The 2022 M_(W)6.7 Menyuan earthquake ruptured the western end of the Tianzhu seismic gap,providing an opportunity to study the regional seismogenic characteristics and seismic hazards.Here we use interferometric synth...The 2022 M_(W)6.7 Menyuan earthquake ruptured the western end of the Tianzhu seismic gap,providing an opportunity to study the regional seismogenic characteristics and seismic hazards.Here we use interferometric synthetic aperture radar(InSAR)and seismic data to study the mainshock rupture,early afterslip and the second largest aftershock of the 2022 Menyuan earthquake sequences.Our modeling results show that the mainshock ruptured the Lenglongling fault and the Tuolaishan fault with a maximum slip of~3 m.Rapid postseismic transient deformation occurred at the center of the Lenglongling fault.Our afterslip modeling reveals that the majority of afterslip occurred in the deeper part of the Lenglongling fault.A high-angle conjugated faulting event is found at the middle section of the Lenglongling fault.We use the stress inversion to investigate the possible triggering mechanism of the conjugated rupture event.The results indicate the maximum principal stress direction is in~222°,forming a~22°angle between the conjugated fault of second largest aftershock and the mainshock.The calculated normal stress changes indicate the region is within a pull-apart stress field,which favors such a conjugated rupturing event.Our study will help understand the rupture behavior of such kind of conjugated fault in other regions.展开更多
The high ductility of Mg-Li alloy has been mainly ascribed to a high activity of pyramidal<c+a>slip to accommodate plastic strain.In the present study,however,a quantitative analysis reveals that Li-addition can...The high ductility of Mg-Li alloy has been mainly ascribed to a high activity of pyramidal<c+a>slip to accommodate plastic strain.In the present study,however,a quantitative analysis reveals that Li-addition can only slightly stimulate the activation of pyramidal<c+a>slip under compression along the normal direction of a hot-rolled Mg-4.5 wt.%Li plate,with a relative activity of approximately 18%.Although the limited activity of pyramidal<c+a>slip alone cannot accommodate a large plastic strain,it effectively reduces the number of{10.11}−{10.12}double twins,which are believed to be favorable sites for crack initiation.The evidently reduced activity of double twins leads to a lower cracking tendency,and therefore improves ductility.展开更多
On February 6,2023,a devastating earthquake with a moment magnitude of M_(W)7.8 struck the town of Pazarcik in south-central Türkiye,followed by another powerful earthquake with a moment magnitude of M_(W)7.6 tha...On February 6,2023,a devastating earthquake with a moment magnitude of M_(W)7.8 struck the town of Pazarcik in south-central Türkiye,followed by another powerful earthquake with a moment magnitude of M_(W)7.6 that struck the nearby city of Elbistan 9 h later.To study the characteristics of surface deformation caused by this event and the influence of fault rupture,this study calculated the static coseismic deformation of 56 stations and dynamic displacement waveforms of 15 stations using data from the Turkish national fixed global navigation satellite system(GNSS)network.A maximum static coseismic displacement of 0.38 m for the M_(W)7.8 Kahramanmaras earthquake was observed at station ANTE,36 km from the epicenter,and a maximum dynamic coseismic displacement of 4.4 m for the M_(W)7.6 Elbistan earthquake was observed at station EKZ1,5 km from the epicenter.The rupture-slip distributions of the two earthquakes were inverted using GNSS coseismic deformation as a constraint.The results showed that the Kahramanmaras earthquake rupture segment was distinct and exposed on the ground,resulting in significant rupture slip along the Amanos and Pazarcik fault segments of the East Anatolian Fault.The maximum slip in the Pazarcik fault segment was 10.7 m,and rupture occurred at depths of 0–15 km.In the Cardak fault region,the Elbistan earthquake caused significant ruptures at depths of 0–12 km,with the largest amount of slip reaching 11.6 m.The Coulomb stress change caused by the Kahramanmaras earthquake rupture along the Cardak fault segment was approximately 2 bars,and the area of increased Coulomb stress corresponded to the subsequent rupture region of the M_(W)7.6 earthquake.Thus,it is likely that the M_(W)7.8 earthquake triggered or promoted the M_(W)7.6 earthquake.Based on the cumulative stress impact of the M_(W)7.8 and M_(W)7.6 events,the southwestern segment of the East Anatolian Fault,specifically the Amanos fault segment,experienced a Coulomb rupture stress change exceeding 2 bars,warranting further attention to assess its future seismic hazard risk.展开更多
This study investigates the effect of the deformation mode on the precipitation behavior of an extruded Mg-8.0Al-0.5Zn-0.2Mn(AZ80)alloy.The alloy samples are compared after the application of 3.5%tension and 3.5%compr...This study investigates the effect of the deformation mode on the precipitation behavior of an extruded Mg-8.0Al-0.5Zn-0.2Mn(AZ80)alloy.The alloy samples are compared after the application of 3.5%tension and 3.5%compression along the extrusion direction to induce slip-dominant and twinning-dominant deformation modes,respectively.The pre-compressed(PC)sample,which contained numerous{10-12}tension twins,has a reduced grain size and a higher internal strain than the pre-tensioned(PT)sample,which is attributed to the inherent internal strain that occurs during the formation and growth of the twins.As a result,the precipitation behavior of the PC sample is accelerated,leading to its short peak aging time of 32 h,which is lower than those of the PT and as-extruded samples(48 and 100 h,respectively).Furthermore,fine continuous precipitates(CPs)rapidly form within the{10-12}twins,contributing to the enhanced hardness.Discontinuous precipitates(DPs),which have a hardness comparable to the CP-containing twinned regions,in the PC sample experience less coarsening during aging than those in the PT sample due to growth inhibition by the{10-12}twins.Ultimately,the{10-12}twins generated under the twinning-dominant deformation condition lead to enhanced precipitation behaviors,including the preferential formation and refinement of CPs and the suppressed coarsening of DPs.Consequently,pre-deformation that occurs{10-12}twinning exhibits more pronounced effects on precipitation acceleration and microstructural modification than slip-inducing pre-deformation.展开更多
Fault zones are usually filled with fault gouge and accompanied by fault water.The coupled effect of fault gouge and water significantly impacts the slip behavior of the fault,which may weaken the fault structure and ...Fault zones are usually filled with fault gouge and accompanied by fault water.The coupled effect of fault gouge and water significantly impacts the slip behavior of the fault,which may weaken the fault structure and further induce rupture propagation and earthquakes.In this study,we carried out a laboratory experiment to investigate the fluid-induced slip behavior of fault filled with gouge.The friction evolution characteristic associated with fluid pressure and effective stress was investigated during the slip process.In addition,the role transformation process of the gouge on the slip behavior of fault was revealed.The experimental result indicates that the friction on the filled fault surface is significantly affected by fault gouge.The rupture of the gouge promotes fault slip and the fluid pressure plays a vital role in the initiation of fault slip.The fault gouge enhances the shearing strength of the fault and acts as a barrier before the initial slip under fluid injection.Nevertheless,the fault gouge would accelerate the fault slip and transform into lubricant after the initial slip.展开更多
The slip behavior and precipitation behavior of four Al−Cu−Li single crystals with varying orientations at different temperatures were investigated using electron backscattering diffraction(EBSD)and transmission elect...The slip behavior and precipitation behavior of four Al−Cu−Li single crystals with varying orientations at different temperatures were investigated using electron backscattering diffraction(EBSD)and transmission electron microscopy(TEM).The maximum differences in yield strength and ductility of the single crystals at room temperature are 41.6%and 14.7%,respectively.This indicates that the mechanical properties are strongly influenced by the crystal orientation.Moreover,grains with varying orientations exhibit distinct slip characteristics,including slip homogenization,slip localization,and multiple slip.In single crystal SC1,slip localization primarily contributes to its inferior ductility compared to other grains.Nevertheless,during deformation at 250℃,the distinct morphology and distribution of precipitates in the crystals are also correlated with orientation,which causes the increase in the maximum elongation difference to 20.8%in all selected single crystals.Notably,SC1,with a precipitate volume fraction of 2.65%,exhibits more severe slip localization compared to room temperature conditions,while SC2,with a precipitate volume fraction of 4.79%,demonstrates cross-slip characteristics,significantly enhancing the plastic deformation capacity of the Al−Cu−Li alloy.展开更多
The aim of this study is to numerically investigate the impact of boundary slip on electroosmotic flow(EOF) in curved rectangular microchannels. Navier slip boundary conditions were employed at the curved microchannel...The aim of this study is to numerically investigate the impact of boundary slip on electroosmotic flow(EOF) in curved rectangular microchannels. Navier slip boundary conditions were employed at the curved microchannel walls. The electric potential distribution was governed by the Poisson–Boltzmann equation, whereas the velocity distribution was determined by the Navier–Stokes equation. The finite-difference method was employed to solve these two equations. The detailed discussion focuses on the impact of the curvature ratio, electrokinetic width, aspect ratio and slip length on the velocity. The results indicate that the present problem is strongly dependent on these parameters. The results demonstrate that by varying the dimensionless slip length from 0.001 to 0.01 while maintaining a curvature ratio of 0.5 there is a twofold increase in the maximum velocity. Moreover, this increase becomes more pronounced at higher curvature ratios. In addition, the velocity difference between the inner and outer radial regions increases with increasing slip length. Therefore, the incorporation of the slip boundary condition results in an augmented velocity and a more non-uniform velocity distribution. The findings presented here offer valuable insights into the design and optimization of EOF performance in curved hydrophobic microchannels featuring rectangular cross-sections.展开更多
The influence of the slip mode on the microstructure evolution and compressive flow behavior at different strains in an extruded dilute Mg−0.5Bi−0.5Sn−0.5Mn alloy was analyzed through electron backscatter diffraction,...The influence of the slip mode on the microstructure evolution and compressive flow behavior at different strains in an extruded dilute Mg−0.5Bi−0.5Sn−0.5Mn alloy was analyzed through electron backscatter diffraction,X-ray diffraction,transmission electron microscopy,and hot compression tests.The results showed that at a low strain of 0.05,the basal,pyramidaland<c+a>slip modes were simultaneously activated.Nevertheless,at the middle stage of deformation(strain of 0.1,0.2 and 0.5),theslip mode was difficult to be activated and<c+a>slip mode became dominant.The deformation process between strains of 0.2 and 0.5 was primarily characterized by the softening effect resulting from the simultaneous occurrence of continuous dynamic recrystallization and discontinuous dynamic recrystallization.Ultimately,at strain of 0.8,a dynamic equilibrium was established,with the flow stress remaining constant due to the interplay between the dynamic softening brought about by discontinuous dynamic recrystallization and the work-hardening effect induced by the activation of the basalslip mode.展开更多
We employ the block negative dislocation model to invert the distribution of fault coupling and slip rate deficit on the different segments of the Tanlu(Tancheng-Lujiang) fault zone, according to the GPS horizontal ve...We employ the block negative dislocation model to invert the distribution of fault coupling and slip rate deficit on the different segments of the Tanlu(Tancheng-Lujiang) fault zone, according to the GPS horizontal velocity field from 1991 to 2007(the first phase) and 2013 to 2018(the second phase). By comparing the deformation characteristics results, we discuss the relationship between the deformation characteristics with the M earthquake in Japan. The results showed that the fault coupling rate of the northern section of Tancheng in the second phase reduced compared with that in the first phase. However, the results of the two phases showed that the northern section of Juxian still has a high coupling rate, a deep blocking depth, and a dextral compressive deficit, which is the enrapture section of the 1668 Tancheng earthquake. At the same time, the area strain results show that the strain rate of the central and eastern regions of the second phase is obviously enhanced compared with that of the first phase. The occurrence of the great earthquake in Japan has played a specific role in alleviating the strain accumulation in the middle and south sections of the Tanlu fault zone. The results of the maximum shear strain show that the shear strain in the middle section of the Tanlu fault zone in the second phase is weaker than that in the first phase, and the maximum shear strain in the southern section is stronger than that in the first phase. The fault coupling coefficient of the south Sihong to Jiashan section is high, and it is also the unruptured section of historical earthquakes. At the same time, small earthquakes in this area are not active and accumulate stress easily, so the future earthquake risk deserves attention.展开更多
BACKGROUND Adjacent segment disease(ASD)after fusion surgery is frequently manifests as a cranial segment instability,disc herniation,spinal canal stenosis,spondylolisthesis or retrolisthesis.The risk factors and mech...BACKGROUND Adjacent segment disease(ASD)after fusion surgery is frequently manifests as a cranial segment instability,disc herniation,spinal canal stenosis,spondylolisthesis or retrolisthesis.The risk factors and mechanisms of ASD have been widely discussed but never clearly defined.AIM To investigate the risk factors and clinical significance of retrograde movement of the proximal vertebral body after lower lumbar fusion.METHODS This was a retrospective analysis of the clinical data of patients who underwent transforaminal lumbar interbody fusion surgery between September 2015 and July 2021 and who were followed up for more than 2 years.Ninety-one patients with degenerative lumbar diseases were included(22 males and 69 females),with an average age of 52.3 years(40-73 years).According to whether there was retrograde movement of the adjacent vertebral body on postoperative X-rays,the patients were divided into retrograde and nonretrograde groups.The sagittal parameters of the spine and pelvis were evaluated before surgery,after surgery,and at the final follow-up.At the same time,the Oswestry Disability Index(ODI)and Visual Analogue Scale(VAS)were used to evaluate the patients’quality of life.RESULTS Nineteen patients(20.9%)who experienced retrograde movement of proximal adjacent segments were included in this study.The pelvic incidence(PI)of the patients in the retrograde group were significantly higher than those of the patients in the nonretrograde group before surgery,after surgery and at the final follow-up(P<0.05).There was no significant difference in lumbar lordosis(LL)between the two groups before the operation,but LL in the retrograde group was significantly greater than that in the nonretrograde group postoperatively and at the final follow-up.No significant differences were detected in terms of the|PI–LL|,and there was no significant difference in the preoperative lordosis distribution index(LDI)between the two groups.The LDIs of the retrograde group were 68.1%±11.5%and 67.2%±11.9%,respectively,which were significantly lower than those of the nonretrograde group(75.7%±10.4%and 74.3%±9.4%,respectively)(P<0.05).Moreover,the patients in the retrograde group had a greater incidence of a LDI<50%than those in the nonretrograde group(P<0.05).There were no significant differences in the ODI or VAS scores between the two groups before the operation,but the ODI and VAS scores in the retrograde group were significantly worse than those in the nonretrograde group after the operation and at the last follow-up,(P<0.05).CONCLUSION The incidence of posterior slippage after lower lumbar fusion was approximately 20.9%.The risk factors are related to a higher PI and distribution of lumbar lordosis.When a patient has a high PI and insufficient reconstruction of the lower lumbar spine,adjacent segment compensation via posterior vertebral body slippage is one of the factors that significantly affects surgical outcomes.展开更多
A wide range of technological and industrial domains,including heating processors,electrical systems,mechanical systems,and others,are facing issues as a result of the recent developments in heat transmission.Nanoflui...A wide range of technological and industrial domains,including heating processors,electrical systems,mechanical systems,and others,are facing issues as a result of the recent developments in heat transmission.Nanofluids are a novel type of heat transfer fluid that has the potential to provide solutions that will improve energy transfer.The current study investigates the effect of a magnetic field on the two-dimensional flow of Williamson nanofluid over an exponentially inclined stretched sheet.This investigation takes into account the presence of multi-slip effects.We also consider the influence of viscous dissipation,thermal radiation,chemical reactions,and suction on the fluid’s velocity.We convert the nonlinear governing partial differential equations(PDEs)of the fluid flow problem into dimensionless ordinary differential equations(ODEs)through the utilization of similarity variables.We then use the homotopy analysis method(HAM)to numerically solve the resulting ordinary differential equations(ODEs).We demonstrate the effects of numerous elements on a variety of profiles through graphical and tabular representations.We observe a drop in the velocity profile whenever we increase either the magnetic number or the suction parameter.Higher values of the Williamson parameter lead to an increase in the thermal profile,while the momentum of the flow displays a trend in the opposite direction.The potential applications of this unique model include chemical and biomolecule detection,environmental cleansing,and the initiation of radiation-induced chemical processes like polymerization,sterilization,and chemical synthesis.展开更多
Slip rate along the major active fault is an important parameter in the quantitative study of active tectonics.It is the average rate of fault slip during a certain period of time,reflecting the rate of strain energy ...Slip rate along the major active fault is an important parameter in the quantitative study of active tectonics.It is the average rate of fault slip during a certain period of time,reflecting the rate of strain energy accumulation on the fault zone.It cannot only be directly applied to evaluate the activity of the fault,the probabilistic seismic hazard analysis,but also important basic data for the study of geodynamics.However,due to the nonstandardized process of obtaining fault slip rates for a given strike-slip fault,the results could be diverse based on various methods by different researchers.In this review,we analyzed the main advances in the approaches to obtain fault slip rate.We found that there are four main sources affecting the final results of slip rate:the displacement along the fault,the dating of the corresponding displacement,the fitting of the displacement and corresponding dating results,and paleoslip analysis.The main advances in obtaining fault slip rates are based on improving the reli-ability of the above four main factors.To obtain a more reasonable and reliable slip rate for a given fault,it is necessary to select a suitable method according to the specific situation.展开更多
Tire slip angle has a great influence on peak values of both logitudinal and lateral adhesion coefficients as well as optimal slip ratios. Regression equations based on the experi- mental data from several countries...Tire slip angle has a great influence on peak values of both logitudinal and lateral adhesion coefficients as well as optimal slip ratios. Regression equations based on the experi- mental data from several countries are given to describe their dependencies. The peak value of longitudiinal adhesion coefficient has a linear relationship with tire slip angle, but peak value of lateral has a complicated relationship; the optimal slip ratio of longitudinal has an exponent function relationship, the optimal slip ratio of lateral almost has nothinng to do with tire slipangle.展开更多
To improve the semi-empirical model, the slip sinkage effect is analyzed based on the real vehicle test. A dynamic testing system is used to gain the dynamic responses of wheel-soil interactions, The Gauss-Newton algo...To improve the semi-empirical model, the slip sinkage effect is analyzed based on the real vehicle test. A dynamic testing system is used to gain the dynamic responses of wheel-soil interactions, The Gauss-Newton algorithm is adopted to estimate the undetermined parameters involved in the slip sinkage models. Wong's original model is compared with three typical slip sinkage models on the prediction performance of a drawbar pull. The maximum error rate, root mean squared error and correlation coefficient are utilized to evaluate the performance. The results indicate that the slip sinkage models outperform Wong's model and greatly improve the prediction accuracy. Lyasko's model is confirmed as an outstanding one for its comprehensive performance. Hence, the existence of the slip sinkage effect is validated. Lyasko's model is selected as an optimal one for the practical evaluation of military vehicle trafficability.展开更多
基金the National Science Fund for Distinguished Young Scholars(No.41925016)National Key Research and Development Program(No.2022YFB3903602)+1 种基金National Natural Science Foundation of China(No.42174023)the Frontier Cross Research Project of Central South University(No.2023QYJC006).
文摘The 2022 M_(W)6.7 Menyuan earthquake ruptured the western end of the Tianzhu seismic gap,providing an opportunity to study the regional seismogenic characteristics and seismic hazards.Here we use interferometric synthetic aperture radar(InSAR)and seismic data to study the mainshock rupture,early afterslip and the second largest aftershock of the 2022 Menyuan earthquake sequences.Our modeling results show that the mainshock ruptured the Lenglongling fault and the Tuolaishan fault with a maximum slip of~3 m.Rapid postseismic transient deformation occurred at the center of the Lenglongling fault.Our afterslip modeling reveals that the majority of afterslip occurred in the deeper part of the Lenglongling fault.A high-angle conjugated faulting event is found at the middle section of the Lenglongling fault.We use the stress inversion to investigate the possible triggering mechanism of the conjugated rupture event.The results indicate the maximum principal stress direction is in~222°,forming a~22°angle between the conjugated fault of second largest aftershock and the mainshock.The calculated normal stress changes indicate the region is within a pull-apart stress field,which favors such a conjugated rupturing event.Our study will help understand the rupture behavior of such kind of conjugated fault in other regions.
基金support from National Natural Science Foundation of China(51871032,52071039 and 51671040)Natural Science Foundation of Jiangsu Province(BK20202010)“111”Project by the Ministry of Education(B16007).
文摘The high ductility of Mg-Li alloy has been mainly ascribed to a high activity of pyramidal<c+a>slip to accommodate plastic strain.In the present study,however,a quantitative analysis reveals that Li-addition can only slightly stimulate the activation of pyramidal<c+a>slip under compression along the normal direction of a hot-rolled Mg-4.5 wt.%Li plate,with a relative activity of approximately 18%.Although the limited activity of pyramidal<c+a>slip alone cannot accommodate a large plastic strain,it effectively reduces the number of{10.11}−{10.12}double twins,which are believed to be favorable sites for crack initiation.The evidently reduced activity of double twins leads to a lower cracking tendency,and therefore improves ductility.
基金Science and Technology Development Fund of Wuhan Institute of Earth Observation,China Earthquake Administration(No.302021-21)Open Fund of Wuhan,Gravitation and Solid Earth Tides,National Observation and Research Station(WHYWZ202218).
文摘On February 6,2023,a devastating earthquake with a moment magnitude of M_(W)7.8 struck the town of Pazarcik in south-central Türkiye,followed by another powerful earthquake with a moment magnitude of M_(W)7.6 that struck the nearby city of Elbistan 9 h later.To study the characteristics of surface deformation caused by this event and the influence of fault rupture,this study calculated the static coseismic deformation of 56 stations and dynamic displacement waveforms of 15 stations using data from the Turkish national fixed global navigation satellite system(GNSS)network.A maximum static coseismic displacement of 0.38 m for the M_(W)7.8 Kahramanmaras earthquake was observed at station ANTE,36 km from the epicenter,and a maximum dynamic coseismic displacement of 4.4 m for the M_(W)7.6 Elbistan earthquake was observed at station EKZ1,5 km from the epicenter.The rupture-slip distributions of the two earthquakes were inverted using GNSS coseismic deformation as a constraint.The results showed that the Kahramanmaras earthquake rupture segment was distinct and exposed on the ground,resulting in significant rupture slip along the Amanos and Pazarcik fault segments of the East Anatolian Fault.The maximum slip in the Pazarcik fault segment was 10.7 m,and rupture occurred at depths of 0–15 km.In the Cardak fault region,the Elbistan earthquake caused significant ruptures at depths of 0–12 km,with the largest amount of slip reaching 11.6 m.The Coulomb stress change caused by the Kahramanmaras earthquake rupture along the Cardak fault segment was approximately 2 bars,and the area of increased Coulomb stress corresponded to the subsequent rupture region of the M_(W)7.6 earthquake.Thus,it is likely that the M_(W)7.8 earthquake triggered or promoted the M_(W)7.6 earthquake.Based on the cumulative stress impact of the M_(W)7.8 and M_(W)7.6 events,the southwestern segment of the East Anatolian Fault,specifically the Amanos fault segment,experienced a Coulomb rupture stress change exceeding 2 bars,warranting further attention to assess its future seismic hazard risk.
基金supported by the National Research Foundation of Korea(NRF)grants funded by the Korea government(MSIT)(Nos.RS-2024-00351052 and RS-2024-00450561).
文摘This study investigates the effect of the deformation mode on the precipitation behavior of an extruded Mg-8.0Al-0.5Zn-0.2Mn(AZ80)alloy.The alloy samples are compared after the application of 3.5%tension and 3.5%compression along the extrusion direction to induce slip-dominant and twinning-dominant deformation modes,respectively.The pre-compressed(PC)sample,which contained numerous{10-12}tension twins,has a reduced grain size and a higher internal strain than the pre-tensioned(PT)sample,which is attributed to the inherent internal strain that occurs during the formation and growth of the twins.As a result,the precipitation behavior of the PC sample is accelerated,leading to its short peak aging time of 32 h,which is lower than those of the PT and as-extruded samples(48 and 100 h,respectively).Furthermore,fine continuous precipitates(CPs)rapidly form within the{10-12}twins,contributing to the enhanced hardness.Discontinuous precipitates(DPs),which have a hardness comparable to the CP-containing twinned regions,in the PC sample experience less coarsening during aging than those in the PT sample due to growth inhibition by the{10-12}twins.Ultimately,the{10-12}twins generated under the twinning-dominant deformation condition lead to enhanced precipitation behaviors,including the preferential formation and refinement of CPs and the suppressed coarsening of DPs.Consequently,pre-deformation that occurs{10-12}twinning exhibits more pronounced effects on precipitation acceleration and microstructural modification than slip-inducing pre-deformation.
文摘Fault zones are usually filled with fault gouge and accompanied by fault water.The coupled effect of fault gouge and water significantly impacts the slip behavior of the fault,which may weaken the fault structure and further induce rupture propagation and earthquakes.In this study,we carried out a laboratory experiment to investigate the fluid-induced slip behavior of fault filled with gouge.The friction evolution characteristic associated with fluid pressure and effective stress was investigated during the slip process.In addition,the role transformation process of the gouge on the slip behavior of fault was revealed.The experimental result indicates that the friction on the filled fault surface is significantly affected by fault gouge.The rupture of the gouge promotes fault slip and the fluid pressure plays a vital role in the initiation of fault slip.The fault gouge enhances the shearing strength of the fault and acts as a barrier before the initial slip under fluid injection.Nevertheless,the fault gouge would accelerate the fault slip and transform into lubricant after the initial slip.
基金supported by the National Natural Science Foundation of China (No.U21B6004)Major Project of Scientific Innovation of Hunan Province,China (No.2021GK1040)National Key R&D Program of China (No.2020YFA0711104)。
文摘The slip behavior and precipitation behavior of four Al−Cu−Li single crystals with varying orientations at different temperatures were investigated using electron backscattering diffraction(EBSD)and transmission electron microscopy(TEM).The maximum differences in yield strength and ductility of the single crystals at room temperature are 41.6%and 14.7%,respectively.This indicates that the mechanical properties are strongly influenced by the crystal orientation.Moreover,grains with varying orientations exhibit distinct slip characteristics,including slip homogenization,slip localization,and multiple slip.In single crystal SC1,slip localization primarily contributes to its inferior ductility compared to other grains.Nevertheless,during deformation at 250℃,the distinct morphology and distribution of precipitates in the crystals are also correlated with orientation,which causes the increase in the maximum elongation difference to 20.8%in all selected single crystals.Notably,SC1,with a precipitate volume fraction of 2.65%,exhibits more severe slip localization compared to room temperature conditions,while SC2,with a precipitate volume fraction of 4.79%,demonstrates cross-slip characteristics,significantly enhancing the plastic deformation capacity of the Al−Cu−Li alloy.
基金Project supported by the Natural Science Foundation of Inner Mongolia of China(Grant No.2021BS01008)the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region(Grant No.NMGIRT2323)the Scientific Research Funding Project for introduced high level talents of IMNU(Grant No.2020YJRC014)。
文摘The aim of this study is to numerically investigate the impact of boundary slip on electroosmotic flow(EOF) in curved rectangular microchannels. Navier slip boundary conditions were employed at the curved microchannel walls. The electric potential distribution was governed by the Poisson–Boltzmann equation, whereas the velocity distribution was determined by the Navier–Stokes equation. The finite-difference method was employed to solve these two equations. The detailed discussion focuses on the impact of the curvature ratio, electrokinetic width, aspect ratio and slip length on the velocity. The results indicate that the present problem is strongly dependent on these parameters. The results demonstrate that by varying the dimensionless slip length from 0.001 to 0.01 while maintaining a curvature ratio of 0.5 there is a twofold increase in the maximum velocity. Moreover, this increase becomes more pronounced at higher curvature ratios. In addition, the velocity difference between the inner and outer radial regions increases with increasing slip length. Therefore, the incorporation of the slip boundary condition results in an augmented velocity and a more non-uniform velocity distribution. The findings presented here offer valuable insights into the design and optimization of EOF performance in curved hydrophobic microchannels featuring rectangular cross-sections.
基金supported by the National Natural Science Foundation of China (No.51901153)Shanxi Scholarship Council of China (No.2019032)+2 种基金Natural Science Foundation of Shanxi Province,China (No.202103021224049)the Shanxi Zhejiang University New Materials and Chemical Research Institute Scientific Research Project,China (No.2022SX-TD025)the Open Project of Salt Lake Chemical Engineering Research Complex,Qinghai University,China (No.2023-DXSSKF-Z02)。
文摘The influence of the slip mode on the microstructure evolution and compressive flow behavior at different strains in an extruded dilute Mg−0.5Bi−0.5Sn−0.5Mn alloy was analyzed through electron backscatter diffraction,X-ray diffraction,transmission electron microscopy,and hot compression tests.The results showed that at a low strain of 0.05,the basal,pyramidaland<c+a>slip modes were simultaneously activated.Nevertheless,at the middle stage of deformation(strain of 0.1,0.2 and 0.5),theslip mode was difficult to be activated and<c+a>slip mode became dominant.The deformation process between strains of 0.2 and 0.5 was primarily characterized by the softening effect resulting from the simultaneous occurrence of continuous dynamic recrystallization and discontinuous dynamic recrystallization.Ultimately,at strain of 0.8,a dynamic equilibrium was established,with the flow stress remaining constant due to the interplay between the dynamic softening brought about by discontinuous dynamic recrystallization and the work-hardening effect induced by the activation of the basalslip mode.
基金supported by the National Natural Science Foundation of China (Grand number 41802224)the Youth Program of Seismological Science and Technology Spark Program of China Earthquake Administration (Grand No. XH23019YC)the Joint Open Fund of National Geophysical Observation and Research Station in Mengcheng, Anhui Province (Grand No. MENGO-202114)。
文摘We employ the block negative dislocation model to invert the distribution of fault coupling and slip rate deficit on the different segments of the Tanlu(Tancheng-Lujiang) fault zone, according to the GPS horizontal velocity field from 1991 to 2007(the first phase) and 2013 to 2018(the second phase). By comparing the deformation characteristics results, we discuss the relationship between the deformation characteristics with the M earthquake in Japan. The results showed that the fault coupling rate of the northern section of Tancheng in the second phase reduced compared with that in the first phase. However, the results of the two phases showed that the northern section of Juxian still has a high coupling rate, a deep blocking depth, and a dextral compressive deficit, which is the enrapture section of the 1668 Tancheng earthquake. At the same time, the area strain results show that the strain rate of the central and eastern regions of the second phase is obviously enhanced compared with that of the first phase. The occurrence of the great earthquake in Japan has played a specific role in alleviating the strain accumulation in the middle and south sections of the Tanlu fault zone. The results of the maximum shear strain show that the shear strain in the middle section of the Tanlu fault zone in the second phase is weaker than that in the first phase, and the maximum shear strain in the southern section is stronger than that in the first phase. The fault coupling coefficient of the south Sihong to Jiashan section is high, and it is also the unruptured section of historical earthquakes. At the same time, small earthquakes in this area are not active and accumulate stress easily, so the future earthquake risk deserves attention.
基金Supported by The Youth Medicine Technology Innovation Project of Xuzhou Health Commission,No.XWKYHT20200026.
文摘BACKGROUND Adjacent segment disease(ASD)after fusion surgery is frequently manifests as a cranial segment instability,disc herniation,spinal canal stenosis,spondylolisthesis or retrolisthesis.The risk factors and mechanisms of ASD have been widely discussed but never clearly defined.AIM To investigate the risk factors and clinical significance of retrograde movement of the proximal vertebral body after lower lumbar fusion.METHODS This was a retrospective analysis of the clinical data of patients who underwent transforaminal lumbar interbody fusion surgery between September 2015 and July 2021 and who were followed up for more than 2 years.Ninety-one patients with degenerative lumbar diseases were included(22 males and 69 females),with an average age of 52.3 years(40-73 years).According to whether there was retrograde movement of the adjacent vertebral body on postoperative X-rays,the patients were divided into retrograde and nonretrograde groups.The sagittal parameters of the spine and pelvis were evaluated before surgery,after surgery,and at the final follow-up.At the same time,the Oswestry Disability Index(ODI)and Visual Analogue Scale(VAS)were used to evaluate the patients’quality of life.RESULTS Nineteen patients(20.9%)who experienced retrograde movement of proximal adjacent segments were included in this study.The pelvic incidence(PI)of the patients in the retrograde group were significantly higher than those of the patients in the nonretrograde group before surgery,after surgery and at the final follow-up(P<0.05).There was no significant difference in lumbar lordosis(LL)between the two groups before the operation,but LL in the retrograde group was significantly greater than that in the nonretrograde group postoperatively and at the final follow-up.No significant differences were detected in terms of the|PI–LL|,and there was no significant difference in the preoperative lordosis distribution index(LDI)between the two groups.The LDIs of the retrograde group were 68.1%±11.5%and 67.2%±11.9%,respectively,which were significantly lower than those of the nonretrograde group(75.7%±10.4%and 74.3%±9.4%,respectively)(P<0.05).Moreover,the patients in the retrograde group had a greater incidence of a LDI<50%than those in the nonretrograde group(P<0.05).There were no significant differences in the ODI or VAS scores between the two groups before the operation,but the ODI and VAS scores in the retrograde group were significantly worse than those in the nonretrograde group after the operation and at the last follow-up,(P<0.05).CONCLUSION The incidence of posterior slippage after lower lumbar fusion was approximately 20.9%.The risk factors are related to a higher PI and distribution of lumbar lordosis.When a patient has a high PI and insufficient reconstruction of the lower lumbar spine,adjacent segment compensation via posterior vertebral body slippage is one of the factors that significantly affects surgical outcomes.
文摘A wide range of technological and industrial domains,including heating processors,electrical systems,mechanical systems,and others,are facing issues as a result of the recent developments in heat transmission.Nanofluids are a novel type of heat transfer fluid that has the potential to provide solutions that will improve energy transfer.The current study investigates the effect of a magnetic field on the two-dimensional flow of Williamson nanofluid over an exponentially inclined stretched sheet.This investigation takes into account the presence of multi-slip effects.We also consider the influence of viscous dissipation,thermal radiation,chemical reactions,and suction on the fluid’s velocity.We convert the nonlinear governing partial differential equations(PDEs)of the fluid flow problem into dimensionless ordinary differential equations(ODEs)through the utilization of similarity variables.We then use the homotopy analysis method(HAM)to numerically solve the resulting ordinary differential equations(ODEs).We demonstrate the effects of numerous elements on a variety of profiles through graphical and tabular representations.We observe a drop in the velocity profile whenever we increase either the magnetic number or the suction parameter.Higher values of the Williamson parameter lead to an increase in the thermal profile,while the momentum of the flow displays a trend in the opposite direction.The potential applications of this unique model include chemical and biomolecule detection,environmental cleansing,and the initiation of radiation-induced chemical processes like polymerization,sterilization,and chemical synthesis.
基金sponsored by the National Nonprofit Fundamental Research Grant of China(IGCEA1803,IGCEA1901)the National Key R&D Program of China(2017YFC1500401).
文摘Slip rate along the major active fault is an important parameter in the quantitative study of active tectonics.It is the average rate of fault slip during a certain period of time,reflecting the rate of strain energy accumulation on the fault zone.It cannot only be directly applied to evaluate the activity of the fault,the probabilistic seismic hazard analysis,but also important basic data for the study of geodynamics.However,due to the nonstandardized process of obtaining fault slip rates for a given strike-slip fault,the results could be diverse based on various methods by different researchers.In this review,we analyzed the main advances in the approaches to obtain fault slip rate.We found that there are four main sources affecting the final results of slip rate:the displacement along the fault,the dating of the corresponding displacement,the fitting of the displacement and corresponding dating results,and paleoslip analysis.The main advances in obtaining fault slip rates are based on improving the reli-ability of the above four main factors.To obtain a more reasonable and reliable slip rate for a given fault,it is necessary to select a suitable method according to the specific situation.
文摘Tire slip angle has a great influence on peak values of both logitudinal and lateral adhesion coefficients as well as optimal slip ratios. Regression equations based on the experi- mental data from several countries are given to describe their dependencies. The peak value of longitudiinal adhesion coefficient has a linear relationship with tire slip angle, but peak value of lateral has a complicated relationship; the optimal slip ratio of longitudinal has an exponent function relationship, the optimal slip ratio of lateral almost has nothinng to do with tire slipangle.
基金The National Natural Science Foundation of China(No.51305078)the Science and Technology Plan of Suzhou City(No.SYG201303)
文摘To improve the semi-empirical model, the slip sinkage effect is analyzed based on the real vehicle test. A dynamic testing system is used to gain the dynamic responses of wheel-soil interactions, The Gauss-Newton algorithm is adopted to estimate the undetermined parameters involved in the slip sinkage models. Wong's original model is compared with three typical slip sinkage models on the prediction performance of a drawbar pull. The maximum error rate, root mean squared error and correlation coefficient are utilized to evaluate the performance. The results indicate that the slip sinkage models outperform Wong's model and greatly improve the prediction accuracy. Lyasko's model is confirmed as an outstanding one for its comprehensive performance. Hence, the existence of the slip sinkage effect is validated. Lyasko's model is selected as an optimal one for the practical evaluation of military vehicle trafficability.