Despite advances in immunotherapy for the treatment of cancers,not all patients can benefit from programmed cell death ligand 1(PD-L1)immune checkpoint blockade therapy.Anti-PD-L1 therapeutic effects reportedly correl...Despite advances in immunotherapy for the treatment of cancers,not all patients can benefit from programmed cell death ligand 1(PD-L1)immune checkpoint blockade therapy.Anti-PD-L1 therapeutic effects reportedly correlate with the PD-L1 expression level;hence,accurate detection of PD-L1 expression can guide immunotherapy to achieve better therapeutic effects.Therefore,based on the high affinity antibody Nb109,a new site-specifically radiolabeled tracer,^(68)Ga-NODA-cysteine,aspartic acid,and valine(CDV)-Nb109,was designed and synthesized to accurately monitor PD-L1 expression.The tracer ^(68)Ga-NODA-CDV-Nb109 was obtained using a site-specific conjugation strategy with a radiochemical yield of about 95%and radiochemical purity of 97%.It showed high affinity for PD-L1 with a dissociation constant of 12.34±1.65 nM.Both the cell uptake assay and positron emission tomography(PET)imaging revealed higher tracer uptake in PD-L1-positive A375-hPD-L1 and U87 tumor cells than in PD-L1-negative A375 tumor cells.Meanwhile,dynamic PET imaging of a NCI-H1299 xenograft indicated that doxorubicin could upregulate PD-L1 expression,allowing timely interventional immunotherapy.In conclusion,this tracer could sensitively and dynamically monitor changes in PD-L1 expression levels in different cancers and help screen patients who can benefit from anti-PD-L1 immunotherapy.展开更多
Screening humanized antibodies from a human Fab phage display library is an effective and quick method to obtain beta-amyloid oligomers. Thus, the present study prepared amyloid-beta 42 oli- gomers and constructed a h...Screening humanized antibodies from a human Fab phage display library is an effective and quick method to obtain beta-amyloid oligomers. Thus, the present study prepared amyloid-beta 42 oli- gomers and constructed a have human Fab phage display library based on blood samples from six healthy people. After three rounds of biopanning in vitro, a human single-domain antibody that spe- cifically recognized amyloid-beta 42 oligomers was identified. Western blot and enzyme-linked im- munosorbent assay demonstrated this antibody bound specifically to human amyloid-beta 42 tetramer and nonamer, but not the monomer or high molecular weight oligomers. This study suc- cessfully constructed a human phage display library and screened a single-domain antibody that specifically recognized amyloid-beta 42 oligomers.展开更多
Objective:To isolate and characterize Staphylococcus aureus(S.aureus)β-hemolysinneutralizing dAbs from phage display library of Indian desert camel.Methods:Phage display library of 5×10 dAb clones of LPS-immuniz...Objective:To isolate and characterize Staphylococcus aureus(S.aureus)β-hemolysinneutralizing dAbs from phage display library of Indian desert camel.Methods:Phage display library of 5×10 dAb clones of LPS-immunized Indian desert camel constructed in our laboratory was used for selection of S.aureus exotoxin-specific clones by panning technique.Enrichment of Ag-specific clones in successive rounds of panning was assessed by phage-ELISA and phage titration.Different dAb clones binding to S.aureus exotoxin Ags were expressed with C-terminal 6×His tag in E.coli and purified by Ni-chelate chromatography.The expression was verified by SDS-PAGE and western blotting.The purified clones were tested for inhibition of ’hot-cold’ hemolytic activity in vitro.Resistance to thermal inactivation of the dAb clones was studied by observing the effect of heat treatment from 50℃to 99℃for 30 min on the ’hot-cold’ hemolytic activity in vitro.Results:Several dAb clones binding to S.aureus exotoxins were isolated and enriched by three rounds of panning.The soluble dAb clones were approximately~16 kDa in size and reacted with 6×His tag specific murine monoclonal antibody in western blot.One of the Ni-chelate affinity purified dAb.6×His clones,inhibited S.aureusβ-hemolysin activity in vitro and resisted thermal inactivation upto 991.Conclusions:An S.aureusβ-hemolysinneutralizing dAb clone of possible therapeutic potential has been isolated.展开更多
The combining site of OKT3 was modeled,and Human Ig LS1 and ND were selected asacceptors of CDRs of OKT3 VL and VH to construct a reshaping antibody against CD3.Bycomparing OKT3,LS1 and ND,with their own family sequen...The combining site of OKT3 was modeled,and Human Ig LS1 and ND were selected asacceptors of CDRs of OKT3 VL and VH to construct a reshaping antibody against CD3.Bycomparing OKT3,LS1 and ND,with their own family sequences,some residues werechanged and the reshaping VL and VH genes were designed.The full VH gene was assem-bled in three steps with eight chemically synthesized oligonucleotide fragments using over-lapping PCR and sequenced.The VH gene was expressed as active protein and inclusion bod-ies in the vectors of pCOMB3 and pGEX-4T-1 by ELISA and Western blot analysis.展开更多
In this article,we comment on an article published in a recent issue of the World Journal of Gastroenterology.We specifically focus on the roles of human leukocyte antigen(HLA)and donor-specific antibodies(DSAs)in ped...In this article,we comment on an article published in a recent issue of the World Journal of Gastroenterology.We specifically focus on the roles of human leukocyte antigen(HLA)and donor-specific antibodies(DSAs)in pediatric liver transpl-antation(LT),as well as the relationship between immune rejection after LT and DSA.Currently,LT remains the standard of care for pediatric patients with end-stage liver disease or severe acute liver failure.However,acute and chronic re-jection continues to be a significant cause of graft dysfunction and loss.HLA mismatch significantly reduces graft survival and increases the risk of acute rejection.Among them,D→R one-way mismatch at three loci was significantly related to graft-versus-host disease incidence after LT.The adverse impact of HLA-DSAs on LT recipients is already established.Therefore,the evaluation of HLA and DSA is crucial in pediatric LT.展开更多
In medical research,there are times when the introduction of a new tool can launch scientific discovery in new directions.While antibody development may be considered mundane,in the field of glucocerebrosidase(GCase)r...In medical research,there are times when the introduction of a new tool can launch scientific discovery in new directions.While antibody development may be considered mundane,in the field of glucocerebrosidase(GCase)research,the dearth of validated antibodies for different applications has impeded progress in studies of disease pathogenesis and therapeutic development.The recent introduction of new,rigorously evaluated antibodies can now propel research into the link between glucocerebrosidase and Parkinson’s disease(PD)as well as aspects of the pathobiology of Gaucher disease(Jong et al.,2024).展开更多
The role of antibodies in kidney transplant(KT)has evolved significantly over the past few decades.This role of antibodies in KT is multifaceted,encompassing both the challenges they pose in terms of antibody-mediated...The role of antibodies in kidney transplant(KT)has evolved significantly over the past few decades.This role of antibodies in KT is multifaceted,encompassing both the challenges they pose in terms of antibody-mediated rejection(AMR)and the opportunities for improving transplant outcomes through better detection,prevention,and treatment strategies.As our understanding of the immunological mechanisms continues to evolve,so too will the approaches to managing and harnessing the power of antibodies in KT,ultimately leading to improved patient and graft survival.This narrative review explores the multifaceted roles of antibodies in KT,including their involvement in rejection mechanisms,advancements in desensitization protocols,AMR treatments,and their potential role in monitoring and improving graft survival.展开更多
BACKGROUND At the end of December 2019,the world faced severe acute respiratory syndrome-coronavirus 2(SARS-CoV-2),which led to the outbreak of coronavirus disease 2019(COVID-19),associated with respiratory issues.Thi...BACKGROUND At the end of December 2019,the world faced severe acute respiratory syndrome-coronavirus 2(SARS-CoV-2),which led to the outbreak of coronavirus disease 2019(COVID-19),associated with respiratory issues.This virus has shown significant challenges,especially for senior citizens,patients with other underlying illnesses,or those with a sedentary lifestyle.Serological tests conducted early on have helped identify how the virus is transmitted and how to curb its spread.The study hypothesis was that the rapid serological test for SARS-CoV-2 antibodies could indicate the immunoreactive profile during the COVID-19 pandemic in a university population.AIM To conduct active surveillance for serological expression of anti-SARS-CoV-2 antibodies in individuals within a university setting during the COVID-19 pandemic.METHODS This sectional study by convenience sampling was conducted in a large university in Niteroi-RJ,Brazil,from March 2021 to July 2021.The study population consisted of students,faculty,and administrative staff employed by the university.A total of 3433 faculty members,60703 students,and 3812 administrative staff were invited to participate.Data were gathered through rapid serological tests to detect immunoglobulin(Ig)M and IgG against SARS-CoV-2.Theχ²or Fisher's exact test was used to conduct statistical analysis.A 0.20 significance level was adopted for variable selection in a multiple logistic regression model to evaluate associations.RESULTS A total of 1648 individuals were enrolled in the study.The proportion of COVID-19 positivity was 164/1648(9.8%).The adjusted logistic model indicate a positive association between the expression of IgM or IgG and age[odds ratio(OR)=1.16,95%CI:1.02-1.31](P<0.0024),individuals who had been in contact with a COVID-19-positive case(OR=3.49,95%CI:2.34-5.37)(P<0.001),those who had received the COVID-19 vaccine(OR=2.33,95%CI:1.61-3.35)(P<0.001)and social isolation(OR=0.59,95%CI:0.41-0.84)(P<0.004).The likelihood of showing a positive result increased by 16%with every ten-year increment.Conversely,adherence to social distancing measures decreased the likelihood by 41%.CONCLUSION These findings evidenced that the population became more exposed to the virus as individuals discontinued social distancing practices,thereby increasing the risk of infection for themselves.展开更多
The cure or functional cure of the"Berlin patient"and"London patient"indicates that infusion of HIV-resistant cells could be a viable treatment strategy.Very recently,we genetically linked a short-...The cure or functional cure of the"Berlin patient"and"London patient"indicates that infusion of HIV-resistant cells could be a viable treatment strategy.Very recently,we genetically linked a short-peptide fusion inhibitor with a glycosylphosphatidylinositol(GPI)attachment signal,rendering modified cells fully resistant to HIV infection.In this study,GPI-anchored m36.4,a single-domain antibody(nanobody)targeting the coreceptor-binding site of gp120,was constructed with a lentiviral vector.We verified that m36.4 was efficiently expressed on the plasma membrane of transduced TZM-bl cells and targeted lipid raft sites without affecting the expression of HIV receptors(CD4,CCR5,and CXCR4).Significantly,TZM-bl cells expressing GPI-m36.4 were highly resistant to infection with divergent HIV-1 subtypes and potently blocked HIV-1 envelope-mediated cell-cell fusion and cell-cell viral transmission.Furthermore,we showed that GPI-m36.4-modified human CEMss-CCR5 cells were nonpermissive to both CCR5-and CXCR4-tropic HIV-1 isolates and displayed a strong survival advantage over unmodified cells.It was found that GPI-m36.4 could also Impair HIV-1 Env processing and viral infectivity in transduced cells,underlying a multifaceted mechanism of antiviral action.In conclusion,our studies characterize m36.4 as a powerful nanobody that can generate HIV-resistant cells,offering a novel gene therapy approach that can be used alone or in combination.展开更多
Type IV collagenase plays a pivotal role in invasion, metastasis and angiogenesis of tumor. Single domain antibodies are attractive as tumor-targeting vehicle because of their much smaller size com-pared with antibody...Type IV collagenase plays a pivotal role in invasion, metastasis and angiogenesis of tumor. Single domain antibodies are attractive as tumor-targeting vehicle because of their much smaller size com-pared with antibody molecules produced by conventional methods. Lidamycin (LDM) is a potent enediyne-containing antitumor antibiotic. In this study an engineered and energized fusion protein VL-LDP-AE composed of lidamycin and VL domain of mAb 3G11 directed against type IV collagenase was prepared using a novel two-step method. First a VL-LDP fusion protein was constructed by DNA recombination. Secondly VL-LDP-AE was obtained by molecular reconstitution. In MTT assay, VL-LDP-AE showed potent cytotoxicity to HT-1080 cells and KB cells with IC50 values of 8.55×10-12 and 1.70×10-11 mol/L, respectively. VL-LDP-AE showed antiangiogenic activity in chick chrorioallantoic membrane (CAM) assay and tube formation assay. In in vivo experiments, VL-LDP-AE was proved to be more effective than free LDM against the growth of subcutaneously transplanted hepatoma 22 in mice. Drugs were given intravenously on day 3 and 10 after tumor transplantation. Compared in terms of maximal tolerated doses, VL-LDP-AE at 0.25 mg/kg suppressed the tumor growth by 89.5%, LDM at 0.05 mg/kg by 69.9%, and mitomycin at 1 mg/kg by 35%. Having a molecular weight of 25.2 kDa, VL-LDP-AE was much smaller than other reported antibody-based drugs. The results suggested that VL-LDP-AE would be a promising candidate for tumor targeting therapy. And the 2-step approach could serve as a new technology platform for making a series of highly potent engineered antibody-based drugs for a variety of cancers.展开更多
It is well established that all camelids have unique antibodies circulating in their blood.Unlike antibodies from all other species,these special antibodies are devoid of light chains,and are composed of a heavy chain...It is well established that all camelids have unique antibodies circulating in their blood.Unlike antibodies from all other species,these special antibodies are devoid of light chains,and are composed of a heavy chain homodimer.These so-called heavy-chain antibodies(HCAbs)are expressed after a V-D-J rearrangement and require dedicated constant gamma genes. An immune response is raised in these HCAbs following a classical immunization protocol.These HCAbs are easily purified from serum,and their antigen-binding fragment interacts with parts of the target that are less antigenic to conventional antibodies.The antigen binding site of the dromedary HCAb comprises one single domain,referred to as VHH or nanobody(Nb),therefore,a strategy was designed to clone the Nb repertoire of an immunized dromedary and to select the Nb with specificity for our target antigens.The monoclonal Nb is produced well in bacteria,is very stable and highly soluble,and it binds the antigen with high affinity and specificity.Currently,the recombinant Nb has been developed successfully for research purposes, as a probe in biosensors,to diagnose infections,or to treat diseases such as cancer or trypanosomiasis.展开更多
Antibodies as therapeutic agents are mostly used in oncology, as illustrated by their applications in lymphoma, breast cancer or colorectal cancer. This review provides a brief historical sketch of the development of ...Antibodies as therapeutic agents are mostly used in oncology, as illustrated by their applications in lymphoma, breast cancer or colorectal cancer. This review provides a brief historical sketch of the development of monoclonal antibodies for cancer treatment and summarizes the most significant clinical data for the best-established reagents to date. It also discusses strategies to improve the anti-tumor efficacy of antibody therapy, including antibody gene therapy and exploitation of bone marrow derived primary mesenchymal stem cells as the antibody gene transporter.展开更多
Testis-specific protease 50 (TSP50) is a testis-specific oncogene, which is abnormally activated in most tested patients with breast cancer. This property makes it an attractive molecular marker and a promising targ...Testis-specific protease 50 (TSP50) is a testis-specific oncogene, which is abnormally activated in most tested patients with breast cancer. This property makes it an attractive molecular marker and a promising target for the diagnosis and therapy of breast cancer. In order to obtain the protective and specific polyclonal antibodies for further research, TSPS0 cDNA was amplified by RT-PCR from normal human testicular tissue, and inserted into eukaryotic expression vector PeDNA3.1. Rabbit anti-TSPS0 polyclonal antibodies were prepared by means of intramuscular injection of peDNA3.1-TSPS0 into the rabbits. Titem of the anti-sera were measured by ELISA and Western blotting with the E. coli cell lysate containing the induced GST-TSPS0 fusion protein as an antigen. In addition, we examined the expression of TSPS0 in both breast cancer cell line MCF-7 and breast cancer tissue by immunofluorescent and immunohistochemistry analysis.展开更多
A monoclonal antibody was first prepared by fusion of mouse myeloma cells (SP2/0-Ag-14) with spleen cells isolated from male BALB/ c mice immunized with spermidine-bovine serum albumin conjugate (SPD- BSA). The hybrid...A monoclonal antibody was first prepared by fusion of mouse myeloma cells (SP2/0-Ag-14) with spleen cells isolated from male BALB/ c mice immunized with spermidine-bovine serum albumin conjugate (SPD- BSA). The hybridoma cell line producing antibody specific for spermidine was cultured in vitro and after i. p. into mice, the ascitic fluid gave suitably high dilution titres (1: 106) by enzyme immunoassay. This monoclonal antibody is of IgG1 class and the bimolecular compleex with molecular weight of 52KD and 27 KD. The monoclonal antibody was clearly specific to spermidine comparing with spermine or putriscine. Monclonal antibody may prove to be useful in the rapid diagnosis and evaluation of patients with cancer.展开更多
Objective: To isolate murine anti endotoxin single chain phage antibody from a constructed library. Methods: Total RNA was firstly extracted from murine splenic cells and mRNA was reverse-transcribed into cDNA. Then t...Objective: To isolate murine anti endotoxin single chain phage antibody from a constructed library. Methods: Total RNA was firstly extracted from murine splenic cells and mRNA was reverse-transcribed into cDNA. Then the designed primers were used to amplify the variable region genes of the heavy and light chain (VH, VL) with polymerase chain reaction. The linker was used to assemble the VH and VL into ScFv, and the NotI and SfiI restriction enzymes were used to digest the ScFv in order to ligate into the pCANTAB5E phagemid vector that was already digested with the same restriction enzymes. The ligated vector was then introduced into competent E.coli TG1 cells to construct a single-chain phage antibody library. After rescued with M13KO7 helper phage, recombinant phages displaying ScFv fragments were harvested from the supernatant and selected with endotoxin. The enriched positive clones were reinfected into TG1 cells. Finally, 190 clones were randomly selected to detect the anti endotoxin antibody with indirect ELISA. Results: The titer of anti endotoxin in murine sera was 1:12,800. The concentration of total RNA was 12.38 μg/ml. 1.9×107 clones were obtained after transformed into TG1. 3×104 colonies were gotten after one round panning. Two positive colonies were confirmed with indirect ELISA among 190 randomly selected colonies. Conclusion: A 1.9×107 murine anti endotoxin single chain phage antibody library was successfully constructed. Two anti endotoxin antibodies were obtained from the library.展开更多
Anti-ganglioside antibodies are associated with delayed/poor clinical recovery in Guillain-Barrèsyndrome,mostly related to halted axon regeneration.Cross-linking of cell surface gangliosides by anti-ganglioside a...Anti-ganglioside antibodies are associated with delayed/poor clinical recovery in Guillain-Barrèsyndrome,mostly related to halted axon regeneration.Cross-linking of cell surface gangliosides by anti-ganglioside antibodies triggers inhibition of nerve repair in in vitro and in vivo paradigms of axon regeneration.These effects involve the activation of the small GTPase Rho A/ROCK signaling pathways,which negatively modulate growth cone cytoskeleton,similarly to well stablished inhibitors of axon regeneration described so far.The aim of this work was to perform a proof of concept study to demonstrate the effectiveness of Y-27632,a selective pharmacological inhibitor of ROCK,in a mouse model of axon regeneration of peripheral nerves,where the passive immunization with a monoclonal antibody targeting gangliosides GD1a and GT1b was previously reported to exert a potent inhibitory effect on regeneration of both myelinated and unmyelinated fibers.Our results demonstrate a differential sensitivity of myelinated and unmyelinated axons to the pro-regenerative effect of Y-27632.Treatment with a total dosage of 9 mg/kg of Y-27632 resulted in a complete prevention of anti-GD1a/GT1b monoclonal antibody-mediated inhibition of axon regeneration of unmyelinated fibers to skin and the functional recovery of mechanical cutaneous sensitivity.In contrast,the same dose showed toxic effects on the regeneration of myelinated fibers.Interestingly,scale down of the dosage of Y-27632 to 5 mg/kg resulted in a significant although not complete recovery of regenerated myelinated axons exposed to anti-GD1a/GT1b monoclonal antibody in the absence of toxicity in animals exposed to only Y-27632.Overall,these findings confirm the in vivo participation of Rho A/ROCK signaling pathways in the molecular mechanisms associated with the inhibition of axon regeneration induced by anti-GD1a/GT1b monoclonal antibody.Our findings open the possibility of therapeutic pharmacological intervention targeting Rho A/Rock pathway in immune neuropathies associated with the presence of anti-ganglioside antibodies and delayed or incomplete clinical recovery after injury in the peripheral nervous system.展开更多
Two vectors, pWA180 and pROH80, for expression of single-chain Fv fragments (ScFv) were con-siruciea. (?)ne anti-CD3 VH and VL genes were amplified from UCHTl cells by RT-PCR and sequenced. Both genes were cloned in p...Two vectors, pWA180 and pROH80, for expression of single-chain Fv fragments (ScFv) were con-siruciea. (?)ne anti-CD3 VH and VL genes were amplified from UCHTl cells by RT-PCR and sequenced. Both genes were cloned in pWA180 to express native ScFv and pROH80 for GST-ScFv fusion protein expression. The expression products were analysed by ELISA and Western blot. The combining site of OKT3 was modeled. Human [g LS1 and Nd were selected as acceptors of CDRs of OKT3 VL and VH to construct a reshaping antibody against CD3. By com-paring OKT3, LS1 and Nd with their own family sequences, some residues were changed and the reshaping VL and VH genes were designed. The full VH gene was assembled in three steps with eight chemically synthesized oligonu-cleotide fragments using overlapping PCR and sequenced. The VH gene was expressed as active protein in pCOMB3 and as inclusion bodies in pGEX-4T-l by ELISA and Western blot analysis.展开更多
The cytokine repertoire of ADP/ATP carrier-specific humoral immune responses and the cytokine-dependent anti-ADP/ATP carrier antibody IgG subclasses were examined in a cohort of ADP/ATP carrier-immunized BALB/c mice t...The cytokine repertoire of ADP/ATP carrier-specific humoral immune responses and the cytokine-dependent anti-ADP/ATP carrier antibody IgG subclasses were examined in a cohort of ADP/ATP carrier-immunized BALB/c mice treated with anti-CD4 monoclonal antibody. Eighteen male BALB/c mice (6–8 weeks old) were randomized into 3 groups: dilated cardiomyopathy (DCM) group, DCM-tolerance (Tol) group and control group. The mice in DCM group were immunized with the peptides derived from human ADP/ATP carrier protein for 6 months and mice in the control group were sham-immunized, while the mice in DCM-Tol group were immunized with ADP/ATP carrier protein and anti-CD4 McAb simultaneously. Serum autoantibody against ADP/ATP carrier and IgG subclasses were measured by ELISA, intracellular cytokines IFN-γ and IL-4 of Th cells were moni- tored with flow cytometry, and splenic T cell cytokines IFN-γ, IL-2, IL-4 and IL-6 were detected by using real-time fluorescent quantitative PCR. The results showed that the autoantibody against ADP/ATP carrier was found in all mice in DCM group, and the antibody level, serum IgG1 and IgG2a subclasses, cytokines in T cells and Th cells were all elevated in DCM group, as compared with those in control group (P〈0.01). On the other hand, in DCM-Tol group, the autoantibody level and contents of all the cytokines were significantly different from those in DCM group (P〈0.01), and were close to those in control group. And the levels of IgG1, IgG2a, IgG2b and IgG3 were influenced, to varying degrees, by anti-CD4 McAb as compared with those in DCM group. All these four types of IgG subclasses were substantially decreased in DCM-Tol group as compared with DCM group. It is concluded that the treatment with anti-CD4 McAb could prevent the activation of T cells, reverse the abnormal secretion of cytokines and the imbalance between Th1/Th2 cell subsets and abnormal production of autoantibody against ADP/ATP carrier, and eventually avoid myocardial injuries.展开更多
BACKGROUND Antibody-mediated rejection following liver transplantation(LT)has been increasingly recognized,particularly with respect to the emergence of de novo donor-specific antibodies(DSAs)and their impact on graft...BACKGROUND Antibody-mediated rejection following liver transplantation(LT)has been increasingly recognized,particularly with respect to the emergence of de novo donor-specific antibodies(DSAs)and their impact on graft longevity.While substantial evidence for adult populations exists,research focusing on pediatric LT outcomes remains limited.AIM To investigate the prevalence of human leukocyte antigen(HLA)mismatches and DSA and evaluate their association with rejection episodes after pediatric LT.METHODS A cohort of pediatric LT recipients underwent HLA testing at Santa Casa de Porto Alegre,Brazil,between December 2013 and December 2023.Only patients who survived for>30 days after LT with at least one DSA analysis were included.DSA classes I and II and cross-matches were analyzed.The presence of de novo DSA(dnDSA)was evaluated at least 3 months after LT using the Luminex®single antigen bead method,with a positive reaction threshold set at 1000 MFI.Rejection episodes were confirmed by liver biopsy.RESULTS Overall,67 transplanted children were analyzed;61 received grafts from living donors,85%of whom were related to recipients.Pre-transplant DSA(class I or II)was detected in 28.3%of patients,and dnDSA was detected in 48.4%.The median time to DSA detection after LT was 19.7[interquartile range(IQR):4.3-35.6]months.Biopsyproven rejection occurred in 13 patients at follow-up,with C4d positivity observed in 5/13 Liver biopsies.The median time to rejection was 7.8(IQR:5.7-12.8)months.The presence of dnDSA was significantly associated with rejection(36%vs 3%,P<0.001).The rejection-free survival rates at 12 and 24 months were 76%vs 100%and 58%vs 95%for patients with dnDSA anti-DQ vs those without,respectively.CONCLUSION Our findings highlight the importance of incorporating DSA assessment into pre-and post-transplantation protocols for pediatric LT recipients.Future implications may include immunosuppression minimization strategies based on this analysis in pediatric LT recipients.展开更多
With gene engineering EB virus membrane antigen as the diagnostic antigen, indirect immunofluo-rescence (IF) assay was used to detect IgA antibody against EB virus membrane antigen (MA-IgA) in sera from 202 nasopharyn...With gene engineering EB virus membrane antigen as the diagnostic antigen, indirect immunofluo-rescence (IF) assay was used to detect IgA antibody against EB virus membrane antigen (MA-IgA) in sera from 202 nasopharyngeal carcinoma (NPC) patients and 315 controls (normal and patients with other tumors). MA-IgA antibody was positive in 96.8% of the pretreatment NPC patients with a GMT of 1:36.3. MA-IgA detection by this method was more sensitive than EA-IgA detection by IE. In contrast, patients with tumors other than NPC were negative for MA-IgA antibody. 9.1% of VCA-IgA positive persons were MA-IgA positive with a GMT of less than 1:5. No MA-IgA positive was found in VCA-IgA negatives. The results indicated that this method was relatively specific. In the treatment group, the positive rate and GMT of MA-IgA antibody declined with increase in survival time and the decline was faster than VCA-IgA. When recurrence or distant metastasis developed, similar to VCA-IgA and EA-IgA antibodies, the positive rate and GMT of MA-IgA antibody increased to its pretreatment level. Therefore, MA-IgA detection might be valuable in the early diagnosis and monitor of NPC.展开更多
基金support from the National Natural Science Foundation of China(Grant No.:22076069)the Natural Science Foundation of Jiangsu Province(Grant No.:BK20201135)+1 种基金the Major Scientific Research Project of Jiangsu Commission of Health(Grant No.:ZDA2020007)the Science Technology and Development Project of Wuxi(Grant No.:Y20212013).
文摘Despite advances in immunotherapy for the treatment of cancers,not all patients can benefit from programmed cell death ligand 1(PD-L1)immune checkpoint blockade therapy.Anti-PD-L1 therapeutic effects reportedly correlate with the PD-L1 expression level;hence,accurate detection of PD-L1 expression can guide immunotherapy to achieve better therapeutic effects.Therefore,based on the high affinity antibody Nb109,a new site-specifically radiolabeled tracer,^(68)Ga-NODA-cysteine,aspartic acid,and valine(CDV)-Nb109,was designed and synthesized to accurately monitor PD-L1 expression.The tracer ^(68)Ga-NODA-CDV-Nb109 was obtained using a site-specific conjugation strategy with a radiochemical yield of about 95%and radiochemical purity of 97%.It showed high affinity for PD-L1 with a dissociation constant of 12.34±1.65 nM.Both the cell uptake assay and positron emission tomography(PET)imaging revealed higher tracer uptake in PD-L1-positive A375-hPD-L1 and U87 tumor cells than in PD-L1-negative A375 tumor cells.Meanwhile,dynamic PET imaging of a NCI-H1299 xenograft indicated that doxorubicin could upregulate PD-L1 expression,allowing timely interventional immunotherapy.In conclusion,this tracer could sensitively and dynamically monitor changes in PD-L1 expression levels in different cancers and help screen patients who can benefit from anti-PD-L1 immunotherapy.
基金supported by the National Natural Science Foundation of China,No.30600099(FD)
文摘Screening humanized antibodies from a human Fab phage display library is an effective and quick method to obtain beta-amyloid oligomers. Thus, the present study prepared amyloid-beta 42 oli- gomers and constructed a have human Fab phage display library based on blood samples from six healthy people. After three rounds of biopanning in vitro, a human single-domain antibody that spe- cifically recognized amyloid-beta 42 oligomers was identified. Western blot and enzyme-linked im- munosorbent assay demonstrated this antibody bound specifically to human amyloid-beta 42 tetramer and nonamer, but not the monomer or high molecular weight oligomers. This study suc- cessfully constructed a human phage display library and screened a single-domain antibody that specifically recognized amyloid-beta 42 oligomers.
基金Financial support by Department of Biotechnology,Government of India,New Delhi for construction of phage display library and its applications, and Indian Council of Agricultural Research,New Delhi for infrastructure assistance
文摘Objective:To isolate and characterize Staphylococcus aureus(S.aureus)β-hemolysinneutralizing dAbs from phage display library of Indian desert camel.Methods:Phage display library of 5×10 dAb clones of LPS-immunized Indian desert camel constructed in our laboratory was used for selection of S.aureus exotoxin-specific clones by panning technique.Enrichment of Ag-specific clones in successive rounds of panning was assessed by phage-ELISA and phage titration.Different dAb clones binding to S.aureus exotoxin Ags were expressed with C-terminal 6×His tag in E.coli and purified by Ni-chelate chromatography.The expression was verified by SDS-PAGE and western blotting.The purified clones were tested for inhibition of ’hot-cold’ hemolytic activity in vitro.Resistance to thermal inactivation of the dAb clones was studied by observing the effect of heat treatment from 50℃to 99℃for 30 min on the ’hot-cold’ hemolytic activity in vitro.Results:Several dAb clones binding to S.aureus exotoxins were isolated and enriched by three rounds of panning.The soluble dAb clones were approximately~16 kDa in size and reacted with 6×His tag specific murine monoclonal antibody in western blot.One of the Ni-chelate affinity purified dAb.6×His clones,inhibited S.aureusβ-hemolysin activity in vitro and resisted thermal inactivation upto 991.Conclusions:An S.aureusβ-hemolysinneutralizing dAb clone of possible therapeutic potential has been isolated.
基金Supported by National Natural Science Foundation of Chinathe High Technology Research and Development Programme of China.
文摘The combining site of OKT3 was modeled,and Human Ig LS1 and ND were selected asacceptors of CDRs of OKT3 VL and VH to construct a reshaping antibody against CD3.Bycomparing OKT3,LS1 and ND,with their own family sequences,some residues werechanged and the reshaping VL and VH genes were designed.The full VH gene was assem-bled in three steps with eight chemically synthesized oligonucleotide fragments using over-lapping PCR and sequenced.The VH gene was expressed as active protein and inclusion bod-ies in the vectors of pCOMB3 and pGEX-4T-1 by ELISA and Western blot analysis.
文摘In this article,we comment on an article published in a recent issue of the World Journal of Gastroenterology.We specifically focus on the roles of human leukocyte antigen(HLA)and donor-specific antibodies(DSAs)in pediatric liver transpl-antation(LT),as well as the relationship between immune rejection after LT and DSA.Currently,LT remains the standard of care for pediatric patients with end-stage liver disease or severe acute liver failure.However,acute and chronic re-jection continues to be a significant cause of graft dysfunction and loss.HLA mismatch significantly reduces graft survival and increases the risk of acute rejection.Among them,D→R one-way mismatch at three loci was significantly related to graft-versus-host disease incidence after LT.The adverse impact of HLA-DSAs on LT recipients is already established.Therefore,the evaluation of HLA and DSA is crucial in pediatric LT.
文摘In medical research,there are times when the introduction of a new tool can launch scientific discovery in new directions.While antibody development may be considered mundane,in the field of glucocerebrosidase(GCase)research,the dearth of validated antibodies for different applications has impeded progress in studies of disease pathogenesis and therapeutic development.The recent introduction of new,rigorously evaluated antibodies can now propel research into the link between glucocerebrosidase and Parkinson’s disease(PD)as well as aspects of the pathobiology of Gaucher disease(Jong et al.,2024).
文摘The role of antibodies in kidney transplant(KT)has evolved significantly over the past few decades.This role of antibodies in KT is multifaceted,encompassing both the challenges they pose in terms of antibody-mediated rejection(AMR)and the opportunities for improving transplant outcomes through better detection,prevention,and treatment strategies.As our understanding of the immunological mechanisms continues to evolve,so too will the approaches to managing and harnessing the power of antibodies in KT,ultimately leading to improved patient and graft survival.This narrative review explores the multifaceted roles of antibodies in KT,including their involvement in rejection mechanisms,advancements in desensitization protocols,AMR treatments,and their potential role in monitoring and improving graft survival.
文摘BACKGROUND At the end of December 2019,the world faced severe acute respiratory syndrome-coronavirus 2(SARS-CoV-2),which led to the outbreak of coronavirus disease 2019(COVID-19),associated with respiratory issues.This virus has shown significant challenges,especially for senior citizens,patients with other underlying illnesses,or those with a sedentary lifestyle.Serological tests conducted early on have helped identify how the virus is transmitted and how to curb its spread.The study hypothesis was that the rapid serological test for SARS-CoV-2 antibodies could indicate the immunoreactive profile during the COVID-19 pandemic in a university population.AIM To conduct active surveillance for serological expression of anti-SARS-CoV-2 antibodies in individuals within a university setting during the COVID-19 pandemic.METHODS This sectional study by convenience sampling was conducted in a large university in Niteroi-RJ,Brazil,from March 2021 to July 2021.The study population consisted of students,faculty,and administrative staff employed by the university.A total of 3433 faculty members,60703 students,and 3812 administrative staff were invited to participate.Data were gathered through rapid serological tests to detect immunoglobulin(Ig)M and IgG against SARS-CoV-2.Theχ²or Fisher's exact test was used to conduct statistical analysis.A 0.20 significance level was adopted for variable selection in a multiple logistic regression model to evaluate associations.RESULTS A total of 1648 individuals were enrolled in the study.The proportion of COVID-19 positivity was 164/1648(9.8%).The adjusted logistic model indicate a positive association between the expression of IgM or IgG and age[odds ratio(OR)=1.16,95%CI:1.02-1.31](P<0.0024),individuals who had been in contact with a COVID-19-positive case(OR=3.49,95%CI:2.34-5.37)(P<0.001),those who had received the COVID-19 vaccine(OR=2.33,95%CI:1.61-3.35)(P<0.001)and social isolation(OR=0.59,95%CI:0.41-0.84)(P<0.004).The likelihood of showing a positive result increased by 16%with every ten-year increment.Conversely,adherence to social distancing measures decreased the likelihood by 41%.CONCLUSION These findings evidenced that the population became more exposed to the virus as individuals discontinued social distancing practices,thereby increasing the risk of infection for themselves.
基金supported by grants from the CAMS Innovation Fund for Medical Sciences(2017-I2M-1-014)National Science and Technology Major Project of China(2018ZX10301103 and 2017ZX10202102-001-003)National Natural Science Foundation of China(81630061).
文摘The cure or functional cure of the"Berlin patient"and"London patient"indicates that infusion of HIV-resistant cells could be a viable treatment strategy.Very recently,we genetically linked a short-peptide fusion inhibitor with a glycosylphosphatidylinositol(GPI)attachment signal,rendering modified cells fully resistant to HIV infection.In this study,GPI-anchored m36.4,a single-domain antibody(nanobody)targeting the coreceptor-binding site of gp120,was constructed with a lentiviral vector.We verified that m36.4 was efficiently expressed on the plasma membrane of transduced TZM-bl cells and targeted lipid raft sites without affecting the expression of HIV receptors(CD4,CCR5,and CXCR4).Significantly,TZM-bl cells expressing GPI-m36.4 were highly resistant to infection with divergent HIV-1 subtypes and potently blocked HIV-1 envelope-mediated cell-cell fusion and cell-cell viral transmission.Furthermore,we showed that GPI-m36.4-modified human CEMss-CCR5 cells were nonpermissive to both CCR5-and CXCR4-tropic HIV-1 isolates and displayed a strong survival advantage over unmodified cells.It was found that GPI-m36.4 could also Impair HIV-1 Env processing and viral infectivity in transduced cells,underlying a multifaceted mechanism of antiviral action.In conclusion,our studies characterize m36.4 as a powerful nanobody that can generate HIV-resistant cells,offering a novel gene therapy approach that can be used alone or in combination.
基金Supported by the National High Technology Research and Development Program of China (863 Program)(Grant No. 2006AA02A255)
文摘Type IV collagenase plays a pivotal role in invasion, metastasis and angiogenesis of tumor. Single domain antibodies are attractive as tumor-targeting vehicle because of their much smaller size com-pared with antibody molecules produced by conventional methods. Lidamycin (LDM) is a potent enediyne-containing antitumor antibiotic. In this study an engineered and energized fusion protein VL-LDP-AE composed of lidamycin and VL domain of mAb 3G11 directed against type IV collagenase was prepared using a novel two-step method. First a VL-LDP fusion protein was constructed by DNA recombination. Secondly VL-LDP-AE was obtained by molecular reconstitution. In MTT assay, VL-LDP-AE showed potent cytotoxicity to HT-1080 cells and KB cells with IC50 values of 8.55×10-12 and 1.70×10-11 mol/L, respectively. VL-LDP-AE showed antiangiogenic activity in chick chrorioallantoic membrane (CAM) assay and tube formation assay. In in vivo experiments, VL-LDP-AE was proved to be more effective than free LDM against the growth of subcutaneously transplanted hepatoma 22 in mice. Drugs were given intravenously on day 3 and 10 after tumor transplantation. Compared in terms of maximal tolerated doses, VL-LDP-AE at 0.25 mg/kg suppressed the tumor growth by 89.5%, LDM at 0.05 mg/kg by 69.9%, and mitomycin at 1 mg/kg by 35%. Having a molecular weight of 25.2 kDa, VL-LDP-AE was much smaller than other reported antibody-based drugs. The results suggested that VL-LDP-AE would be a promising candidate for tumor targeting therapy. And the 2-step approach could serve as a new technology platform for making a series of highly potent engineered antibody-based drugs for a variety of cancers.
文摘It is well established that all camelids have unique antibodies circulating in their blood.Unlike antibodies from all other species,these special antibodies are devoid of light chains,and are composed of a heavy chain homodimer.These so-called heavy-chain antibodies(HCAbs)are expressed after a V-D-J rearrangement and require dedicated constant gamma genes. An immune response is raised in these HCAbs following a classical immunization protocol.These HCAbs are easily purified from serum,and their antigen-binding fragment interacts with parts of the target that are less antigenic to conventional antibodies.The antigen binding site of the dromedary HCAb comprises one single domain,referred to as VHH or nanobody(Nb),therefore,a strategy was designed to clone the Nb repertoire of an immunized dromedary and to select the Nb with specificity for our target antigens.The monoclonal Nb is produced well in bacteria,is very stable and highly soluble,and it binds the antigen with high affinity and specificity.Currently,the recombinant Nb has been developed successfully for research purposes, as a probe in biosensors,to diagnose infections,or to treat diseases such as cancer or trypanosomiasis.
文摘Antibodies as therapeutic agents are mostly used in oncology, as illustrated by their applications in lymphoma, breast cancer or colorectal cancer. This review provides a brief historical sketch of the development of monoclonal antibodies for cancer treatment and summarizes the most significant clinical data for the best-established reagents to date. It also discusses strategies to improve the anti-tumor efficacy of antibody therapy, including antibody gene therapy and exploitation of bone marrow derived primary mesenchymal stem cells as the antibody gene transporter.
文摘Testis-specific protease 50 (TSP50) is a testis-specific oncogene, which is abnormally activated in most tested patients with breast cancer. This property makes it an attractive molecular marker and a promising target for the diagnosis and therapy of breast cancer. In order to obtain the protective and specific polyclonal antibodies for further research, TSPS0 cDNA was amplified by RT-PCR from normal human testicular tissue, and inserted into eukaryotic expression vector PeDNA3.1. Rabbit anti-TSPS0 polyclonal antibodies were prepared by means of intramuscular injection of peDNA3.1-TSPS0 into the rabbits. Titem of the anti-sera were measured by ELISA and Western blotting with the E. coli cell lysate containing the induced GST-TSPS0 fusion protein as an antigen. In addition, we examined the expression of TSPS0 in both breast cancer cell line MCF-7 and breast cancer tissue by immunofluorescent and immunohistochemistry analysis.
文摘A monoclonal antibody was first prepared by fusion of mouse myeloma cells (SP2/0-Ag-14) with spleen cells isolated from male BALB/ c mice immunized with spermidine-bovine serum albumin conjugate (SPD- BSA). The hybridoma cell line producing antibody specific for spermidine was cultured in vitro and after i. p. into mice, the ascitic fluid gave suitably high dilution titres (1: 106) by enzyme immunoassay. This monoclonal antibody is of IgG1 class and the bimolecular compleex with molecular weight of 52KD and 27 KD. The monoclonal antibody was clearly specific to spermidine comparing with spermine or putriscine. Monclonal antibody may prove to be useful in the rapid diagnosis and evaluation of patients with cancer.
基金This work was supported by the National Natural Science Foundation (No. 39570042).
文摘Objective: To isolate murine anti endotoxin single chain phage antibody from a constructed library. Methods: Total RNA was firstly extracted from murine splenic cells and mRNA was reverse-transcribed into cDNA. Then the designed primers were used to amplify the variable region genes of the heavy and light chain (VH, VL) with polymerase chain reaction. The linker was used to assemble the VH and VL into ScFv, and the NotI and SfiI restriction enzymes were used to digest the ScFv in order to ligate into the pCANTAB5E phagemid vector that was already digested with the same restriction enzymes. The ligated vector was then introduced into competent E.coli TG1 cells to construct a single-chain phage antibody library. After rescued with M13KO7 helper phage, recombinant phages displaying ScFv fragments were harvested from the supernatant and selected with endotoxin. The enriched positive clones were reinfected into TG1 cells. Finally, 190 clones were randomly selected to detect the anti endotoxin antibody with indirect ELISA. Results: The titer of anti endotoxin in murine sera was 1:12,800. The concentration of total RNA was 12.38 μg/ml. 1.9×107 clones were obtained after transformed into TG1. 3×104 colonies were gotten after one round panning. Two positive colonies were confirmed with indirect ELISA among 190 randomly selected colonies. Conclusion: A 1.9×107 murine anti endotoxin single chain phage antibody library was successfully constructed. Two anti endotoxin antibodies were obtained from the library.
基金supported by Fondo para la Investigación Cientifica y Tecnológica(FONCy T),Argentina,grant#PICT 2015-2473(to PHHL)supported by grants from National Institute of Health/National Institute of Neurological Disorders and Stroke(NIH/NINDS,USA)(NS121621)+2 种基金Department of Defense,USA(Do D-CL1)(PR200530)partially financed with a fellowship for Research in Medicine from Fundación Florencio Fiorinisupported with a PhD fellowship from CONICET。
文摘Anti-ganglioside antibodies are associated with delayed/poor clinical recovery in Guillain-Barrèsyndrome,mostly related to halted axon regeneration.Cross-linking of cell surface gangliosides by anti-ganglioside antibodies triggers inhibition of nerve repair in in vitro and in vivo paradigms of axon regeneration.These effects involve the activation of the small GTPase Rho A/ROCK signaling pathways,which negatively modulate growth cone cytoskeleton,similarly to well stablished inhibitors of axon regeneration described so far.The aim of this work was to perform a proof of concept study to demonstrate the effectiveness of Y-27632,a selective pharmacological inhibitor of ROCK,in a mouse model of axon regeneration of peripheral nerves,where the passive immunization with a monoclonal antibody targeting gangliosides GD1a and GT1b was previously reported to exert a potent inhibitory effect on regeneration of both myelinated and unmyelinated fibers.Our results demonstrate a differential sensitivity of myelinated and unmyelinated axons to the pro-regenerative effect of Y-27632.Treatment with a total dosage of 9 mg/kg of Y-27632 resulted in a complete prevention of anti-GD1a/GT1b monoclonal antibody-mediated inhibition of axon regeneration of unmyelinated fibers to skin and the functional recovery of mechanical cutaneous sensitivity.In contrast,the same dose showed toxic effects on the regeneration of myelinated fibers.Interestingly,scale down of the dosage of Y-27632 to 5 mg/kg resulted in a significant although not complete recovery of regenerated myelinated axons exposed to anti-GD1a/GT1b monoclonal antibody in the absence of toxicity in animals exposed to only Y-27632.Overall,these findings confirm the in vivo participation of Rho A/ROCK signaling pathways in the molecular mechanisms associated with the inhibition of axon regeneration induced by anti-GD1a/GT1b monoclonal antibody.Our findings open the possibility of therapeutic pharmacological intervention targeting Rho A/Rock pathway in immune neuropathies associated with the presence of anti-ganglioside antibodies and delayed or incomplete clinical recovery after injury in the peripheral nervous system.
基金Project supported by the National Natural Science Foundation of China and "863" Plan.
文摘Two vectors, pWA180 and pROH80, for expression of single-chain Fv fragments (ScFv) were con-siruciea. (?)ne anti-CD3 VH and VL genes were amplified from UCHTl cells by RT-PCR and sequenced. Both genes were cloned in pWA180 to express native ScFv and pROH80 for GST-ScFv fusion protein expression. The expression products were analysed by ELISA and Western blot. The combining site of OKT3 was modeled. Human [g LS1 and Nd were selected as acceptors of CDRs of OKT3 VL and VH to construct a reshaping antibody against CD3. By com-paring OKT3, LS1 and Nd with their own family sequences, some residues were changed and the reshaping VL and VH genes were designed. The full VH gene was assembled in three steps with eight chemically synthesized oligonu-cleotide fragments using overlapping PCR and sequenced. The VH gene was expressed as active protein in pCOMB3 and as inclusion bodies in pGEX-4T-l by ELISA and Western blot analysis.
基金the National Natural Science Foundation of China (No. 30000070)
文摘The cytokine repertoire of ADP/ATP carrier-specific humoral immune responses and the cytokine-dependent anti-ADP/ATP carrier antibody IgG subclasses were examined in a cohort of ADP/ATP carrier-immunized BALB/c mice treated with anti-CD4 monoclonal antibody. Eighteen male BALB/c mice (6–8 weeks old) were randomized into 3 groups: dilated cardiomyopathy (DCM) group, DCM-tolerance (Tol) group and control group. The mice in DCM group were immunized with the peptides derived from human ADP/ATP carrier protein for 6 months and mice in the control group were sham-immunized, while the mice in DCM-Tol group were immunized with ADP/ATP carrier protein and anti-CD4 McAb simultaneously. Serum autoantibody against ADP/ATP carrier and IgG subclasses were measured by ELISA, intracellular cytokines IFN-γ and IL-4 of Th cells were moni- tored with flow cytometry, and splenic T cell cytokines IFN-γ, IL-2, IL-4 and IL-6 were detected by using real-time fluorescent quantitative PCR. The results showed that the autoantibody against ADP/ATP carrier was found in all mice in DCM group, and the antibody level, serum IgG1 and IgG2a subclasses, cytokines in T cells and Th cells were all elevated in DCM group, as compared with those in control group (P〈0.01). On the other hand, in DCM-Tol group, the autoantibody level and contents of all the cytokines were significantly different from those in DCM group (P〈0.01), and were close to those in control group. And the levels of IgG1, IgG2a, IgG2b and IgG3 were influenced, to varying degrees, by anti-CD4 McAb as compared with those in DCM group. All these four types of IgG subclasses were substantially decreased in DCM-Tol group as compared with DCM group. It is concluded that the treatment with anti-CD4 McAb could prevent the activation of T cells, reverse the abnormal secretion of cytokines and the imbalance between Th1/Th2 cell subsets and abnormal production of autoantibody against ADP/ATP carrier, and eventually avoid myocardial injuries.
基金approved by the Ethics and Research Committee of the Federal University of Health Sciences of Porto Alegre(UFCSPA)and the Santa Casa de Misericórdia de Porto Alegre Complex(ISCMPA)(approval numbers 3805918 and 3938979,respectively)the Brazilian Clinical Trials Registry(ReBec)under number RBR-3 gtcvjU111112367585.
文摘BACKGROUND Antibody-mediated rejection following liver transplantation(LT)has been increasingly recognized,particularly with respect to the emergence of de novo donor-specific antibodies(DSAs)and their impact on graft longevity.While substantial evidence for adult populations exists,research focusing on pediatric LT outcomes remains limited.AIM To investigate the prevalence of human leukocyte antigen(HLA)mismatches and DSA and evaluate their association with rejection episodes after pediatric LT.METHODS A cohort of pediatric LT recipients underwent HLA testing at Santa Casa de Porto Alegre,Brazil,between December 2013 and December 2023.Only patients who survived for>30 days after LT with at least one DSA analysis were included.DSA classes I and II and cross-matches were analyzed.The presence of de novo DSA(dnDSA)was evaluated at least 3 months after LT using the Luminex®single antigen bead method,with a positive reaction threshold set at 1000 MFI.Rejection episodes were confirmed by liver biopsy.RESULTS Overall,67 transplanted children were analyzed;61 received grafts from living donors,85%of whom were related to recipients.Pre-transplant DSA(class I or II)was detected in 28.3%of patients,and dnDSA was detected in 48.4%.The median time to DSA detection after LT was 19.7[interquartile range(IQR):4.3-35.6]months.Biopsyproven rejection occurred in 13 patients at follow-up,with C4d positivity observed in 5/13 Liver biopsies.The median time to rejection was 7.8(IQR:5.7-12.8)months.The presence of dnDSA was significantly associated with rejection(36%vs 3%,P<0.001).The rejection-free survival rates at 12 and 24 months were 76%vs 100%and 58%vs 95%for patients with dnDSA anti-DQ vs those without,respectively.CONCLUSION Our findings highlight the importance of incorporating DSA assessment into pre-and post-transplantation protocols for pediatric LT recipients.Future implications may include immunosuppression minimization strategies based on this analysis in pediatric LT recipients.
文摘With gene engineering EB virus membrane antigen as the diagnostic antigen, indirect immunofluo-rescence (IF) assay was used to detect IgA antibody against EB virus membrane antigen (MA-IgA) in sera from 202 nasopharyngeal carcinoma (NPC) patients and 315 controls (normal and patients with other tumors). MA-IgA antibody was positive in 96.8% of the pretreatment NPC patients with a GMT of 1:36.3. MA-IgA detection by this method was more sensitive than EA-IgA detection by IE. In contrast, patients with tumors other than NPC were negative for MA-IgA antibody. 9.1% of VCA-IgA positive persons were MA-IgA positive with a GMT of less than 1:5. No MA-IgA positive was found in VCA-IgA negatives. The results indicated that this method was relatively specific. In the treatment group, the positive rate and GMT of MA-IgA antibody declined with increase in survival time and the decline was faster than VCA-IgA. When recurrence or distant metastasis developed, similar to VCA-IgA and EA-IgA antibodies, the positive rate and GMT of MA-IgA antibody increased to its pretreatment level. Therefore, MA-IgA detection might be valuable in the early diagnosis and monitor of NPC.