ06)
文摘In this paper, we observe experimentally the optical bistability induced by the side-mode injection power and wave- length detuning in a single mode Fabry-P6rot laser diode (SMFP-LD). Results show that the bistability characteristics of the dominant and injected modes are strongly dependent on the injected input optical power and wavelength detuning in an SMFP-LD. We observe three types of hysteresis loops: counterclockwise, clockwise, and butterfly hysteresis with various loop widths. In the case of a bistability loop caused by injection power, the transition from counterclockwise to clockwise in the hysteresis direction with the wavelength detuning from 0.028 nm to 0.112 nm is observed in a way of butterfly hys- teresis for the dominant mode by increasing the wavelength detuning. The width of hysteresis loop, induced by wavelength detuning is also changed while the injection power is enhanced from -7 dBm to -5 dBm.
文摘The density,dynamic modulus,Youngs modulus,tensile strength,extension properties,Fourier transform infrared spectrum and differential scanning calorimetry have been measured and discussed for single mode polymethyl-methacrylate optical fiber.The results show that the fiber can provide large strain range for polymeric optical fiber Bragg gratings.
基金funded by National Natural Science Foundation of China, grant numbers 62335006, 62274014, 62235016, 61734006, 61835011, 61991430funded by Key Program of the Chinese Academy of Sciences, grant numbers XDB43000000, QYZDJSSW-JSC027Beijing Municipal Science & Technology Commission, grant number Z221100002722018
文摘We demonstrated a scheme of phase-locked terahertz quantum cascade lasers(THz QCLs)array,with a single-mode pulse power of 108 mW at 13 K.The device utilizes a Talbot cavity to achieve phase locking among five ridge lasers with first-order buried distributed feedback(DFB)grating,resulting in nearly five times amplification of the single-mode power.Due to the optimum length of Talbot cavity depends on wavelength,the combination of Talbot cavity with the DFB grating leads to better power amplification than the combination with multimode Fabry-Perot(F-P)cavities.The Talbot cavity facet reflects light back to the ridge array direction and achieves self-imaging in the array,enabling phase-locked operation of ridges.We set the spacing between adjacent elements to be 220μm,much larger than the free-space wavelength,ensuring the operation of the fundamental supermode throughout the laser's dynamic range and obtaining a high-brightness far-field distribution.This scheme provides a new approach for enhancing the single-mode power of THz QCLs.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374025).
文摘The entanglement properties of the system of two two-level atoms interacting with a single-mode vacuum field are explored. The quantum entanglement between two two-level atoms and a single-mode vacuum field is investigated by using the quantum reduced entropy; the quantum entanglement between two two-level atoms, and that between a single two-level atom and a single-mode vacuum field are studied in terms of the quantum relative entropy. The influences of the atomic dipole-dipole interaction on the quantum entanglement of the system are also discussed. Our results show that three entangled states of two atoms-field, atom-atom, and atom-field can be prepared via two two-level atoms interacting with a single-mode vacuum field.
文摘This paper presents the design and analysis of optical filters that are placed at the output of directly modulated vertical cavity surface emitting laser (VCSEL) in the process of inexpensive transmitter's implementation for upcoming generation optical access network. Generation of non return to zero (NRZ) optical signal from the transmitter for 110 km error-free single mode fiber (SMF) transmission at 10 Gb/s with bit error rate (BER) of 10-30 in the absence of the external modulator and encoder was proposed. Effects of super-Gaussian and Butterworth optical filters at VCSEL output were demonstrated to maximize performance of SMF optical systems without need of any dispersion compensation technique.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2008AA03Z402)the National Natural Science Foundation of China (Grant No. 61076044)the Natural Science Foundation of Beijing,China(Grant Nos. 4092007 and 4102003)
文摘A multi-hole vertical-cavity surface-emitting laser (VCSEL) operating in stable single mode with a low threshold current was produced by introducing multi-leaf scallop holes on the top distributed Bragg-refleetor of an oxidation- confined 850 nm VCSEL. The single-mode output power of 2.6 mW, threshold current of 0.6 mA, full width of half maximum lasing spectrum of less than 0.1 nm, side mode suppression ratio of 28.4 dB, and far-field divergence angle of about 10% are obtained. The effects of different hole depths on the optical characteristics are simulated and analysed, including far-field divergence, spectrum and lateral cavity mode. The single-mode performance of this multi-hole device is attributed to the large radiation loss from the inter hole spacing and the scattering loss at the bottom of the holes, particularly for higher order modes.
基金National Natural Science Foundation of China(60507001 60477022 06YFGPGX08500)
文摘Proposed is a novel optical pulse compression technique based on high-doped erbium fiber amplifier and standard single-mode fiber(SMF). We used the amplifier with the erbium ion concentration of 6.3×10-3 to amplify a hyperbolic secant pulse from a regeneratively mode-locked fiber laser. The central wavelength, pulsewidth and peak power of the pulse are 1 550 nm, 12.5 ps and 3 mW, respectively. Then the amplified pulse with peak power level corresponding to a higher-order soliton is compressed when it propagates through a 3-km-long single-mode fiber. Studied are the compressed pulses under different pump powers and fiber lengths. The results show that it can get a narrower pulse, and solve the difficulty that pulses at low power can not be compressed directly in the fiber. And the construct is compact.
基金This work was supported by the Rising-Star Project (No. 04QMX1488)of Shanghai Municipal Science and Technology Commission and the National Natural Science Foundation of China(No. 60207006).
文摘Spectral characteristics of the amplified spontaneous emission (ASE) from a novel single mode Er^(3+) doped tellurite fiber with D-type cladding is reported in this letter. When pumped at 980 nm, an ASE source that has nearly a 100-nm flat FWHM bandwidth is obtained with a fiber length of 30-60 cm. Variation of ASE spectra with pump powers and fiber lengths are measured. Output power up to 2.0 mW is obtained with a launched pump power of 660 mW.
基金supported by the National Natural Science Foundation of China(Grant Nos.62005011,61801017,and.62005013)the Beijing Municipal Natural Science Foundation(Grant No.4212009)the Fundamental Research Funds for the Central Universities(Grant No.2020RC015).
文摘An in-fiber Mach-Zehnder interferometer is proposed for the discrimination of strain and temperature.The sensor is based on two cascaded standard single mode fibers using three peanut tapers fabricated by simple splicing.The cascaded structure excites more frequency components,which induce four sets of interference dips in the transmission spectrum.One set of the spectrum dips have different sensitivities to temperature and strain from those of the other three.The sensor can discriminate strain and temperature by monitoring the wavelength shifts of two spectrum dips.Repeated experiments are taken both for strain and temperature increasing and decreasing scenarios.Experimental results show that Dip 1 has an average strain sensitivity of-0.911 pm/με and an average temperature sensitivity of 49.98pm/℃.The strain sensitivity for Dip 2 is negligible and its average temperature sensitivity is 60.52pm/℃.The strain and temperature resolutions are±3.82με and±0.33℃.
文摘A frequency domain analysis is presented to determine the performance characteristics of a tunable all-optical wavelength converter using four-wave mixing (FWM) in a single mode fiber (SMF) around the zero dispersion wavelength using two pump lasers. The output converted signal power as well as efficiency evaluated at a bit rate of 10 Gb/s show that the signal power is substantially higher at lower values of wavelength separation.
基金supported by the National Military Electronic Component Program of China(No.1107XG0700)
文摘To achieve low threshold current as well as high single mode output power, a graded index separate confinement heterostructure (GRIN-SCH) A1GaInAs/A1GaAs quantum well laser with an optimized ridge wave- guide was fabricated. The threshold current was reduced to 8 mA. An output power of 76 mW was achieved at 100 mA current at room temperature, with a slope efficiency of 0.83 W/A and a horizon divergent angle of 6.3°. The maximum single mode output power of the device reached as high as 450 mW.
基金supported by the National Key Basic Research Special Foundation of China (Grant No. 2011CB922000)the National Natural Science Foundation of China (Grant Nos. 61025025 and 60838003)the National High Technology Research and Development Program of China (Grant Nos. 2007AA03Z410 and 2007AA03Z408)
文摘The 850-nm oxide-confined vertical-cavity surface-emitting lasers with petal-shape holey structures are presented. An area-weighted average refractive index model is given to analyse their effective index profiles, and the graded index distribution in the holey region is demonstrated. The index step between the optical aperture and the holey region is obtained which is related merely to the etching depth. Four types of holey vertical-cavity surface-emitting lasers with different parameters are fabricated as well as the conventional oxide-confined vertical-cavity surface-emitting laser. Compared with the conventional oxide-confined vertical-cavity surface-emitting laser without etched holes, the holey vertical-cavity surface-emitting laser possesses an improved beam quality due to its graded index distribution, but has a lower output power, higher threshold current and lower slope efficiency. With the hole number increased, the holey vertical-cavity surface-emitting laser can realize the single-mode operation throughout the entire current range, and reduces the beam divergence further. The loss mechanism is used to explain the single-mode characteristic, and the reduced beam divergence is attributed to the shallow etching. High coupling efficiency of 86% to a multi-mode fibre is achieved for the single-mode device in the experiment.
文摘Transmission of 40Gbit/s NRZ signal was successfully demonstrated over 219km of installed SMF in KT's Daejeon area network. After transmission, the measured power penalty was 0.5dB for all the tributary channels.
文摘The behavior of a single mode optic-fiber interferometric hydrophone with ring resonator is discribed in this paper. The optic-fiber ring resonant hydrophone has rery high optical finesse, and receiving sensitivity level about -130 dB (re 1 V/μPa).
基金supported by the National Basic Research Program of China(Grant Nos.2010CB934104,2009CB320300,and 2011CBA00608)the National Natural Foundation of China(Grant Nos.61604007,61378058,61376049,61575008,and 61574011)
文摘The characteristics of the photonic crystal vertical cavity surface emitting lasers(PhC-VCSELs) were investigated by using the full vector finite-difference time-domain(FDTD) method through the transverse mode loss analysis. PhC-VCSELs with different photonic crystal structures were analyzed theoretically and experimentally. Through combining the dual mode confinement of oxide aperture and seven-point-defect photonic crystal structure, the PhC-VCSELs with low threshold current of 0.9 mA and maximum output power of 3.1 mW operating in single fundamental mode were demonstrated. Mode loss analysis method was proven as a reliable and useful way to analyze and optimize the PhC-VCSELs.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61077069 and 61107094)the Innovation Foundation for Excellent Doctoral Candidates of Beijing Jiaotong University, China (Grant No. 2011YJS202)
文摘We present a stable linear-cavity single longitudinal mode (SLM) erbium-doped silica fiber laser. It consists of four fiber Bragg gratings (FBGs) directly written in a section of photosensitive erbium-doped fiber (EDF) to form an asymmetric three-cavity structure. The stable SLM operation at a wavelength of 1545.112 nm with a 3-dB bandwidth of 0.012 nm and an optical signal-to-noise ratio (OSNR) of about 60 dB is verified experimentally. Under laboratory conditions, the performance of a power fluctuation of less than 0.05 dB observed from the power meter for 6 h and a wavelength variation of less than 0.01 nm obtained from the optical spectrum analyzer (OSA) for about 1.5 h are demonstrated. The gain fiber length is no longer limited to only several centimeters for SLM operation because of the excellent mode-selecting ability of the asymmetric three-cavity structure. The proposed scheme provides a simple and cost-effective approach to realizing a stable SLM fiber laser.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61274046 and 61474111the National Basic Research Program of China under Grant No 2013AA014202
文摘Optimization of the high power single-lateral-mode double-trench ridge waveguide semiconductor laser based on InGaAsP/InP quantum-well heterostructures with a separate confinement layer is reported. Two different waveguide structures of Fabry-Perot lasers emitting at a wavelength of 1.55 μm are fabricated. The influence of an effective lateral refractive index step on the maximum output power is investigated. A cw single mode output power of 165mW is obtained for a 1-mm-long uncoated laser.