It is important for the safety of transmission system to accurately calculate single-phase earth fault current distribution.Features of double sided elimination method were illustrated.Quantitative calculation of sing...It is important for the safety of transmission system to accurately calculate single-phase earth fault current distribution.Features of double sided elimination method were illustrated.Quantitative calculation of single-phase earth fault current distribution and case verification were accomplished by using the loop method.Influences of some factors,such as single-phase earth fault location and ground resistance of poles,on short-circuit current distribution were discussed.Results show that:1) results of the loop method conform to those of double sided elimination method;2) the fault location hardly influences macro-distribution of short-circuit current.However,current near fault location is evidently influenced;and 3) the short-circuit current distribution is not so sensitive to the ground resistance of poles.展开更多
Intrusions in the Zhangbaling uplift zone and the eastern margin of the Dabie orogenic belt belong to the syntectonic intrusions developed during the strike-slip stage in the southern segment of the Tan-Lu fault zone....Intrusions in the Zhangbaling uplift zone and the eastern margin of the Dabie orogenic belt belong to the syntectonic intrusions developed during the strike-slip stage in the southern segment of the Tan-Lu fault zone. However, characteristics of rare earth elements show that intrusions in the Zhangbaling uplift zone have the characteristics of mantle source type and those in the eastern margin of Dabie belt are the typical crust source type. Therefore, Au-deposits related to the intrusions in the Zhangbaling uplift zone are developed better than those in the eastern margin of the Dabieshan. The research results of the rare earth elements coincide with the studies of geophysics, tectonic setting and stable isotope. It is further indicated that the rare earth elements offer effective approach to tracing the material sources of magmatic rocks.展开更多
Based on the spherical earth dislocation theory and a fault slip model of the Tohoku-Oki M_(W)9.0 earthquake,the co-seismic Coulomb failure stress changes(ΔCFS)on the northern Tanlu fault zone at depths of 0–40 km a...Based on the spherical earth dislocation theory and a fault slip model of the Tohoku-Oki M_(W)9.0 earthquake,the co-seismic Coulomb failure stress changes(ΔCFS)on the northern Tanlu fault zone at depths of 0–40 km are calculated.By comparing two sets of results from the spherical earth dislocation theory and the semi-infinite space one,the effect of earth curvature on the calculation results is analyzed quantitatively.First,we systematically summarize previous researches related to the northern Tanlu fault zone,divide the fault zone as detailed as possible,give the geometric parameters of each segment,and establish a segmented structural model of the northern Tanlu fault zone.Second,we calculate the Coulomb stress changes on the northern Tanlu fault zone by using the spherical earth dislocation theory.The result shows the Coulomb stress changes are no more than 0.003 MPa,which proves the great earthquake did not significantly change the stress state of the fault zone.Finally,we quantitatively analyze the disparities between the results of semi-infinite space dislocation theory and the spherical earth one.The average disparity between them is about 7.7%on the northern Tanlu fault zone and is 16.8%on the Fangzheng graben,the maximum disparity on this graben reaches up to 25.5%.It indicates that the effect of earth curvature can not be ignored.So it’s necessary to use the spherical earth dislocation theory instead of the semi-infinite space one to study the Coulomb stress change in the far field.展开更多
The relation between the local mean lunar time τ of earthquake occurrence and their fault trends is studied in this paper. The local mean lunar times τ of 53 earthquakes in 24 groups are calculated. Because ...The relation between the local mean lunar time τ of earthquake occurrence and their fault trends is studied in this paper. The local mean lunar times τ of 53 earthquakes in 24 groups are calculated. Because the tidal generation force arisen by the moon is a cyclic function of about 12 hours 25 minutes in the main, the two tidal generation forces anywhere in the earth arising by the moon are equal in general when the moon lies to the two sites of 180° interval of local mean lunar time. Based on this phenomenon the values Δ τ of τ 1- τ 2 or τ 1-τ 2±180° of two earthquakes occurring repetitiously in the same place are also calculated. The calculated results show that if the fault trends of the two earthquakes in the same place is near, the Δ τ is usually smaller and if the fault trends of the two ones is not near, the Δ τ is usually larger and the distribution of the local mean lunar time τ of earthquakes in different places is dispersive even if fault trends of these earthquakes are near, and the τ does not concentrate on the lower and upper transit of the moon. The above phenomena clear up that the triggering earthquake of earth solid tide arisen by the moon is relative with the fault trends of earthquakes and we ought to think over the difference of environmental conditions of earthquake preparation of each seismogenic zone and can not make statistics to earthquakes in different places when we study the relation between the solid earth tide arisen by the moon and earthquakes.展开更多
This paper presents a new earth-fault detection algorithm for unearthed (isolated) and compensated neutral medium voltage (MV) networks. The proposed algorithm is based on capacitance calculation from transient im...This paper presents a new earth-fault detection algorithm for unearthed (isolated) and compensated neutral medium voltage (MV) networks. The proposed algorithm is based on capacitance calculation from transient impedance and dominant transient frequency. The Discrete Fourier Transform (DFT) method is used to determine the dominant transient frequency. The values of voltage and current earth modes are calculated in the period of the dominant transient frequency, then the transient impedance can be determined, from which we can calculate the earth capacitance. The calculated capacitance gives an indication about if the feeder is faulted or not. The algorithm is less dependent on the fault resistance and the faulted feeder parameters; it mainly depends on the background network. The network is simulated by ATP/EMTP program. Several different fault conditions are covered in the simulation process, different fault inception angles, fault locations and fault resistances.展开更多
This paper presents a novel transient current differential algorithm for earth fault detection in unearthed (isolated) and compensated neutral medium voltage (MV) networks. The proposed algorithm uses the transien...This paper presents a novel transient current differential algorithm for earth fault detection in unearthed (isolated) and compensated neutral medium voltage (MV) networks. The proposed algorithm uses the transient residual currents, which are very sensitive for earth faults detection. The transient values of residual currents are calculated for each feeder in the network and used as an earth fault indicator. The flow of residual currents is investigated. It is found that the residual current for the faulted feeder is equal to the summation of all residual currents for all other healthy feedersl Based on this investigation, a differential technique is proposed. A percentage restrain performance is proposed to ensure the selectivity and security of the algorithm. The transient algorithm is very sensitive for earth fault incidence. To apply the proposed algorithm, the residual currents can be measured easily by one sensor for each feeder with no need to voltage measurement. The proposed algorithm is less dependent on the fault resistance and the faulted feeder parameters. The network is simulated by ATP/EMTP program. Different fault conditions are covered in the simulation process: different fault inception angles, fault locations and fault resistances.展开更多
Practically,the load currents in three phases are asymmetric in the power system.It means that the impedances are different in all three phases.If the consumer’s transformer neutral cut off and/or was disconnected fr...Practically,the load currents in three phases are asymmetric in the power system.It means that the impedances are different in all three phases.If the consumer’s transformer neutral cut off and/or was disconnected from the neutral of power supply source,then there will be some trouble and failure occurred.The current in the neutral wire drops down to zero when the neutral wire is cut off and the phase currents of all three-phase equal to each other since there was no return wire.The currents are equal but the voltages at the phase consumers are different.Especially for residential single-phase consumers,the voltage at the consumers of the phase varies differently for three phase systems when the neutral wire was disconnected at consumer side and even the voltage at the consumers one or two of those three phases becomes over nominal voltage or reaches nearly line voltage.In this case,the electronic appliances in that phase will be fed by high voltage than the rated value and they can be broken down.In the power system of UB(Ulaanbaatar)city,there are some occasional such kind of failures every year.Obviously,many electronic appliances were broken down due to high voltage and the electricity utility companies respond for service charge of damaged parts.展开更多
With the increasing complexity of distribution network structures originating from the high penetration of renewable energy and responsive loads,fast and accurate fault location technology for distribution networks is...With the increasing complexity of distribution network structures originating from the high penetration of renewable energy and responsive loads,fast and accurate fault location technology for distribution networks is a prerequisite for rapid isolation of faults and restoration of the power supply.In this paper,a fault location method based on community graph depth-first traversal is proposed for fast location of single-phase ground faults in distribution networks.First,this paper defines the fault graph weight of the vertices in the distribution network graph model,which can be used to reflect the topology of the vertices and fault points as well as the fluctuation of the vertices’currents.Then,the vertices on the graph model are clustered by using an improved parallel louvain method(IPLM).Finally,the community formed by IPLM is used as the smallest unit for depth-first traversal to achieve fast and accurate location of the fault section.The paper develops a distribution network graph model of IEEE 33-bus system on the graph database for testing.And three other methods are selected for comparison with IPLMDF.The test results show that IPLMDF can achieve fast and accurate fault location when half of the nodes in the distribution network are equipped with D-PMUs.When some of the D-PMUs lose time synchronization,it is still possible to locate the fault section,and at the same time,the locating results can be avoided by falling into local optimal solutions.展开更多
文摘It is important for the safety of transmission system to accurately calculate single-phase earth fault current distribution.Features of double sided elimination method were illustrated.Quantitative calculation of single-phase earth fault current distribution and case verification were accomplished by using the loop method.Influences of some factors,such as single-phase earth fault location and ground resistance of poles,on short-circuit current distribution were discussed.Results show that:1) results of the loop method conform to those of double sided elimination method;2) the fault location hardly influences macro-distribution of short-circuit current.However,current near fault location is evidently influenced;and 3) the short-circuit current distribution is not so sensitive to the ground resistance of poles.
基金Project supported by the National Natural Science Foundation of China (40272094)
文摘Intrusions in the Zhangbaling uplift zone and the eastern margin of the Dabie orogenic belt belong to the syntectonic intrusions developed during the strike-slip stage in the southern segment of the Tan-Lu fault zone. However, characteristics of rare earth elements show that intrusions in the Zhangbaling uplift zone have the characteristics of mantle source type and those in the eastern margin of Dabie belt are the typical crust source type. Therefore, Au-deposits related to the intrusions in the Zhangbaling uplift zone are developed better than those in the eastern margin of the Dabieshan. The research results of the rare earth elements coincide with the studies of geophysics, tectonic setting and stable isotope. It is further indicated that the rare earth elements offer effective approach to tracing the material sources of magmatic rocks.
基金This study was supported financially by the National Key R&D Program of China(No.2018YFC1503704)the National Natural Science Foundation of China(No.41874003)。
文摘Based on the spherical earth dislocation theory and a fault slip model of the Tohoku-Oki M_(W)9.0 earthquake,the co-seismic Coulomb failure stress changes(ΔCFS)on the northern Tanlu fault zone at depths of 0–40 km are calculated.By comparing two sets of results from the spherical earth dislocation theory and the semi-infinite space one,the effect of earth curvature on the calculation results is analyzed quantitatively.First,we systematically summarize previous researches related to the northern Tanlu fault zone,divide the fault zone as detailed as possible,give the geometric parameters of each segment,and establish a segmented structural model of the northern Tanlu fault zone.Second,we calculate the Coulomb stress changes on the northern Tanlu fault zone by using the spherical earth dislocation theory.The result shows the Coulomb stress changes are no more than 0.003 MPa,which proves the great earthquake did not significantly change the stress state of the fault zone.Finally,we quantitatively analyze the disparities between the results of semi-infinite space dislocation theory and the spherical earth one.The average disparity between them is about 7.7%on the northern Tanlu fault zone and is 16.8%on the Fangzheng graben,the maximum disparity on this graben reaches up to 25.5%.It indicates that the effect of earth curvature can not be ignored.So it’s necessary to use the spherical earth dislocation theory instead of the semi-infinite space one to study the Coulomb stress change in the far field.
文摘The relation between the local mean lunar time τ of earthquake occurrence and their fault trends is studied in this paper. The local mean lunar times τ of 53 earthquakes in 24 groups are calculated. Because the tidal generation force arisen by the moon is a cyclic function of about 12 hours 25 minutes in the main, the two tidal generation forces anywhere in the earth arising by the moon are equal in general when the moon lies to the two sites of 180° interval of local mean lunar time. Based on this phenomenon the values Δ τ of τ 1- τ 2 or τ 1-τ 2±180° of two earthquakes occurring repetitiously in the same place are also calculated. The calculated results show that if the fault trends of the two earthquakes in the same place is near, the Δ τ is usually smaller and if the fault trends of the two ones is not near, the Δ τ is usually larger and the distribution of the local mean lunar time τ of earthquakes in different places is dispersive even if fault trends of these earthquakes are near, and the τ does not concentrate on the lower and upper transit of the moon. The above phenomena clear up that the triggering earthquake of earth solid tide arisen by the moon is relative with the fault trends of earthquakes and we ought to think over the difference of environmental conditions of earthquake preparation of each seismogenic zone and can not make statistics to earthquakes in different places when we study the relation between the solid earth tide arisen by the moon and earthquakes.
文摘This paper presents a new earth-fault detection algorithm for unearthed (isolated) and compensated neutral medium voltage (MV) networks. The proposed algorithm is based on capacitance calculation from transient impedance and dominant transient frequency. The Discrete Fourier Transform (DFT) method is used to determine the dominant transient frequency. The values of voltage and current earth modes are calculated in the period of the dominant transient frequency, then the transient impedance can be determined, from which we can calculate the earth capacitance. The calculated capacitance gives an indication about if the feeder is faulted or not. The algorithm is less dependent on the fault resistance and the faulted feeder parameters; it mainly depends on the background network. The network is simulated by ATP/EMTP program. Several different fault conditions are covered in the simulation process, different fault inception angles, fault locations and fault resistances.
文摘This paper presents a novel transient current differential algorithm for earth fault detection in unearthed (isolated) and compensated neutral medium voltage (MV) networks. The proposed algorithm uses the transient residual currents, which are very sensitive for earth faults detection. The transient values of residual currents are calculated for each feeder in the network and used as an earth fault indicator. The flow of residual currents is investigated. It is found that the residual current for the faulted feeder is equal to the summation of all residual currents for all other healthy feedersl Based on this investigation, a differential technique is proposed. A percentage restrain performance is proposed to ensure the selectivity and security of the algorithm. The transient algorithm is very sensitive for earth fault incidence. To apply the proposed algorithm, the residual currents can be measured easily by one sensor for each feeder with no need to voltage measurement. The proposed algorithm is less dependent on the fault resistance and the faulted feeder parameters. The network is simulated by ATP/EMTP program. Different fault conditions are covered in the simulation process: different fault inception angles, fault locations and fault resistances.
文摘Practically,the load currents in three phases are asymmetric in the power system.It means that the impedances are different in all three phases.If the consumer’s transformer neutral cut off and/or was disconnected from the neutral of power supply source,then there will be some trouble and failure occurred.The current in the neutral wire drops down to zero when the neutral wire is cut off and the phase currents of all three-phase equal to each other since there was no return wire.The currents are equal but the voltages at the phase consumers are different.Especially for residential single-phase consumers,the voltage at the consumers of the phase varies differently for three phase systems when the neutral wire was disconnected at consumer side and even the voltage at the consumers one or two of those three phases becomes over nominal voltage or reaches nearly line voltage.In this case,the electronic appliances in that phase will be fed by high voltage than the rated value and they can be broken down.In the power system of UB(Ulaanbaatar)city,there are some occasional such kind of failures every year.Obviously,many electronic appliances were broken down due to high voltage and the electricity utility companies respond for service charge of damaged parts.
基金supported by the National Natural Science Foundation of China (Grant Nos.52009106,51779206)the National Key R&D Program of China (No.2018YFB1500800)the Natural Science Fund Youth Project of Shaanxi Province (2019J-130).
文摘With the increasing complexity of distribution network structures originating from the high penetration of renewable energy and responsive loads,fast and accurate fault location technology for distribution networks is a prerequisite for rapid isolation of faults and restoration of the power supply.In this paper,a fault location method based on community graph depth-first traversal is proposed for fast location of single-phase ground faults in distribution networks.First,this paper defines the fault graph weight of the vertices in the distribution network graph model,which can be used to reflect the topology of the vertices and fault points as well as the fluctuation of the vertices’currents.Then,the vertices on the graph model are clustered by using an improved parallel louvain method(IPLM).Finally,the community formed by IPLM is used as the smallest unit for depth-first traversal to achieve fast and accurate location of the fault section.The paper develops a distribution network graph model of IEEE 33-bus system on the graph database for testing.And three other methods are selected for comparison with IPLMDF.The test results show that IPLMDF can achieve fast and accurate fault location when half of the nodes in the distribution network are equipped with D-PMUs.When some of the D-PMUs lose time synchronization,it is still possible to locate the fault section,and at the same time,the locating results can be avoided by falling into local optimal solutions.