In paper[Chin.Phys.B 32070308(2023)],Xing et al.proposed a semi-quantum secret sharing protocol by using single particles.We study the security of the proposed protocol and find that it is not secure,that is,the three...In paper[Chin.Phys.B 32070308(2023)],Xing et al.proposed a semi-quantum secret sharing protocol by using single particles.We study the security of the proposed protocol and find that it is not secure,that is,the three dishonest agents,Bob,Charlie and Emily can collude to obtain Alice's secret without the help of David.展开更多
Semi-quantum secret sharing(SQSS)is a branch of quantum cryptography which only requires the dealer to have quantum capabilities,reducing the difficulty of protocol implementation.However,the efficiency of the SQSS pr...Semi-quantum secret sharing(SQSS)is a branch of quantum cryptography which only requires the dealer to have quantum capabilities,reducing the difficulty of protocol implementation.However,the efficiency of the SQSS protocol still needs to be further studied.In this paper,we propose a semi-quantum secret sharing protocol,whose efficiency can approach 100%as the length of message increases.The protocol is based on single particles to reduce the difficulty of resource preparation.Particle reordering,a simple but effective operation,is used in the protocol to improve efficiency and ensure security.Furthermore,our protocol can share specific secrets while most SQSS protocols could not.We also prove that the protocol is secure against common attacks.展开更多
Oxygenated organic molecules(OOMs)play an important role in the formation of secondary organic aerosols(SOAs),but the mixing states of OOMs are still unclear.This study investigates the mixing states of OOM-containing...Oxygenated organic molecules(OOMs)play an important role in the formation of secondary organic aerosols(SOAs),but the mixing states of OOMs are still unclear.This study investigates the mixing states of OOM-containing single particles from the measurements taken using a single particle aerosol mass spectrometer in Guangzhou,China in 2022.Generally,the particle counts of OOM particles and the mass concentration of secondary organic carbon(SOC)exhibited similar temporal trends throughout the entire year.The OOM particles were consistently enriched in secondary ions,including ^(16)O^(−),^(26)CN^(−),^(46)NO_(2)^(−),^(62)NO_(3)^(−),and ^(97)HSO_(4)^(−).In contrast,the number fractions and diurnal patterns of OOM particles among the total detected particles showed similar distributions in August and October;however,the SOC ratios in fine particulate matter were quite different,suggesting that there were different mixing states of single-particle oxygenated organics.In addition,further classification results indicated that the OOM particles were more aged in October than August,even though the SOC ratios were higher in August.Furthermore,the distribution of hydrocarbon fragments exhibited a notable decrease from January to October,emphasizing the more aged state of the organics in October.In addition,the sharp increase in elemental carbon(EC)-OOM particles in the afternoon in October suggests the potential role of EC in the aging process of organics.Overall,in contrast to the bulk analysis of SOC mass concentration,the mixing states of the OOM particles provide insights into the formation process of SOAs in field studies.展开更多
Organic nitrogen(ON)compounds play a significant role in the light absorption of brown carbon and the formation of organic aerosols,however,the mixing state,secondary formation processes,and influencing factors of ON ...Organic nitrogen(ON)compounds play a significant role in the light absorption of brown carbon and the formation of organic aerosols,however,the mixing state,secondary formation processes,and influencing factors of ON compounds are still unclear.This paper reports on the mixing state of ON-containing particles based on measurements obtained using a highperformance single particle aerosol mass spectrometer in January 2020 in Guangzhou.The ON-containing particles accounted for 21% of the total detected single particles,and the particle count and number fraction of the ON-containing particles were two times higher at night than during the day.The prominent increase in the content of ON-containing particles with the enhancement of NO_xmainly occurred at night,and accompanied by high relative humidity and nitrate,which were associated with heterogeneous reactions between organics and gaseous NO_(x)and/or NO_(3)radical.The synchronous decreases in ON-containing particles and the mass absorption coefficient of water-soluble extracts at 365 nm in the afternoon may be associated with photo-bleaching of the ON species in the particles.In addition,the positive matrix factorization analysis found five factors dominated the formation processes of ON particles,and the nitrate factor(33%)mainly contributed to the production of ON particles at night.The results of this study provide unique insights into the mixing states and secondary formation processes of the ON-containing particles.展开更多
The Tibetan Plateau,known as the“Third Pole”,is currently in a state of perturbation caused by intensified human activity.In this study,56 samples were obtained at the five sampling sites in typical area of Lhasa ci...The Tibetan Plateau,known as the“Third Pole”,is currently in a state of perturbation caused by intensified human activity.In this study,56 samples were obtained at the five sampling sites in typical area of Lhasa city and their physical and chemical properties were investigated by TEM/EDS,STXM,and NEXAFS spectroscopy.After careful examination of 3387single particles,the results showed that Fe should be one of the most frequent metal elements.The Fe-containing single particles in irregular shape and micrometer size was about7.8%and might be mainly from local sources.Meanwhile,the Fe was located on the subsurface of single particles and might be existed in the form of iron oxide.Interestingly,the core-shell structure of iron-containing particles were about 38.8%and might be present as single-,dual-or triple-core shell structure and multi-core shell structure with the Fe/Si ratios of 17.5,10.5,2.9 and 1.2,respectively.Meanwhile,iron and manganese were found to coexist with identical distributions in the single particles,which might induce a synergistic effect between iron and manganese in catalytic oxidation.Finally,the solid spherical structure of Fe-containing particles without an external layer were about 53.4%.The elements of Fe and Mn were co-existed,and might be presented as iron oxide-manganese oxide-silica composite.Moreover,the ferrous and ferric forms of iron might be co-existed.Such information can be valuable in expanding our understanding of Fe-containing particles in the Tibetan Plateau atmosphere.展开更多
Single particles moving in a reflection-asymmetric potential are investigated by solving the Schr6dinger equation of the reflectionasymmetric Nilsson Hamiltonian with the imaginary time method in 3D lattice space and ...Single particles moving in a reflection-asymmetric potential are investigated by solving the Schr6dinger equation of the reflectionasymmetric Nilsson Hamiltonian with the imaginary time method in 3D lattice space and the harmonic oscillator basis expansion method. In the 3D lattice calculation, the l2 divergence problem is avoided by introducing a damping function, and the(l2)N term in the non-spherical case is calculated by introducing an equivalent N-independent operator. The efficiency of these numerical techniques is demonstrated by solving the spherical Nilsson Hamiltonian in 3D lattice space. The evolution of the single-particle levels in a reflection-asvmmetric ootential is obtained and discussed bv the above two numerical methods, and their consistencv is shown in the obtained single-particle energies with the differences smaller than 10-4[hω0]展开更多
Luminescent properties of Er^(3+)-and Yb^(3+)-co-doped CaF_(2)upconversion nanoparticles(UCNPs)were investigated in single particle and densely-packed states with a custom-built microscope.The single UCNPs exhibit lin...Luminescent properties of Er^(3+)-and Yb^(3+)-co-doped CaF_(2)upconversion nanoparticles(UCNPs)were investigated in single particle and densely-packed states with a custom-built microscope.The single UCNPs exhibit linear dependency of luminescent intensity on excitation power while the densely-packed UCNPs exhibit a 2-order power law-dependency indicating a two-photon absorption process.Time-domain luminescence intensity measurements were performed and the curves were fitted to excitationnemission rate functions based on a simplified three-state model.The results indicate that the intermediates in single particles are much less and saturated in a short time,and there are strong couplings of the ground states and intermediate states between neighboring UCNPs in densely packed UCNPs.展开更多
To investigate the composition and possible sources of particles, especially during heavy haze pollution, a single particle aerosol mass spectrometer(SPAMS) was deployed to measure the changes of single particle spe...To investigate the composition and possible sources of particles, especially during heavy haze pollution, a single particle aerosol mass spectrometer(SPAMS) was deployed to measure the changes of single particle species and sizes during October of 2014, in Beijing. A total of 2,871,431 particles with both positive and negative spectra were collected and characterized in combination with the adaptive resonance theory neural network algorithm(ART-2a). Eight types of particles were classified: dust particles(dust, 8.1%), elemental carbon(EC, 29.0%), organic carbon(OC, 18.0%), EC and OC combined particles(ECOC, 9.5%),Na-K containing particles(Na K, 7.9%), K-containing particles(K, 21.8%), organic nitrogen and potassium containing particles(KCN, 2.3%), and metal-containing particles(metal,3.6%). Three haze pollution events(P1, P2, P3) and one clean period(clean) were analyzed,based on the mass and number concentration of PM_(2.5)and the back trajectory results from the hybrid single particle Lagrangian integrated trajectory model(Hysplit-4 model). Results showed that EC, OC and K were the major components of single particles during the three haze pollution periods, which showed clearly increased ratios compared with those in the clean period. Results from the mixing state of secondary species of different types of particles showed that sulfate and nitrate were more readily mixed with carbon-containing particles during haze pollution episodes than in clean periods.展开更多
Black carbon(BC)plays an important role in air quality and climate change,which is closely associated with its mixing state and chemical compositions.In this work the mixing state of BC-containing single particles was...Black carbon(BC)plays an important role in air quality and climate change,which is closely associated with its mixing state and chemical compositions.In this work the mixing state of BC-containing single particles was investigated to explore the evolution process of ambient BC particles using a single particle aerosol mass spectrometer(SPAMS)in March 2018 in Zhengzhou,China.The BC-containing particles accounted for 61.4%of total detected ambient single particles and were classified into five types including BC-nitrate(BC-N,52.3%)as the most abundant species,followed by BC-nitrate-sulfate(BC-NS,22.4%),BCOC(16.8%),BC-fresh(BC-F,4.5%)and BC-sulfate particles(BC-S,4.0%).With enhancement of the ambient nitrate concentration,the relative peak area(RPA)of nitrate in BC-N and BC–NS particles both increased,yet only the number fraction(N_(f))of BC–N particles increased while the N_(f) of BC-NS particles decreased,suggesting that the enhanced mixing state of BC with nitrate was mainly due to the increase in the ambient nitrate mass concentration.In addition,the Nfof BC-N decreased from 65.3%to 28.4%as the absorbing Angstrom exponents(AAE)of e BC increased from 0.75 to 1.45,which indicated the reduction of light absorption ability of aged BC particles with the enhanced formation of BC-N particles.The results of this work indicated a change in the mixing state of BC particles due to the dominance of nitrate in PM_(2.5),which also influenced the optical properties of aged BC particles.展开更多
Lithium ion batteries are complicated distributed parameter systems that can be described preferably by partial differential equations and a field theory. To reduce the solution difficulty and the calculation amount, ...Lithium ion batteries are complicated distributed parameter systems that can be described preferably by partial differential equations and a field theory. To reduce the solution difficulty and the calculation amount, if a distributed parameter system is described by ordinary differential equations (ODE) during the analysis and the design of distributed parameter system, the reliability of the system description will be reduced, and the systemic errors will be introduced. Studies on working condition real-time monitoring can improve the security because the rechargeable LIBs are widely used in many electronic systems and electromechanical equipment. Single particle model (SPM) is the simplification of LIB under some approximations, and can estimate the working parameters of a LIB at the faster simulation speed. A LIB modelling algorithm based on PDEs and SPM is proposed to monitor the working condition of LIBs in real time. Although the lithium ion concentration is an unmeasurable distributed parameter in the anode of LIB, the working condition monitoring model can track the real time lithium ion concentration in the anode of LIB, and calculate the residual which is the difference between the ideal data and the measured data. A fault alarm can be triggered when the residual is beyond the preset threshold. A simulation example verifies that the effectiveness and the accuracy of the working condition real-time monitoring model of LIB based on PDEs and SPM.展开更多
Glucose transporter 4 (GLUT4) is responsible for insulin-stimulated glucose transporting into the insulin-sensitive fat and muscle cells. The dynamics of GLUT4 storage vesicles (GSVs) remains to be explored and it is ...Glucose transporter 4 (GLUT4) is responsible for insulin-stimulated glucose transporting into the insulin-sensitive fat and muscle cells. The dynamics of GLUT4 storage vesicles (GSVs) remains to be explored and it is unclear how GSVs are arranged based on their mobility. We examined this issue in 3T3-L1 cells via investigating the three-dimensional mobility of single GSV labeled with EGFP-fused GLUT4. A thin layer of cytosol right adjacent to the plasma membrane was illuminated and successively imaged at 5 Hz under a total internal reflection fluorescence microscope with a penetration depth of 136 nm. Employing single particle tracking, the three-dimensional subpixel displacement of single GSV was tracked at a spatial precision of 22 nm. Both the mean square displacement and the diffusion coefficient were calculated for each vesicle. Tracking results revealed that vesicles moved as if restricted within a cage that has a mean radius of 160 nm, suggesting the presence of some intracellular tethering matrix. By constructing the histogram of the diffusion coefficients of GSVs, we observed a smooth distribution instead of the existence of distinct groups. The result indicates that GSVs are dynamically retained in a continuous and wide range of mobility rather than into separate classes.展开更多
A virtual sieving experimental simulation system was built using physical simulation principles.The effects of vibration frequency and amplitude,the inclination angle of the screen-deck and the vibration direction ang...A virtual sieving experimental simulation system was built using physical simulation principles.The effects of vibration frequency and amplitude,the inclination angle of the screen-deck and the vibration direction angle of screen on single particle kinematics were predicted.Properties such as the average velocity and the average throw height were studied.The results show that the amplitude and the angle of vibration have a great effect on particle average velocity and average height.The vibration frequency and the screen-deck inclination angle appear to have little influence on these responses.For materials that are difficult to screen the vibration frequency and amplitude,the screen-deck inclination angle and the vibration angle should be set to 14 Hz,6.6 mm,6° and 40°,respectively,to obtain optimal particle kinematics.A screening process can be simulated reliably by means of a virtual experiment and these results provide references for both screening theory research and sieving practice.展开更多
In the typical air polluted city of Shijiazhuang, single inhalable particle samples in non-heating period, heating period, dust storm days, and snowy days were collected and detected by SEM/EDS (scanning electron mic...In the typical air polluted city of Shijiazhuang, single inhalable particle samples in non-heating period, heating period, dust storm days, and snowy days were collected and detected by SEM/EDS (scanning electron microscopy and energy dispersive X-ray spectrometry). The particle morphology was characterized by the 6 shape clusters, which are: irregular square, agglomerate, sphere, floccule, column or stick, and unknown, by quantitative order. The irregular square particles are common in all kinds of samples; sphere particles are more, and column or stick are less in winter samples; in the wet deposit samples, agglomerate and floccule particles are not found. The surface of most particles is coarse with fractal edge, which can provide suitable chemical reaction bed in the polluted atmospheric environment. New formed calcium crystal is found to demonstrate the existence of neutralized reaction, explaining the reason for the high SO2 emission and low acid rain frequency in Shijiazhuang. The three sorts of surface patterns of spheres are smooth, semi-smooth, and coarse, corresponding to the element of Si-dominant, Si-Al-dominant, and Fe-dominant, The soot particle is present as floccule with average size around 10 μm, considerably larger than the former reported results, but wrapped or captured with other fine particles to make its appearance unique and enhance its toxicity potentially. The new formed calcium crystal, the 3 sorts of sphere surface patterns, and the unique soot appearance represent the single inhalable particle's morphology characteristics in Shijiazhuang City.展开更多
Fast and high-throughput determination of drugs is a key trend in clinical medicine.Single particles have increasingly been adopted in a variety of photoanalytical and electroanalytical applications,and microscopic an...Fast and high-throughput determination of drugs is a key trend in clinical medicine.Single particles have increasingly been adopted in a variety of photoanalytical and electroanalytical applications,and microscopic analysis has been a hot topic in recent years,especially for electrochemiluminescence(ECL).This paper describes a simple ECL method based on single gold microbeads to image lecithin.Lecithin reacts to produce hydrogen peroxide under the successive enzymatic reaction of phospholipase D and choline oxidase.ECL was generated by the electrochemical reaction between a luminol analog and hydrogen peroxide,and ECL signals were imaged by a camera.Despite the heterogeneity of single gold microbeads,their luminescence obeyed statistical regularity.The average luminescence of 30 gold microbeads is correlated with the lecithin concentration,and thus,a visualization method for analyzing lecithin was established.Calibration curves were constructed for ECL intensity and lecithin concentration,achieving detection limits of 0.05 m M lecithin.This ECL imaging platform based on single gold microbeads exhibits outstanding advantages,such as high throughput,versatility and low cost,and holds great potential in disease diagnostics,environmental monitoring and food safety.展开更多
Decreasing in emissions of greenhouse gases to confront the global warming needs to replace fossil fuels as the main doer of the world climate changes by renewable and clean fuels produced from biomass like wood waste...Decreasing in emissions of greenhouse gases to confront the global warming needs to replace fossil fuels as the main doer of the world climate changes by renewable and clean fuels produced from biomass like wood waste which is neutral on the amount of CO2. An analytical and engineering model for pyrolysis process of a single biomass particle has been presented. Using a two-stage semi global kinetic model which includes both primary and secondary reactions, the effects of parameters like shape and size of particle as well as porosity on the particle temperature profile and product yields have been investigated. Comparison of the obtained results with experimental data shows that our results are in a reasonable agreement with previous researchers' works. Finally, a sensitivity analysis is done to determine the importance of each parameter on pyrolysis of a single biomass particle which is affected by many constant parameters.展开更多
Dissolution kinetics of sodium carbonate is investigated with the image analysis method at the approach of single particle.The dissolution experiments are carried out in an aqueous solution under a series of controlle...Dissolution kinetics of sodium carbonate is investigated with the image analysis method at the approach of single particle.The dissolution experiments are carried out in an aqueous solution under a series of controlled temperature and p H.The selected sodium carbonate particles are all spherical with the same mass and diameter.The dissolution process is quantified with the measurement of particle diameter from dissolution images.The concentration of dissolved sodium carbonate in solvent is calculated with the measured diameter of particle.Both surface reaction model and mass transport model are implemented to determine the dissolution mechanism and quantify the dissolution rate constant at each experimental condition.According to the fitting results with both two models,it is clarified that the dissolution process at the increasing temperature is controlled by the mass transport of dissolved sodium carbonate travelling from particle surface into solvent.The dissolution process at the increasing pH is controlled by the chemical reaction on particle surface.Furthermore,the dissolution rate constant for each single spherical sodium carbonate particle is quantified and the results show that the dissolution rate constant of single spherical sodium carbonate increases significantly with the rising of temperature,but decreases with the increasing of pH conversely.展开更多
Single particle microbeam (SPM) is uniquely capable of delivering precisely the predefined number of charged particles to determined individual cells or sub-cellular targets in situ. It has been recognized as a powe...Single particle microbeam (SPM) is uniquely capable of delivering precisely the predefined number of charged particles to determined individual cells or sub-cellular targets in situ. It has been recognized as a powerful technique for unveiling ionization irradiation mechanisms of organism. This article describes some investigations on the irradiation quality of SPM of major world laboratories by means of Monte Carlo method based on dosimetry and microdosimetry. Those parameters are helpful not only to improve SPM irradiating cell experiments but also to study the biological effects of cells irradiated by SPM.展开更多
The wave-particle duality of a single particle with an n-dimensional internal degree of freedom is re-examined theo- retically in a Mach-Zehnder interferometer. The famous duality relation D2 + V2 〈 1 is always vali...The wave-particle duality of a single particle with an n-dimensional internal degree of freedom is re-examined theo- retically in a Mach-Zehnder interferometer. The famous duality relation D2 + V2 〈 1 is always valid in this situation, where D is the distinguishability and V is the visibility. However, the sum of the particle information and the wave information, D2 V2, can be smaller than one for the input of a pure state if this initial pure state includes the internal degree of freedom of the particle, while the quantity D2~ V2 is always equal to one when the internal degree of freedom of the particle is excluded.展开更多
Oxy-steam combustion is a promising next-generation combustion technology.Conversions of fuel-N,volatile-N,and char-N to NO and N2O during combustion of a single coal particle in O2/N2and O2/H2O were studied in a tube...Oxy-steam combustion is a promising next-generation combustion technology.Conversions of fuel-N,volatile-N,and char-N to NO and N2O during combustion of a single coal particle in O2/N2and O2/H2O were studied in a tube reactor at low temperature.In O2/N2,NO reaches the maximum value in the devolatilization stage and N2O reaches the maximum value in the char combustion stage.In O2/H2O,both NO and N2O reach the maximum values in the char combustion stage.The total conversion ratios of fuel-N to NO and N2O in O2/N2are obviously higher than those in O2/H2O,due to the reduction of H2O on NO and N2O.Temperature changes the trade-off between NO and N2O.In O2/N2and O2/H2O,the conversion ratios of fuel-N,volatile-N,and char-N to NO increase with increasing temperature,and those to N2O show the opposite trends.The conversion ratios of fuel-N,volatile-N,and char-N to NO reach the maximum values at 〈O2〉=30 vol%in O2/N2.In O2/H2O,the conversion ratios of fuel-N and char-N to NO reach the maximum values at 〈O2〉=30 vol%,and the conversion ratio of volatile-N to NO shows a slightly increasing trend with increasing oxygen concentration.The conversion ratios of fuel-N,volatile-N,and char-N to N2O decrease with increasing oxygen concentration in both atmospheres.A higher coal rank has higher conversion ratios of fuel-N to NO and N2O.Anthracite coal exhibits the highest conversion ratios of fuel-N,volatile-N,and char-N to NO and N2O in both atmospheres.This work is to develop efficient ways to understand and control NO and N2O emissions for a clean and sustainable atmosphere.展开更多
Fluorescence recovery after photobleaching(FRAP)and single particle tracking(SPT)techni-ques determine the diffusion coefficient from average diffusive motion of high-concentration molecules and from trajectories of l...Fluorescence recovery after photobleaching(FRAP)and single particle tracking(SPT)techni-ques determine the diffusion coefficient from average diffusive motion of high-concentration molecules and from trajectories of low-concentration single molecules,respectively.Lateral dif-fusion coefficients measured by FRAP and SPT techniques for the same biomolecule on cell membrane have exhibited inconsistent values across laboratories and platforms with larger dif-fusion coefficient determined by FRAP,but the sources of the inconsistency have not been investigated thoroughly.Here,we designed an image-based FRAP-SPT system and made a direct comparison between FRAP and SPT for diffusion coefficient of submicron particles with known theoretical values derived from Stokes-Einstein equation in aqueous solution.The combined iFRAP-SPT technique allowed us to measure the diffusion coefficient of the same fluorescent particle by utilizing both techniques in a single platform and to scrutinize inherent errors and artifacts of FRAP.Our results reveal that diffusion coefficient overestimated by FRAP is caused by inaccurate estimation of the bleaching spot size and can be corrected by simple image analysis.Our iFRAP-SPT technique can be potentially used for not only cellular membrane dynamics but also for quantitative analysis of the spatiotemporal distribution of the solutes in small scale analytical devices.展开更多
基金Project supported by the Offline Course Program of“Experiment of College Physics”in the 2022-year Anhui Provincial Quality Engineering Program (Grant No.2022xxkc134)the Program for Academic Leader Reserve Candidates in Tongling University (Grant Nos.2020tlxyxs43 and 2014tlxyxs30)+1 种基金the Talent Scientific Research Foundation of Tongling University (Grant No.2015tlxyrc01)the 2014 year Program for Excellent Youth Talents in University of Anhui Province。
文摘In paper[Chin.Phys.B 32070308(2023)],Xing et al.proposed a semi-quantum secret sharing protocol by using single particles.We study the security of the proposed protocol and find that it is not secure,that is,the three dishonest agents,Bob,Charlie and Emily can collude to obtain Alice's secret without the help of David.
基金Project supported by the National Key Research and Development Program of China(Grant No.2020YFB1805405)the 111 Project(Grant No.B21049),the National Natural Science Foundation of China(Grant No.62272051)+1 种基金the Foundation of Guizhou Provincial Key Laboratory of Public Big Data(Grant No.2019BDKFJJ014)the Fundamental Research Funds for the Central Universities of China(Grant Nos.2019XD-A02 and 2020RC38).
文摘Semi-quantum secret sharing(SQSS)is a branch of quantum cryptography which only requires the dealer to have quantum capabilities,reducing the difficulty of protocol implementation.However,the efficiency of the SQSS protocol still needs to be further studied.In this paper,we propose a semi-quantum secret sharing protocol,whose efficiency can approach 100%as the length of message increases.The protocol is based on single particles to reduce the difficulty of resource preparation.Particle reordering,a simple but effective operation,is used in the protocol to improve efficiency and ensure security.Furthermore,our protocol can share specific secrets while most SQSS protocols could not.We also prove that the protocol is secure against common attacks.
基金supported by the National Natural Science Foundation of China(Grant Nos.41827804 and 41805093)the Natural Science Foundation of Guangdong Province(China)(No.2021A1515011206)+1 种基金the State Key Laboratory of Marine Resource Utilization in the South China Sea,Hainan University(China)(No.MRUKF2023009)the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,CAS(No.SKLLQG2218).
文摘Oxygenated organic molecules(OOMs)play an important role in the formation of secondary organic aerosols(SOAs),but the mixing states of OOMs are still unclear.This study investigates the mixing states of OOM-containing single particles from the measurements taken using a single particle aerosol mass spectrometer in Guangzhou,China in 2022.Generally,the particle counts of OOM particles and the mass concentration of secondary organic carbon(SOC)exhibited similar temporal trends throughout the entire year.The OOM particles were consistently enriched in secondary ions,including ^(16)O^(−),^(26)CN^(−),^(46)NO_(2)^(−),^(62)NO_(3)^(−),and ^(97)HSO_(4)^(−).In contrast,the number fractions and diurnal patterns of OOM particles among the total detected particles showed similar distributions in August and October;however,the SOC ratios in fine particulate matter were quite different,suggesting that there were different mixing states of single-particle oxygenated organics.In addition,further classification results indicated that the OOM particles were more aged in October than August,even though the SOC ratios were higher in August.Furthermore,the distribution of hydrocarbon fragments exhibited a notable decrease from January to October,emphasizing the more aged state of the organics in October.In addition,the sharp increase in elemental carbon(EC)-OOM particles in the afternoon in October suggests the potential role of EC in the aging process of organics.Overall,in contrast to the bulk analysis of SOC mass concentration,the mixing states of the OOM particles provide insights into the formation process of SOAs in field studies.
基金supported by the Key-Area Research and Development Program of Guangdong Province(No.2020B1111360001)the National Natural Science Foundation of China(Nos.41805093 and 41827804)+7 种基金the Natural Science Foundation of Guangdong Province(No.2021A1515011206)the GDAS’Project of Science and Technology Development(No.2021GDASYL-20210103058)the State Key Laboratory of Organic Geochemistry(No.SKLOG202105)Guangdong Foundation for Program of Science and Technology Research(No.2020B1212060053)the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,CAS(No.SKLLQG2218)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515012165)Scientific research special project of Pudong new district Ecological and Environmental Bureau(No.PDHJ20210008)the Shanghai Municipal Science and Technology Commission Natural Fund(No.20ZR1449700)。
文摘Organic nitrogen(ON)compounds play a significant role in the light absorption of brown carbon and the formation of organic aerosols,however,the mixing state,secondary formation processes,and influencing factors of ON compounds are still unclear.This paper reports on the mixing state of ON-containing particles based on measurements obtained using a highperformance single particle aerosol mass spectrometer in January 2020 in Guangzhou.The ON-containing particles accounted for 21% of the total detected single particles,and the particle count and number fraction of the ON-containing particles were two times higher at night than during the day.The prominent increase in the content of ON-containing particles with the enhancement of NO_xmainly occurred at night,and accompanied by high relative humidity and nitrate,which were associated with heterogeneous reactions between organics and gaseous NO_(x)and/or NO_(3)radical.The synchronous decreases in ON-containing particles and the mass absorption coefficient of water-soluble extracts at 365 nm in the afternoon may be associated with photo-bleaching of the ON species in the particles.In addition,the positive matrix factorization analysis found five factors dominated the formation processes of ON particles,and the nitrate factor(33%)mainly contributed to the production of ON particles at night.The results of this study provide unique insights into the mixing states and secondary formation processes of the ON-containing particles.
基金supported by the National Natural Science Foundation of China(No.21677116)the environmental risk management and control of industrial solid waste recycling process in low temperature and low pressure with anoxic environment(No.2019YFC190410304)+2 种基金the Second Tibetan Plateau Scientific Expedition and Research Program(Nos.2019QZKK0603,2019QZKK0605)the Central Government Supports the Phased Achievement Funding of Local University Projects(ZCKJZ[2022]No.1,[2021]No.1,[2020]No.1 and[2019]No.44)the"High level talents"training program for Postgraduates of Tibet University,2021-GSP-B016。
文摘The Tibetan Plateau,known as the“Third Pole”,is currently in a state of perturbation caused by intensified human activity.In this study,56 samples were obtained at the five sampling sites in typical area of Lhasa city and their physical and chemical properties were investigated by TEM/EDS,STXM,and NEXAFS spectroscopy.After careful examination of 3387single particles,the results showed that Fe should be one of the most frequent metal elements.The Fe-containing single particles in irregular shape and micrometer size was about7.8%and might be mainly from local sources.Meanwhile,the Fe was located on the subsurface of single particles and might be existed in the form of iron oxide.Interestingly,the core-shell structure of iron-containing particles were about 38.8%and might be present as single-,dual-or triple-core shell structure and multi-core shell structure with the Fe/Si ratios of 17.5,10.5,2.9 and 1.2,respectively.Meanwhile,iron and manganese were found to coexist with identical distributions in the single particles,which might induce a synergistic effect between iron and manganese in catalytic oxidation.Finally,the solid spherical structure of Fe-containing particles without an external layer were about 53.4%.The elements of Fe and Mn were co-existed,and might be presented as iron oxide-manganese oxide-silica composite.Moreover,the ferrous and ferric forms of iron might be co-existed.Such information can be valuable in expanding our understanding of Fe-containing particles in the Tibetan Plateau atmosphere.
基金supported by the National Basic Research Program of China (Grant No. 2013CB834400)the National Natural Science Foundation of China (Grants Nos. 11335002, 11375015, 11461141002, and 11621131001)
文摘Single particles moving in a reflection-asymmetric potential are investigated by solving the Schr6dinger equation of the reflectionasymmetric Nilsson Hamiltonian with the imaginary time method in 3D lattice space and the harmonic oscillator basis expansion method. In the 3D lattice calculation, the l2 divergence problem is avoided by introducing a damping function, and the(l2)N term in the non-spherical case is calculated by introducing an equivalent N-independent operator. The efficiency of these numerical techniques is demonstrated by solving the spherical Nilsson Hamiltonian in 3D lattice space. The evolution of the single-particle levels in a reflection-asvmmetric ootential is obtained and discussed bv the above two numerical methods, and their consistencv is shown in the obtained single-particle energies with the differences smaller than 10-4[hω0]
基金The work was supported by the National Key Research and Development Program of China(YFC20170110100)the National Natural Science Foundation of China(NSFC)(Grant Nos.61475185 and 11504409)Natural Science Foundation of Tianjin City(TJNSF)(Grant No.16JCYBJC43800).Xiaohu Chen and Zhengyu Gui contributed equality to this work.
文摘Luminescent properties of Er^(3+)-and Yb^(3+)-co-doped CaF_(2)upconversion nanoparticles(UCNPs)were investigated in single particle and densely-packed states with a custom-built microscope.The single UCNPs exhibit linear dependency of luminescent intensity on excitation power while the densely-packed UCNPs exhibit a 2-order power law-dependency indicating a two-photon absorption process.Time-domain luminescence intensity measurements were performed and the curves were fitted to excitationnemission rate functions based on a simplified three-state model.The results indicate that the intermediates in single particles are much less and saturated in a short time,and there are strong couplings of the ground states and intermediate states between neighboring UCNPs in densely packed UCNPs.
基金supported by the National Natural Science Foundation of China (No.41205115)
文摘To investigate the composition and possible sources of particles, especially during heavy haze pollution, a single particle aerosol mass spectrometer(SPAMS) was deployed to measure the changes of single particle species and sizes during October of 2014, in Beijing. A total of 2,871,431 particles with both positive and negative spectra were collected and characterized in combination with the adaptive resonance theory neural network algorithm(ART-2a). Eight types of particles were classified: dust particles(dust, 8.1%), elemental carbon(EC, 29.0%), organic carbon(OC, 18.0%), EC and OC combined particles(ECOC, 9.5%),Na-K containing particles(Na K, 7.9%), K-containing particles(K, 21.8%), organic nitrogen and potassium containing particles(KCN, 2.3%), and metal-containing particles(metal,3.6%). Three haze pollution events(P1, P2, P3) and one clean period(clean) were analyzed,based on the mass and number concentration of PM_(2.5)and the back trajectory results from the hybrid single particle Lagrangian integrated trajectory model(Hysplit-4 model). Results showed that EC, OC and K were the major components of single particles during the three haze pollution periods, which showed clearly increased ratios compared with those in the clean period. Results from the mixing state of secondary species of different types of particles showed that sulfate and nitrate were more readily mixed with carbon-containing particles during haze pollution episodes than in clean periods.
基金financially supported by the National Natural Science Foundation of China(No.41827804,41805093)the Guangzhou Economic and Technological Development District International Science and Technology Cooperation Project(No.2018GH08)+1 种基金the International Science and Technology Cooperation Project of Guangdong Province(No.2018A050506020)the Pearl River Nova Program of Guangzhou(No.201806010064)。
文摘Black carbon(BC)plays an important role in air quality and climate change,which is closely associated with its mixing state and chemical compositions.In this work the mixing state of BC-containing single particles was investigated to explore the evolution process of ambient BC particles using a single particle aerosol mass spectrometer(SPAMS)in March 2018 in Zhengzhou,China.The BC-containing particles accounted for 61.4%of total detected ambient single particles and were classified into five types including BC-nitrate(BC-N,52.3%)as the most abundant species,followed by BC-nitrate-sulfate(BC-NS,22.4%),BCOC(16.8%),BC-fresh(BC-F,4.5%)and BC-sulfate particles(BC-S,4.0%).With enhancement of the ambient nitrate concentration,the relative peak area(RPA)of nitrate in BC-N and BC–NS particles both increased,yet only the number fraction(N_(f))of BC–N particles increased while the N_(f) of BC-NS particles decreased,suggesting that the enhanced mixing state of BC with nitrate was mainly due to the increase in the ambient nitrate mass concentration.In addition,the Nfof BC-N decreased from 65.3%to 28.4%as the absorbing Angstrom exponents(AAE)of e BC increased from 0.75 to 1.45,which indicated the reduction of light absorption ability of aged BC particles with the enhanced formation of BC-N particles.The results of this work indicated a change in the mixing state of BC particles due to the dominance of nitrate in PM_(2.5),which also influenced the optical properties of aged BC particles.
文摘Lithium ion batteries are complicated distributed parameter systems that can be described preferably by partial differential equations and a field theory. To reduce the solution difficulty and the calculation amount, if a distributed parameter system is described by ordinary differential equations (ODE) during the analysis and the design of distributed parameter system, the reliability of the system description will be reduced, and the systemic errors will be introduced. Studies on working condition real-time monitoring can improve the security because the rechargeable LIBs are widely used in many electronic systems and electromechanical equipment. Single particle model (SPM) is the simplification of LIB under some approximations, and can estimate the working parameters of a LIB at the faster simulation speed. A LIB modelling algorithm based on PDEs and SPM is proposed to monitor the working condition of LIBs in real time. Although the lithium ion concentration is an unmeasurable distributed parameter in the anode of LIB, the working condition monitoring model can track the real time lithium ion concentration in the anode of LIB, and calculate the residual which is the difference between the ideal data and the measured data. A fault alarm can be triggered when the residual is beyond the preset threshold. A simulation example verifies that the effectiveness and the accuracy of the working condition real-time monitoring model of LIB based on PDEs and SPM.
文摘Glucose transporter 4 (GLUT4) is responsible for insulin-stimulated glucose transporting into the insulin-sensitive fat and muscle cells. The dynamics of GLUT4 storage vesicles (GSVs) remains to be explored and it is unclear how GSVs are arranged based on their mobility. We examined this issue in 3T3-L1 cells via investigating the three-dimensional mobility of single GSV labeled with EGFP-fused GLUT4. A thin layer of cytosol right adjacent to the plasma membrane was illuminated and successively imaged at 5 Hz under a total internal reflection fluorescence microscope with a penetration depth of 136 nm. Employing single particle tracking, the three-dimensional subpixel displacement of single GSV was tracked at a spatial precision of 22 nm. Both the mean square displacement and the diffusion coefficient were calculated for each vesicle. Tracking results revealed that vesicles moved as if restricted within a cage that has a mean radius of 160 nm, suggesting the presence of some intracellular tethering matrix. By constructing the histogram of the diffusion coefficients of GSVs, we observed a smooth distribution instead of the existence of distinct groups. The result indicates that GSVs are dynamically retained in a continuous and wide range of mobility rather than into separate classes.
基金support from the Innovative Research Groups of the National Natural Science Foundation of China (No.50921002)the National Natural Science Foundation of China (Nos.50574091 and 50774084)+1 种基金the "333 Project" Foundation of Jiangsu Provincethe Key Laboratory of Coal Processing & Efficient Utilization,Ministry of Education Foundation (No.CPEUKF 08-02) for this work
文摘A virtual sieving experimental simulation system was built using physical simulation principles.The effects of vibration frequency and amplitude,the inclination angle of the screen-deck and the vibration direction angle of screen on single particle kinematics were predicted.Properties such as the average velocity and the average throw height were studied.The results show that the amplitude and the angle of vibration have a great effect on particle average velocity and average height.The vibration frequency and the screen-deck inclination angle appear to have little influence on these responses.For materials that are difficult to screen the vibration frequency and amplitude,the screen-deck inclination angle and the vibration angle should be set to 14 Hz,6.6 mm,6° and 40°,respectively,to obtain optimal particle kinematics.A screening process can be simulated reliably by means of a virtual experiment and these results provide references for both screening theory research and sieving practice.
文摘In the typical air polluted city of Shijiazhuang, single inhalable particle samples in non-heating period, heating period, dust storm days, and snowy days were collected and detected by SEM/EDS (scanning electron microscopy and energy dispersive X-ray spectrometry). The particle morphology was characterized by the 6 shape clusters, which are: irregular square, agglomerate, sphere, floccule, column or stick, and unknown, by quantitative order. The irregular square particles are common in all kinds of samples; sphere particles are more, and column or stick are less in winter samples; in the wet deposit samples, agglomerate and floccule particles are not found. The surface of most particles is coarse with fractal edge, which can provide suitable chemical reaction bed in the polluted atmospheric environment. New formed calcium crystal is found to demonstrate the existence of neutralized reaction, explaining the reason for the high SO2 emission and low acid rain frequency in Shijiazhuang. The three sorts of surface patterns of spheres are smooth, semi-smooth, and coarse, corresponding to the element of Si-dominant, Si-Al-dominant, and Fe-dominant, The soot particle is present as floccule with average size around 10 μm, considerably larger than the former reported results, but wrapped or captured with other fine particles to make its appearance unique and enhance its toxicity potentially. The new formed calcium crystal, the 3 sorts of sphere surface patterns, and the unique soot appearance represent the single inhalable particle's morphology characteristics in Shijiazhuang City.
基金supported by Anhui Provincial Natural Science Foundation(Grant Nos.2008085QB68 and 1808085QB29)Key Project of Provincial Natural Science Research Foundation of Anhui Universities(Grant Nos.KJ2018A0675 and KJ2018A0389)+1 种基金Foundation of State Key Laboratory of Analytical Chemistry for Life Science(Grant No.SKLACLS2003)Foundation of Henan Key Laboratory of Biomolecular Recognition and Sensing(Grant No.HKLBRSK1905)。
文摘Fast and high-throughput determination of drugs is a key trend in clinical medicine.Single particles have increasingly been adopted in a variety of photoanalytical and electroanalytical applications,and microscopic analysis has been a hot topic in recent years,especially for electrochemiluminescence(ECL).This paper describes a simple ECL method based on single gold microbeads to image lecithin.Lecithin reacts to produce hydrogen peroxide under the successive enzymatic reaction of phospholipase D and choline oxidase.ECL was generated by the electrochemical reaction between a luminol analog and hydrogen peroxide,and ECL signals were imaged by a camera.Despite the heterogeneity of single gold microbeads,their luminescence obeyed statistical regularity.The average luminescence of 30 gold microbeads is correlated with the lecithin concentration,and thus,a visualization method for analyzing lecithin was established.Calibration curves were constructed for ECL intensity and lecithin concentration,achieving detection limits of 0.05 m M lecithin.This ECL imaging platform based on single gold microbeads exhibits outstanding advantages,such as high throughput,versatility and low cost,and holds great potential in disease diagnostics,environmental monitoring and food safety.
文摘Decreasing in emissions of greenhouse gases to confront the global warming needs to replace fossil fuels as the main doer of the world climate changes by renewable and clean fuels produced from biomass like wood waste which is neutral on the amount of CO2. An analytical and engineering model for pyrolysis process of a single biomass particle has been presented. Using a two-stage semi global kinetic model which includes both primary and secondary reactions, the effects of parameters like shape and size of particle as well as porosity on the particle temperature profile and product yields have been investigated. Comparison of the obtained results with experimental data shows that our results are in a reasonable agreement with previous researchers' works. Finally, a sensitivity analysis is done to determine the importance of each parameter on pyrolysis of a single biomass particle which is affected by many constant parameters.
基金the Institute of Particle and Science Engineering,University of Leeds and Procter&Gamble Newcastle Innovation Centre(UK)for partially funding the project
文摘Dissolution kinetics of sodium carbonate is investigated with the image analysis method at the approach of single particle.The dissolution experiments are carried out in an aqueous solution under a series of controlled temperature and p H.The selected sodium carbonate particles are all spherical with the same mass and diameter.The dissolution process is quantified with the measurement of particle diameter from dissolution images.The concentration of dissolved sodium carbonate in solvent is calculated with the measured diameter of particle.Both surface reaction model and mass transport model are implemented to determine the dissolution mechanism and quantify the dissolution rate constant at each experimental condition.According to the fitting results with both two models,it is clarified that the dissolution process at the increasing temperature is controlled by the mass transport of dissolved sodium carbonate travelling from particle surface into solvent.The dissolution process at the increasing pH is controlled by the chemical reaction on particle surface.Furthermore,the dissolution rate constant for each single spherical sodium carbonate particle is quantified and the results show that the dissolution rate constant of single spherical sodium carbonate increases significantly with the rising of temperature,but decreases with the increasing of pH conversely.
基金the National Science Foundation for Distinguished Young Scholars of China(No.10225526)the Knowledge Innovation Program of the Chinese Academy Sciences(No.KSCX2-SW-324)the Foundation for University Key Teachers by the Ministry of Education of China(No.2005jq1135)
文摘Single particle microbeam (SPM) is uniquely capable of delivering precisely the predefined number of charged particles to determined individual cells or sub-cellular targets in situ. It has been recognized as a powerful technique for unveiling ionization irradiation mechanisms of organism. This article describes some investigations on the irradiation quality of SPM of major world laboratories by means of Monte Carlo method based on dosimetry and microdosimetry. Those parameters are helpful not only to improve SPM irradiating cell experiments but also to study the biological effects of cells irradiated by SPM.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB921603)the National Natural Science Foundation of China(Grant Nos.11125418 and 11364022)
文摘The wave-particle duality of a single particle with an n-dimensional internal degree of freedom is re-examined theo- retically in a Mach-Zehnder interferometer. The famous duality relation D2 + V2 〈 1 is always valid in this situation, where D is the distinguishability and V is the visibility. However, the sum of the particle information and the wave information, D2 V2, can be smaller than one for the input of a pure state if this initial pure state includes the internal degree of freedom of the particle, while the quantity D2~ V2 is always equal to one when the internal degree of freedom of the particle is excluded.
基金Supported by the National Basic Research Program of China(2015CB251501)the Innovative Research Groups of the National Natural Science Foundation of China(51621005)
文摘Oxy-steam combustion is a promising next-generation combustion technology.Conversions of fuel-N,volatile-N,and char-N to NO and N2O during combustion of a single coal particle in O2/N2and O2/H2O were studied in a tube reactor at low temperature.In O2/N2,NO reaches the maximum value in the devolatilization stage and N2O reaches the maximum value in the char combustion stage.In O2/H2O,both NO and N2O reach the maximum values in the char combustion stage.The total conversion ratios of fuel-N to NO and N2O in O2/N2are obviously higher than those in O2/H2O,due to the reduction of H2O on NO and N2O.Temperature changes the trade-off between NO and N2O.In O2/N2and O2/H2O,the conversion ratios of fuel-N,volatile-N,and char-N to NO increase with increasing temperature,and those to N2O show the opposite trends.The conversion ratios of fuel-N,volatile-N,and char-N to NO reach the maximum values at 〈O2〉=30 vol%in O2/N2.In O2/H2O,the conversion ratios of fuel-N and char-N to NO reach the maximum values at 〈O2〉=30 vol%,and the conversion ratio of volatile-N to NO shows a slightly increasing trend with increasing oxygen concentration.The conversion ratios of fuel-N,volatile-N,and char-N to N2O decrease with increasing oxygen concentration in both atmospheres.A higher coal rank has higher conversion ratios of fuel-N to NO and N2O.Anthracite coal exhibits the highest conversion ratios of fuel-N,volatile-N,and char-N to NO and N2O in both atmospheres.This work is to develop efficient ways to understand and control NO and N2O emissions for a clean and sustainable atmosphere.
基金This work was supported by grants from the National Research Foundation(NRF)(NRF2019R1A2C2088973)funded by the Ministry of Educationthe Korea Evaluation Institute of Industrial Technology(KEIT)(20011377)funded by the Ministry of Trade,Industry&Energy,Republic of Korea.
文摘Fluorescence recovery after photobleaching(FRAP)and single particle tracking(SPT)techni-ques determine the diffusion coefficient from average diffusive motion of high-concentration molecules and from trajectories of low-concentration single molecules,respectively.Lateral dif-fusion coefficients measured by FRAP and SPT techniques for the same biomolecule on cell membrane have exhibited inconsistent values across laboratories and platforms with larger dif-fusion coefficient determined by FRAP,but the sources of the inconsistency have not been investigated thoroughly.Here,we designed an image-based FRAP-SPT system and made a direct comparison between FRAP and SPT for diffusion coefficient of submicron particles with known theoretical values derived from Stokes-Einstein equation in aqueous solution.The combined iFRAP-SPT technique allowed us to measure the diffusion coefficient of the same fluorescent particle by utilizing both techniques in a single platform and to scrutinize inherent errors and artifacts of FRAP.Our results reveal that diffusion coefficient overestimated by FRAP is caused by inaccurate estimation of the bleaching spot size and can be corrected by simple image analysis.Our iFRAP-SPT technique can be potentially used for not only cellular membrane dynamics but also for quantitative analysis of the spatiotemporal distribution of the solutes in small scale analytical devices.