To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified ...To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified as an up-and-coming alternative.Among the various SEs,organic–inorganic composite solid electrolytes(OICSEs)that combine the advantages of both polymer and inorganic materials demonstrate promising potential for large-scale applications.However,OICSEs still face many challenges in practical applications,such as low ionic conductivity and poor interfacial stability,which severely limit their applications.This review provides a comprehensive overview of recent research advancements in OICSEs.Specifically,the influence of inorganic fillers on the main functional parameters of OICSEs,including ionic conductivity,Li+transfer number,mechanical strength,electrochemical stability,electronic conductivity,and thermal stability are systematically discussed.The lithium-ion conduction mechanism of OICSE is thoroughly analyzed and concluded from the microscopic perspective.Besides,the classic inorganic filler types,including both inert and active fillers,are categorized with special emphasis on the relationship between inorganic filler structure design and the electrochemical performance of OICSEs.Finally,the advanced characterization techniques relevant to OICSEs are summarized,and the challenges and perspectives on the future development of OICSEs are also highlighted for constructing superior ASSLBs.展开更多
Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the...Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the degradation of layered oxides and the decomposition of electrolyte at high voltage,as well as the high reactivity of metallic Li.The key is the development of stable electrolytes against both highvoltage cathodes and Li with the formation of robust interphase films on the surfaces.Herein,we report a highly fluorinated ether,1,1,1-trifluoro-2-[(2,2,2-trifluoroethoxy)methoxy]ethane(TTME),as a cosolvent,which not only functions as a diluent forming a localized high concentration electrolyte(LHCE),but also participates in the construction of the inner solvation structure.The TTME-based electrolyte is stable itself at high voltage and induces the formation of a unique double-layer solid electrolyte interphase(SEI)film,which is embodied as one layer rich in crystalline structural components for enhanced mechanical strength and another amorphous layer with a higher concentration of organic components for enhanced flexibility.The Li||Cu cells display a noticeably high Coulombic efficiency of 99.28%after 300 cycles and Li symmetric cells maintain stable cycling more than 3200 h at 0.5 mA/cm^(2) and 1.0m Ah/cm^(2).In addition,lithium metal cells using LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) and Li CoO_(2) cathodes(both loadings~3.0 m Ah/cm^(2))realize capacity retentions of>85%over 240 cycles with a charge cut-off voltage of 4.4 V and 90%for 170 cycles with a charge cut-off voltage of 4.5 V,respectively.This study offers a bifunctional ether-based electrolyte solvent beneficial for high-voltage Li metal batteries.展开更多
All-solid-state lithium metal batteries(ASSLMBs)with solid electrolytes(SEs)have emerged as a promising alternative to liquid electrolyte-based Li-ion batteries due to their higher energy density and safety.However,si...All-solid-state lithium metal batteries(ASSLMBs)with solid electrolytes(SEs)have emerged as a promising alternative to liquid electrolyte-based Li-ion batteries due to their higher energy density and safety.However,since ASSLMBs lack the wetting properties of liquid electrolytes,they require stacking pressure to prevent contact loss between electrodes and SEs.Though previous studies showed that stacking pressure could impact certain performance aspects,a comprehensive investigation into the effects of stacking pressure has not been conducted.To address this gap,we utilized the Li_(6)PS_(5)Cl solid electrolyte as a reference and investigated the effects of stacking pressures on the performance of SEs and ASSLMBs.We also developed models to explain the underlying origin of these effects and predict battery performance,such as ionic conductivity and critical current density.Our results demonstrated that an appropriate stacking pressure is necessary to achieve optimal performance,and each step of applying pressure requires a specific pressure value.These findings can help explain discrepancies in the literature and provide guidance to establish standardized testing conditions and reporting benchmarks for ASSLMBs.Overall,this study contributes to the understanding of the impact of stacking pressure on the performance of ASSLMBs and highlights the importance of careful pressure optimization for optimal battery performance.展开更多
Chloride solid electrolytes possess multiple advantages for the construction of safe,energy-dense allsolid-state sodium batteries,but presently the chlorides with sufficiently high cost-competitiveness for commerciali...Chloride solid electrolytes possess multiple advantages for the construction of safe,energy-dense allsolid-state sodium batteries,but presently the chlorides with sufficiently high cost-competitiveness for commercialization almost all exhibit low Na-ion conductivities of around 10^(-5)S cm^(-1)or lower.Here,we report a chloride solid electrolyte,Na_(2.7)ZFCl_(5.3)O_(0.7),which reaches a Na-ion conductivity of 2.29×10^(-4)S cm^(-1)at 25℃without involving overly expensive raw materials such as rare-earth chlorides or Na_(2)S.In addition to the efficient ion transport,Na_(2.7)ZrCl_(5.3)O_(0.7)also shows an excellent deformability surpassing that of the widely studied Na_(3)PS_(4),Na_(3)SbS_(4),and Na_(2)ZrCl_(6)solid electrolytes.The combination of these advantages allows the all-solid-state cell based on Na_(2.7)ZrCl_(5.3)O_(0.7)and NaCrO_(2)to realize stable room-temperature cycling at a much higher specific current than those based on other non-viscoelastic chloride solid electrolytes in literature(120 mA g^(-1)vs.12-55 mA g^(-1));after 100 cycles at such a high rate,the Na_(2.7)ZFCl_(5.3)O_(0.7)-based cell can still deliver a discharge capacity of 80 mAh g^(-1)at25℃.展开更多
Searching for novel solid electrolytes is of great importance and challenge for all-solid-state Mg batteries.In this work,we develop an amorphous Mg borohydride ammoniate,Mg(BH_(4))_(2)·2NH_(3),as a solid Mg elec...Searching for novel solid electrolytes is of great importance and challenge for all-solid-state Mg batteries.In this work,we develop an amorphous Mg borohydride ammoniate,Mg(BH_(4))_(2)·2NH_(3),as a solid Mg electrolyte that prepared by a NH_(3)redistribution between 3D framework-γ-Mg(BH_(4))_(2)and Mg(BH_(4))_(2)·6NH_(3).Amorphous Mg(BH_(4))_(2)·2NH_(3)exhibits a high Mg-ion conductivity of 5×10^(-4)S cm^(-1)at 75℃,which is attributed to the fast migration of abundant Mg vacancies according to the theoretical calculations.Moreover,amorphous Mg(BH_(4))_(2)·2NH_(3)shows an apparent electrochemical stability window of 0-1.4 V with the help of in-situ formed interphases,which can prevent further side reactions without hindering the Mg-ion transfer.Based on the above superiorities,amorphous Mg(BH_(4))_(2)·2NH_(3)enables the stable cycling of all-solid-state Mg cells,as the critical current density reaches 3.2 mA cm^(-2)for Mg symmetrical cells and the reversible specific capacity reaches 141 mAh g^(-1)with a coulombic efficiency of 91.7%(first cycle)for Mg||TiS_(2)cells.展开更多
Composite solid electrolytes(CSEs)have emerged as promising candidates for safe and high-energy–density solid-state lithium metal batteries(SSLMBs).However,concurrently achieving exceptional ionic conductivity and in...Composite solid electrolytes(CSEs)have emerged as promising candidates for safe and high-energy–density solid-state lithium metal batteries(SSLMBs).However,concurrently achieving exceptional ionic conductivity and interface compatibility between the electrolyte and electrode presents a significant challenge in the development of high-performance CSEs for SSLMBs.To overcome these challenges,we present a method involving the in-situ polymerization of a monomer within a self-supported porous Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZT)to produce the CSE.The synergy of the continuous conductive LLZT network,well-organized polymer,and their interface can enhance the ionic conductivity of the CSE at room temperature.Furthermore,the in-situ polymerization process can also con-struct the integration and compatibility of the solid electrolyte–solid electrode interface.The synthesized CSE exhibited a high ionic conductivity of 1.117 mS cm^(-1),a significant lithium transference number of 0.627,and exhibited electrochemical stability up to 5.06 V vs.Li/Li+at 30℃.Moreover,the Li|CSE|LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cell delivered a discharge capacity of 105.1 mAh g^(-1) after 400 cycles at 0.5 C and 30℃,corresponding to a capacity retention of 61%.This methodology could be extended to a variety of ceramic,polymer electrolytes,or battery systems,thereby offering a viable strategy to improve the electrochemical properties of CSEs for high-energy–density SSLMBs.展开更多
Polymer solid-state lithium batteries(SSLB)are regarded as a promising energy storage technology to meet growing demand due to their high energy density and safety.Ion conductivity,interface stability and battery asse...Polymer solid-state lithium batteries(SSLB)are regarded as a promising energy storage technology to meet growing demand due to their high energy density and safety.Ion conductivity,interface stability and battery assembly process are still the main challenges to hurdle the commercialization of SSLB.As the main component of SSLB,poly(1,3-dioxolane)(PDOL)-based solid polymer electrolytes polymerized in-situ are becoming a promising candidate solid elec-trolyte,for their high ion conductivity at room temperature,good battery elec-trochemical performances,and simple assembly process.This review analyzes opportunities and challenges of PDOL electrolytes toward practical application for polymer SSLB.The focuses include exploring the polymerization mechanism of DOL,the performance of PDOL composite electrolytes,and the application of PDOL.Furthermore,we provide a perspective on future research directions that need to be emphasized for commercialization of PDOL-based electrolytes in SSLB.The exploration of these schemes facilitates a comprehensive and profound understanding of PDOL-based polymer electrolyte and provides new research ideas to boost them toward practical application in solid-state batteries.展开更多
For the performance optimization strategies of hard carbon,heteroatom doping is an effective way to enhance the intrinsic transfer properties of sodium ions and electrons for accelerating the reaction kinetics.However...For the performance optimization strategies of hard carbon,heteroatom doping is an effective way to enhance the intrinsic transfer properties of sodium ions and electrons for accelerating the reaction kinetics.However,the previous work focuses mainly on the intrinsic physicochemical property changes of the material,but little attention has been paid to the resulting interfacial regulation of the electrode surface,namely the formation of solid electrolyte interphase(SEI)film.In this work,element F,which has the highest electronegativity,was chosen as the doping source to,more effectively,tune the electronic structure of the hard carbon.The effect of F-doping on the physicochemical properties of hard carbon was not only systematically analyzed but also investigated with spectroscopy,optics,and in situ characterization techniques to further verify that appropriate F-doping plays a positive role in constructing a homogenous and inorganic-rich SEI film.The experimentally demonstrated link between the electronic structure of the electrode and the SEI film properties can reframe the doping optimization strategy as well as provide a new idea for the design of electrode materials with low reduction kinetics to the electrolyte.As a result,the optimized sample with the appropriate F-doping content exhibits the best electrochemical performance with high capacity(434.53 mA h g^(-1)at 20mA g^(-1))and excellent rate capability(141 mAh g^(-1)at 400 mA g^(-1)).展开更多
Lithium metal shows a great advantage as the most promising anode for its unparalleled theoretical specific capacity and extremely low electrochemical potential.However,uncontrolled lithium dendrite growth and severe ...Lithium metal shows a great advantage as the most promising anode for its unparalleled theoretical specific capacity and extremely low electrochemical potential.However,uncontrolled lithium dendrite growth and severe side reactions of the reactive intermediates and organic electrolytes still limit the broad application of lithium metal batteries.Herein,we propose 4-nitrobenzenesulfonyl fluoride(NBSF)as an electrolyte additive for forming a stable organic-inorganic hybrid solid electrolyte interphase(SEI)layer on the lithium surface.The abundance of lithium fluoride and lithium nitride can guarantee the SEI layer's toughness and high ionic conductivity,achieving dendrite-free lithium deposition.Meanwhile,the phenyl group of NBSF significantly contributes to both the chemical stability of the SEI layer and the good adaptation to volume changes of the lithium anode.The lithium-oxygen batteries with NBSF exhibit prolonged cycle lives and excellent cycling stability.This simple approach is hoped to improve the development of the organic-inorganic SEI layer to stabilize the lithium anodes for lithium-oxygen batteries.展开更多
Traditional garnet solid electrolyte(Li_(7)La_(3)Zr_(2)O_(12))suffers from low room temperature ionic conductivity,poor air stability,high sintering temperature and energy consumption.Considering the development prosp...Traditional garnet solid electrolyte(Li_(7)La_(3)Zr_(2)O_(12))suffers from low room temperature ionic conductivity,poor air stability,high sintering temperature and energy consumption.Considering the development prospects of high-entropy materials with high structural disorder and strong component controllability in the field of electrochemical energy storage,herein,a novel high-entropy garnet-type oxide solid electrolyte,Li_(5.75)Ga_(0.25)La_(3)Zr_(0.5)Ti_(0.5)Sn_(0.5)Nb_(0.5)O_(12)(LGLZTSNO)was constructed by partially replacing the Li and Zr sites in Li_(7)La_(3)Zr_(2)O_(12)with Ga and Ti/Sn/Nb elements,respectively.The experimental and density functional theory(DFT)calculation results show that the high-entropy LGLZTSNO electrolyte has preferable room temperature ion conductivity,air stability,interface contact performance with lithium anode,and the ability to suppress lithium dendrites.Thanks to the improvement of electrolyte performance,the critical current density of Li/Ag@LGLZTSNO/Li symmetric cell was increased from 0.42 to 1.57 mA cm^(−2),and the interface area specific impedance(IASR)was reduced from 765.2 to 42.3Ωcm^(2).Meanwhile,the Li/Ag@LGLZTSNO/LFP full cell also exhibits excellent rate performance and cycling performance(148 mA h g^(−1)at 0.1 C and 124 mA h g^(−1)at 0.5 C,capacity retention up to 84.8%after 100 cycles at 0.1 C),showing the application prospects of high-entropy LGLZTSNO solid electrolyte in high-performance all solid state lithium batteries.展开更多
Polymer solid electrolytes(SPEs)based on the[solvate-Li+]complex structure have promising prospects in lithium metal batteries(LMBs)due to their unique ion transport mechanism.However,the solvation structure may compr...Polymer solid electrolytes(SPEs)based on the[solvate-Li+]complex structure have promising prospects in lithium metal batteries(LMBs)due to their unique ion transport mechanism.However,the solvation structure may compromise the mechanical performance and safety,hindering practical application of SPEs.In this work,a composite solid electrolyte(CSE)is designed through the organic-inorganic syner-gistic interaction among N,N-dimethylformamide(DMF),polycarbonate(PC),and Mg_(2)B_(2)O_(5) in poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP).Flame-retardant Mg_(2)B_(2)O_(5) nanowires provide non-flammability to the prepared CSEs,and the addition of PC improves the dispersion of Mg_(2)B_(2)O_(5) nanowires.Simultaneously,the organic-inorganic synergistic action of PC plasticizer and Mg_(2)B_(2)O_(5) nanowires pro-motes the dissociation degree of LiTFSI and reduces the crystallinity of PVDF-HFP,enabling rapid Li ion transport.Additionally,Raman spectroscopy and DFT calculations confirm the coordination between Mg atoms in Mg_(2)B_(2)O_(5) and N atoms in DMF,which exhibits Lewis base-like behavior attacking adjacent C-F and C-H bonds in PVDF-HFP while inducing dehydrofluorination of PVDF-HFP.Based on the syner-gistic coupling of Mg_(2)B_(2)O_(5),PC,and DMF in the PVDF-HFP matrix,the prepared CSE exhibits superior ion conductivity(9.78×10^(-4) s cm^(-1)).The assembled Li symmetric cells cycle stably for 3900 h at a current density of 0.1 mA cm^(-2) without short circuit.The LFP||Li cells assembled with PDL-Mg_(2)B_(2)O_(5)/PC CSEs show excellent rate capability and cycling performance,with a capacity retention of 83.3%after 1000 cycles at 0.5 C.This work provides a novel approach for the practical application of organic-inorganic Synergistic CSEs in LMBs.展开更多
High Li^(+)transference number electrolytes have long been understood to provide attractive candidates for realizing uniform deposition of Li^(+).However,such electrolytes with immobilized anions would result in incom...High Li^(+)transference number electrolytes have long been understood to provide attractive candidates for realizing uniform deposition of Li^(+).However,such electrolytes with immobilized anions would result in incomplete solid electrolyte interphase(SEI)formation on the Li anode because it suffers from the absence of appropriate inorganic components entirely derived from anions decomposition.Herein,a boron-rich hexagonal polymer structured all-solid-state polymer electrolyte(BSPE+10%LiBOB)with regulated intermolecular interaction is proposed to trade off a high Li^(+)transference number against stable SEI properties.The Li^(+)transference number of the as-prepared electrolyte is increased from 0.23 to 0.83 owing to the boron-rich cross-linker(BC)addition.More intriguingly,for the first time,the experiments combined with theoretical calculation results reveal that BOB^(-)anions have stronger interaction with B atoms in polymer chain than TFSI^(-),which significantly induce the TFSI^(-)decomposition and consequently increase the amount of LiF and Li3N in the SEI layer.Eventually,a LiFePO_(4)|BSPE+10%LiBOBlLi cell retains 96.7%after 400 cycles while the cell without BC-resisted electrolyte only retains 40.8%.BSPE+10%LiBOB also facilitates stable electrochemical cycling of solid-state Li-S cells.This study blazes a new trail in controlling the Li^(+)transport ability and SEI properties,synergistically.展开更多
Due to ever-increasing concerns about safety issues in using Li ionic batteries,solid electrolytes have extensively explored.The Li-rich antiperovskite Li_(3)OBr has been considered as a promising solid electrolyte ca...Due to ever-increasing concerns about safety issues in using Li ionic batteries,solid electrolytes have extensively explored.The Li-rich antiperovskite Li_(3)OBr has been considered as a promising solid electrolyte candidate,but it still suffers challenges to achieve a high ionic conductivity owing to the high intrinsic symmetry of the crystal lattice.Herein,we presented a design strategy that introduces various point defects and grain boundaries to break the high lattice symmetry of Li_(3)OBr crystal,and their effect and microscopic mechanism of promoting the migration of Li-ion were explored theoretically.It has been found that Li_(i)are the dominant defects responsible for the fast Li-ion diffusion in bulk Li_(3)OBr and its surface,but they are easily trapped by the grain boundaries,leading to the annihilating of the Frenkel defect pair V'_(Li)+Li_(i),and thus limits the V'_(Li)diffusion at the grain boundaries.The V_(Br)defect near the grain boundaries can effectively drive V'_(Li)across the grain boundary,thereby converting the carrier of Li^(+)migration from Li,in the bulk and surface to V'_(Li)at the grain boundary,and thus improving the ionic conductivity in the whole Li_(3)OBr crystal.This work provides a comprehensive insight into the Li^(+)transport and conduction mechanism in the Li_(3)OBr electrolyte.It opens a new way of improving the conductivity for all-solid-state Li electrolyte material through the defect design.展开更多
This paper is aimed to present a clean,inexpensive and sustainable method to synthesize high purity lithium sulfide(Li_(2)S)powder through hydrogen reduction of lithium sulfate(Li_(2)SO_(4)).A three-step reduction pro...This paper is aimed to present a clean,inexpensive and sustainable method to synthesize high purity lithium sulfide(Li_(2)S)powder through hydrogen reduction of lithium sulfate(Li_(2)SO_(4)).A three-step reduction process has been successfully developed to synthesize well-crystallized and single-phase Li_(2)S powder by investigating the melting,sintering and reduction behavior of the mixtures of Li_(2)SO_(4)-Li_(2)S.High purity alumina was found to be the most suitable crucible material for producing high purity Li_(2)S,because it was not attacked by the Li_(2)SO_(4)-Li_(2)S melt during heating,as compared with other materials,such as carbon,mullite,quartz,boron nitride and stainless steel.The use of synthesized LizS resulted in higher purity and substantially higher room temperature ionic conductivity(2.77 mS·cm^(-1))for the argyrodite sulfide electrolyte Li_(6)PS_(5)Cl than commercial Li_(2)S(1.12 mS·cm^(-1)).This novel method offers a great opportunity to produce battery grade Li_(2)S for sulfide solid electrolyte applications.展开更多
The rapid development of new energy vehicles and 5G communication technologies has led to higher demands for the safety,energy density,and cycle performance of lithium-ion batteries as power sources.However,the curren...The rapid development of new energy vehicles and 5G communication technologies has led to higher demands for the safety,energy density,and cycle performance of lithium-ion batteries as power sources.However,the currently used liquid carbonate compounds in commercial lithium-ion battery electrolytes pose potential safety hazards such as leakage,swelling,corrosion,and flammability.Solid electrolytes can be used to mitigate these risks and create a safer lithium battery.Furthermore,high-energy density can be achieved by using solid electrolytes along with high-voltage cathode and metal lithium anode.Two types of solid electrolytes are generally used:inorganic solid electrolytes and polymer solid electrolytes.Inorganic solid electrolytes have high ionic conductivity,electrochemical stability window,and mechanical strength,but suffer from large solid/solid contact resistance between the electrode and electrolyte.Polymer solid electrolytes have good flexibility,processability,and contact interface properties,but low room temperature ionic conductivity,necessitating operation at elevated temperatures.Composite solid electrolytes(CSEs) are a promising alternative because they offer light weight and flexibility,like polymers,as well as the strength and stability of inorganic electrolytes.This paper presents a comprehensive review of recent advances in CSEs to help researchers optimize CSE composition and interactions for practical applications.It covers the development history of solid-state electrolytes,CSE properties with respect to nanofillers,morphology,and polymer types,and also discusses the lithium-ion transport mechanism of the composite electrolyte,and the methods of engineering interfaces with the positive and negative electrodes.Overall,the paper aims to provide an outlook on the potential applications of CSEs in solid-state lithium batteries,and to inspire further research aimed at the development of more systematic optimization strategies for CSEs.展开更多
Polyethylene oxide(PEO)-based solid polymer electrolytes(SPEs)with good electrochemical stability and excellent Li salt solubility are considered as one of the most promising SPEs for solid-state lithium metal batteri...Polyethylene oxide(PEO)-based solid polymer electrolytes(SPEs)with good electrochemical stability and excellent Li salt solubility are considered as one of the most promising SPEs for solid-state lithium metal batteries(SSLMBs).However,PEO-based SPEs suffer from low ionic conductivity at room temperature and high interfacial resistance with the electrodes due to poor interfacial contact,seriously hindering their practical applications.As an emerging technology,in-situ polymerization process has been widely used in PEO-based SPEs because it can effectively increase Li-ion transport at the interface and improve the interfacial contact between the electrolyte and electrodes.Herein,we review recent advances in design and fabrication of in-situ polymerized PEO-based SPEs to realize enhanced performance in LMBs.The merits and current challenges of various SPEs,as well as their stabilizing strategies are presented.Furthermore,various in-situ polymerization methods(such as free radical polymerization,cationic polymerization,anionic polymerization)for the preparation of PEO-based SPEs are summarized.In addition,the application of in-situ polymerization technology in PEO-based SPEs for adjustment of the functional units and addition of different functional filler materials was systematically discussed to explore the design concepts,methods and working mechanisms.Finally,the challenges and future prospects of in-situ polymerized PEO-based SPEs for SSLMBs are also proposed.展开更多
Solid electrolyte interphase(SEI)has been widely recognized as the most important and the least understood component in lithium batteries.Considering the intrinsic instability in both chemical and mechanical,the failu...Solid electrolyte interphase(SEI)has been widely recognized as the most important and the least understood component in lithium batteries.Considering the intrinsic instability in both chemical and mechanical,the failure of SEI is inevitable and strongly associated with the performance decay of practical working batteries.In this Review,the failure mechanisms and the corresponding regulation strategies of SEI are focused.Firstly,the fundamental properties of SEI,including the formation principles,and the typical composition and structures are briefly introduced.Moreover,the common SEI failure modes involving thermal failure,chemical failure,and mechanical failure are classified and discussed,respectively.Beyond that,the regulation strategies of SEI with respect to different failure modes are further concluded.Finally,the future endeavor in further disclosing the mysteries of SEI is prospected.展开更多
Cubic phase Li7La3Zr2O12(LLZO),a member of the Li–Garnet family,is a promising solid electrolyte and has been widely studied in recent years.However,LLZO samples prepared via conventional ambient air sintering report...Cubic phase Li7La3Zr2O12(LLZO),a member of the Li–Garnet family,is a promising solid electrolyte and has been widely studied in recent years.However,LLZO samples prepared via conventional ambient air sintering reported in the published literature often contain large grains with lower than desired(<94%)relative density.In this study,a non-contact method of co-firing with mother powder method is proposed to prepare high-quality Ta-doped LLZO–MgO composite ceramics.By sintering at 1150℃for 5 h,the ceramics can reach relative density of 98.2%,conductivity of 5.17×10^-4 S cm^-1 at 25℃and fracture strength of 150 MPa.The sintered samples have uniform fine-grained microstructure and high critical current densities of 0.75–0.95 mA cm-2 at room temperature in Li–Li symmetry cell with Au modification.In addition,systematic sintering experiments and characterizations are conducted to explore the function of MgO in inhibiting the Ta-LLZO grain growth and its existing form inside the composite ceramics.展开更多
Lithium-ion battery has greatly changed our lifestyle and the solid electrolyte interphase(SEI)covered on the graphite anode determines the service life of a battery.The formation method and the formation temperature ...Lithium-ion battery has greatly changed our lifestyle and the solid electrolyte interphase(SEI)covered on the graphite anode determines the service life of a battery.The formation method and the formation temperature at initial cycle of a battery determine the feature of the SEI.Herein,we investigate the gap of formation behavior in both a half cell(graphite matches with lithium anode)and a full cell(graphite matches with NCM,short for LiNixCoyMn1-x-yO2)at different temperatures.We conclude that high temperature causes severe side reactions and low temperature will result in low ionic conductive SEI layer,the interface formed at room temperature owns the best ionic conductivity and stability.展开更多
The scientific basis of all-solid-state lithium batteries with inorganic solid electrolytes is reviewed briefly, touching upon solid electrolytes, electrode materials, electrolyte/electrode interface phenomena, fabric...The scientific basis of all-solid-state lithium batteries with inorganic solid electrolytes is reviewed briefly, touching upon solid electrolytes, electrode materials, electrolyte/electrode interface phenomena, fabrication, and evaluation. The challenges and prospects are outlined as well.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.22075064,52302234,52272241)Zhejiang Provincial Natural Science Foundation of China under Grant No.LR24E020001+2 种基金Natural Science of Heilongjiang Province(No.LH2023B009)China Postdoctoral Science Foundation(2022M710950)Heilongjiang Postdoctoral Fund(LBH-Z21131),National Key Laboratory Projects(No.SYSKT20230056).
文摘To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified as an up-and-coming alternative.Among the various SEs,organic–inorganic composite solid electrolytes(OICSEs)that combine the advantages of both polymer and inorganic materials demonstrate promising potential for large-scale applications.However,OICSEs still face many challenges in practical applications,such as low ionic conductivity and poor interfacial stability,which severely limit their applications.This review provides a comprehensive overview of recent research advancements in OICSEs.Specifically,the influence of inorganic fillers on the main functional parameters of OICSEs,including ionic conductivity,Li+transfer number,mechanical strength,electrochemical stability,electronic conductivity,and thermal stability are systematically discussed.The lithium-ion conduction mechanism of OICSE is thoroughly analyzed and concluded from the microscopic perspective.Besides,the classic inorganic filler types,including both inert and active fillers,are categorized with special emphasis on the relationship between inorganic filler structure design and the electrochemical performance of OICSEs.Finally,the advanced characterization techniques relevant to OICSEs are summarized,and the challenges and perspectives on the future development of OICSEs are also highlighted for constructing superior ASSLBs.
基金the financial supports from the KeyArea Research and Development Program of Guangdong Province (2020B090919001)the National Natural Science Foundation of China (22078144)the Guangdong Natural Science Foundation for Basic and Applied Basic Research (2021A1515010138 and 2023A1515010686)。
文摘Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the degradation of layered oxides and the decomposition of electrolyte at high voltage,as well as the high reactivity of metallic Li.The key is the development of stable electrolytes against both highvoltage cathodes and Li with the formation of robust interphase films on the surfaces.Herein,we report a highly fluorinated ether,1,1,1-trifluoro-2-[(2,2,2-trifluoroethoxy)methoxy]ethane(TTME),as a cosolvent,which not only functions as a diluent forming a localized high concentration electrolyte(LHCE),but also participates in the construction of the inner solvation structure.The TTME-based electrolyte is stable itself at high voltage and induces the formation of a unique double-layer solid electrolyte interphase(SEI)film,which is embodied as one layer rich in crystalline structural components for enhanced mechanical strength and another amorphous layer with a higher concentration of organic components for enhanced flexibility.The Li||Cu cells display a noticeably high Coulombic efficiency of 99.28%after 300 cycles and Li symmetric cells maintain stable cycling more than 3200 h at 0.5 mA/cm^(2) and 1.0m Ah/cm^(2).In addition,lithium metal cells using LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) and Li CoO_(2) cathodes(both loadings~3.0 m Ah/cm^(2))realize capacity retentions of>85%over 240 cycles with a charge cut-off voltage of 4.4 V and 90%for 170 cycles with a charge cut-off voltage of 4.5 V,respectively.This study offers a bifunctional ether-based electrolyte solvent beneficial for high-voltage Li metal batteries.
基金supported by National Key Research and Development Program of China(No.2021YFF0500600)Key R&D Projects in Henan Province(221111240100)China Postdoctoral Science Foundation(2022TQ0291 and 2022M712869)
文摘All-solid-state lithium metal batteries(ASSLMBs)with solid electrolytes(SEs)have emerged as a promising alternative to liquid electrolyte-based Li-ion batteries due to their higher energy density and safety.However,since ASSLMBs lack the wetting properties of liquid electrolytes,they require stacking pressure to prevent contact loss between electrodes and SEs.Though previous studies showed that stacking pressure could impact certain performance aspects,a comprehensive investigation into the effects of stacking pressure has not been conducted.To address this gap,we utilized the Li_(6)PS_(5)Cl solid electrolyte as a reference and investigated the effects of stacking pressures on the performance of SEs and ASSLMBs.We also developed models to explain the underlying origin of these effects and predict battery performance,such as ionic conductivity and critical current density.Our results demonstrated that an appropriate stacking pressure is necessary to achieve optimal performance,and each step of applying pressure requires a specific pressure value.These findings can help explain discrepancies in the literature and provide guidance to establish standardized testing conditions and reporting benchmarks for ASSLMBs.Overall,this study contributes to the understanding of the impact of stacking pressure on the performance of ASSLMBs and highlights the importance of careful pressure optimization for optimal battery performance.
基金the financial support from the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0450201)the National Key R&D Program of China(2018YFA0209600)+2 种基金USTC Research Funds of the Double FirstClass Initiative(YD2060002033)the Fundamental Research Funds for the Central Universities(WK2060000060)the National Synchrotron Radiation Laboratory(KY2060000199)。
文摘Chloride solid electrolytes possess multiple advantages for the construction of safe,energy-dense allsolid-state sodium batteries,but presently the chlorides with sufficiently high cost-competitiveness for commercialization almost all exhibit low Na-ion conductivities of around 10^(-5)S cm^(-1)or lower.Here,we report a chloride solid electrolyte,Na_(2.7)ZFCl_(5.3)O_(0.7),which reaches a Na-ion conductivity of 2.29×10^(-4)S cm^(-1)at 25℃without involving overly expensive raw materials such as rare-earth chlorides or Na_(2)S.In addition to the efficient ion transport,Na_(2.7)ZrCl_(5.3)O_(0.7)also shows an excellent deformability surpassing that of the widely studied Na_(3)PS_(4),Na_(3)SbS_(4),and Na_(2)ZrCl_(6)solid electrolytes.The combination of these advantages allows the all-solid-state cell based on Na_(2.7)ZrCl_(5.3)O_(0.7)and NaCrO_(2)to realize stable room-temperature cycling at a much higher specific current than those based on other non-viscoelastic chloride solid electrolytes in literature(120 mA g^(-1)vs.12-55 mA g^(-1));after 100 cycles at such a high rate,the Na_(2.7)ZFCl_(5.3)O_(0.7)-based cell can still deliver a discharge capacity of 80 mAh g^(-1)at25℃.
基金the support of the National Natural Science Foundation of China(51971146,51971147,52171218 and 52271222)the Shanghai Municipal Science and Technology Commission(21010503100)+3 种基金the Major Program for the Scientific Research Innovation Plan of Shanghai Education Commission(2019-01-07-00-07E00015)the Shanghai Outstanding Academic Leaders Plan,the Guangxi Key Laboratory of Information Materials(Guilin University of Electronic Technology,201017-K)the Shanghai Rising-Star Program(20QA1407100)the General Program of Natural Science Foundation of Shanghai(20ZR1438400)
文摘Searching for novel solid electrolytes is of great importance and challenge for all-solid-state Mg batteries.In this work,we develop an amorphous Mg borohydride ammoniate,Mg(BH_(4))_(2)·2NH_(3),as a solid Mg electrolyte that prepared by a NH_(3)redistribution between 3D framework-γ-Mg(BH_(4))_(2)and Mg(BH_(4))_(2)·6NH_(3).Amorphous Mg(BH_(4))_(2)·2NH_(3)exhibits a high Mg-ion conductivity of 5×10^(-4)S cm^(-1)at 75℃,which is attributed to the fast migration of abundant Mg vacancies according to the theoretical calculations.Moreover,amorphous Mg(BH_(4))_(2)·2NH_(3)shows an apparent electrochemical stability window of 0-1.4 V with the help of in-situ formed interphases,which can prevent further side reactions without hindering the Mg-ion transfer.Based on the above superiorities,amorphous Mg(BH_(4))_(2)·2NH_(3)enables the stable cycling of all-solid-state Mg cells,as the critical current density reaches 3.2 mA cm^(-2)for Mg symmetrical cells and the reversible specific capacity reaches 141 mAh g^(-1)with a coulombic efficiency of 91.7%(first cycle)for Mg||TiS_(2)cells.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the MSIT,Korea (No. 2018R1A5A1025224 and No. 2019R1A2C1084020)this research received funding support from a grant from the Korea Planning&Evaluation Institute of Industrial Technology (KEIT),funded by the MOTIE of Korea (No. 10077287)。
文摘Composite solid electrolytes(CSEs)have emerged as promising candidates for safe and high-energy–density solid-state lithium metal batteries(SSLMBs).However,concurrently achieving exceptional ionic conductivity and interface compatibility between the electrolyte and electrode presents a significant challenge in the development of high-performance CSEs for SSLMBs.To overcome these challenges,we present a method involving the in-situ polymerization of a monomer within a self-supported porous Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZT)to produce the CSE.The synergy of the continuous conductive LLZT network,well-organized polymer,and their interface can enhance the ionic conductivity of the CSE at room temperature.Furthermore,the in-situ polymerization process can also con-struct the integration and compatibility of the solid electrolyte–solid electrode interface.The synthesized CSE exhibited a high ionic conductivity of 1.117 mS cm^(-1),a significant lithium transference number of 0.627,and exhibited electrochemical stability up to 5.06 V vs.Li/Li+at 30℃.Moreover,the Li|CSE|LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cell delivered a discharge capacity of 105.1 mAh g^(-1) after 400 cycles at 0.5 C and 30℃,corresponding to a capacity retention of 61%.This methodology could be extended to a variety of ceramic,polymer electrolytes,or battery systems,thereby offering a viable strategy to improve the electrochemical properties of CSEs for high-energy–density SSLMBs.
基金We express our sincere appreciation to the National Natural Science Foundation of China(No.51474113(M.Jing),22279070[L.Wang]and U21A20170[X.He])the Ministry of Science and Technology of China(No.2019YFA0705703[L.Wang]).And we would like to thank the“Explorer 100”cluster system of Tsinghua National Laboratory for Information Science and Technology for facility support.
文摘Polymer solid-state lithium batteries(SSLB)are regarded as a promising energy storage technology to meet growing demand due to their high energy density and safety.Ion conductivity,interface stability and battery assembly process are still the main challenges to hurdle the commercialization of SSLB.As the main component of SSLB,poly(1,3-dioxolane)(PDOL)-based solid polymer electrolytes polymerized in-situ are becoming a promising candidate solid elec-trolyte,for their high ion conductivity at room temperature,good battery elec-trochemical performances,and simple assembly process.This review analyzes opportunities and challenges of PDOL electrolytes toward practical application for polymer SSLB.The focuses include exploring the polymerization mechanism of DOL,the performance of PDOL composite electrolytes,and the application of PDOL.Furthermore,we provide a perspective on future research directions that need to be emphasized for commercialization of PDOL-based electrolytes in SSLB.The exploration of these schemes facilitates a comprehensive and profound understanding of PDOL-based polymer electrolyte and provides new research ideas to boost them toward practical application in solid-state batteries.
基金National Key R&D Program of China,Grant/Award Number:2022YFB4000120Fundamental Research Funds for the Central Universities,Grant/Award Number:2022ZYGXZR101。
文摘For the performance optimization strategies of hard carbon,heteroatom doping is an effective way to enhance the intrinsic transfer properties of sodium ions and electrons for accelerating the reaction kinetics.However,the previous work focuses mainly on the intrinsic physicochemical property changes of the material,but little attention has been paid to the resulting interfacial regulation of the electrode surface,namely the formation of solid electrolyte interphase(SEI)film.In this work,element F,which has the highest electronegativity,was chosen as the doping source to,more effectively,tune the electronic structure of the hard carbon.The effect of F-doping on the physicochemical properties of hard carbon was not only systematically analyzed but also investigated with spectroscopy,optics,and in situ characterization techniques to further verify that appropriate F-doping plays a positive role in constructing a homogenous and inorganic-rich SEI film.The experimentally demonstrated link between the electronic structure of the electrode and the SEI film properties can reframe the doping optimization strategy as well as provide a new idea for the design of electrode materials with low reduction kinetics to the electrolyte.As a result,the optimized sample with the appropriate F-doping content exhibits the best electrochemical performance with high capacity(434.53 mA h g^(-1)at 20mA g^(-1))and excellent rate capability(141 mAh g^(-1)at 400 mA g^(-1)).
基金The authors gratefully acknowledge the support of the National Natural Science Foundation(Grant No.22109131,52077180)Sichuan Province Innovative Talent Funding Project for Postdoctoral Fellows,Young Elite Scientists Sponsorship Program(CAST,2022QNRC001)+1 种基金the Natural Science Foundation of Sichuan Province(No.2022NSFSC0247)Southwest Jiaotong University's New Interdisciplinary Cultivation Fund(No.2682022KJ028).
文摘Lithium metal shows a great advantage as the most promising anode for its unparalleled theoretical specific capacity and extremely low electrochemical potential.However,uncontrolled lithium dendrite growth and severe side reactions of the reactive intermediates and organic electrolytes still limit the broad application of lithium metal batteries.Herein,we propose 4-nitrobenzenesulfonyl fluoride(NBSF)as an electrolyte additive for forming a stable organic-inorganic hybrid solid electrolyte interphase(SEI)layer on the lithium surface.The abundance of lithium fluoride and lithium nitride can guarantee the SEI layer's toughness and high ionic conductivity,achieving dendrite-free lithium deposition.Meanwhile,the phenyl group of NBSF significantly contributes to both the chemical stability of the SEI layer and the good adaptation to volume changes of the lithium anode.The lithium-oxygen batteries with NBSF exhibit prolonged cycle lives and excellent cycling stability.This simple approach is hoped to improve the development of the organic-inorganic SEI layer to stabilize the lithium anodes for lithium-oxygen batteries.
基金supported by the Natural Science Foundation of China(61901142)the Key Research and Development Project of Hainan Province(ZDYF2022SHFZ093).
文摘Traditional garnet solid electrolyte(Li_(7)La_(3)Zr_(2)O_(12))suffers from low room temperature ionic conductivity,poor air stability,high sintering temperature and energy consumption.Considering the development prospects of high-entropy materials with high structural disorder and strong component controllability in the field of electrochemical energy storage,herein,a novel high-entropy garnet-type oxide solid electrolyte,Li_(5.75)Ga_(0.25)La_(3)Zr_(0.5)Ti_(0.5)Sn_(0.5)Nb_(0.5)O_(12)(LGLZTSNO)was constructed by partially replacing the Li and Zr sites in Li_(7)La_(3)Zr_(2)O_(12)with Ga and Ti/Sn/Nb elements,respectively.The experimental and density functional theory(DFT)calculation results show that the high-entropy LGLZTSNO electrolyte has preferable room temperature ion conductivity,air stability,interface contact performance with lithium anode,and the ability to suppress lithium dendrites.Thanks to the improvement of electrolyte performance,the critical current density of Li/Ag@LGLZTSNO/Li symmetric cell was increased from 0.42 to 1.57 mA cm^(−2),and the interface area specific impedance(IASR)was reduced from 765.2 to 42.3Ωcm^(2).Meanwhile,the Li/Ag@LGLZTSNO/LFP full cell also exhibits excellent rate performance and cycling performance(148 mA h g^(−1)at 0.1 C and 124 mA h g^(−1)at 0.5 C,capacity retention up to 84.8%after 100 cycles at 0.1 C),showing the application prospects of high-entropy LGLZTSNO solid electrolyte in high-performance all solid state lithium batteries.
基金supported by the National Natural Science Foundation of China(Grant Nos.51604089,51874110,22173066,and 21903058)Natural Science Foundation of Heilongjiang Province(Grant No.YQ2021B004).
文摘Polymer solid electrolytes(SPEs)based on the[solvate-Li+]complex structure have promising prospects in lithium metal batteries(LMBs)due to their unique ion transport mechanism.However,the solvation structure may compromise the mechanical performance and safety,hindering practical application of SPEs.In this work,a composite solid electrolyte(CSE)is designed through the organic-inorganic syner-gistic interaction among N,N-dimethylformamide(DMF),polycarbonate(PC),and Mg_(2)B_(2)O_(5) in poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP).Flame-retardant Mg_(2)B_(2)O_(5) nanowires provide non-flammability to the prepared CSEs,and the addition of PC improves the dispersion of Mg_(2)B_(2)O_(5) nanowires.Simultaneously,the organic-inorganic synergistic action of PC plasticizer and Mg_(2)B_(2)O_(5) nanowires pro-motes the dissociation degree of LiTFSI and reduces the crystallinity of PVDF-HFP,enabling rapid Li ion transport.Additionally,Raman spectroscopy and DFT calculations confirm the coordination between Mg atoms in Mg_(2)B_(2)O_(5) and N atoms in DMF,which exhibits Lewis base-like behavior attacking adjacent C-F and C-H bonds in PVDF-HFP while inducing dehydrofluorination of PVDF-HFP.Based on the syner-gistic coupling of Mg_(2)B_(2)O_(5),PC,and DMF in the PVDF-HFP matrix,the prepared CSE exhibits superior ion conductivity(9.78×10^(-4) s cm^(-1)).The assembled Li symmetric cells cycle stably for 3900 h at a current density of 0.1 mA cm^(-2) without short circuit.The LFP||Li cells assembled with PDL-Mg_(2)B_(2)O_(5)/PC CSEs show excellent rate capability and cycling performance,with a capacity retention of 83.3%after 1000 cycles at 0.5 C.This work provides a novel approach for the practical application of organic-inorganic Synergistic CSEs in LMBs.
基金supported by the National Natural Science Foundation of China(Nos.21905041,22279014)Jilin Province Major Science and Technology special project(Nos.20220301004GX+4 种基金20220301005GX)R&D Program of Power Batteries with Low Temperature and High Energy,Science and Technology Bureau of Changchun(No.19SS013)Key Subject Construction of Physical Chemistry of Northeast Normal UniversitySpecial foundation of Jilin Province Industrial Technology Research and Development(No.2019C042)the Fundamental Research Funds for the Central Universities(No.2412020FZ008)
文摘High Li^(+)transference number electrolytes have long been understood to provide attractive candidates for realizing uniform deposition of Li^(+).However,such electrolytes with immobilized anions would result in incomplete solid electrolyte interphase(SEI)formation on the Li anode because it suffers from the absence of appropriate inorganic components entirely derived from anions decomposition.Herein,a boron-rich hexagonal polymer structured all-solid-state polymer electrolyte(BSPE+10%LiBOB)with regulated intermolecular interaction is proposed to trade off a high Li^(+)transference number against stable SEI properties.The Li^(+)transference number of the as-prepared electrolyte is increased from 0.23 to 0.83 owing to the boron-rich cross-linker(BC)addition.More intriguingly,for the first time,the experiments combined with theoretical calculation results reveal that BOB^(-)anions have stronger interaction with B atoms in polymer chain than TFSI^(-),which significantly induce the TFSI^(-)decomposition and consequently increase the amount of LiF and Li3N in the SEI layer.Eventually,a LiFePO_(4)|BSPE+10%LiBOBlLi cell retains 96.7%after 400 cycles while the cell without BC-resisted electrolyte only retains 40.8%.BSPE+10%LiBOB also facilitates stable electrochemical cycling of solid-state Li-S cells.This study blazes a new trail in controlling the Li^(+)transport ability and SEI properties,synergistically.
基金supported by grants from the National Science Foundation of Shandong Province(no.ZR2020ZD35)the Young Talent Cultivation Program of the State Key Laboratory of Crystal Materials,Shandong University
文摘Due to ever-increasing concerns about safety issues in using Li ionic batteries,solid electrolytes have extensively explored.The Li-rich antiperovskite Li_(3)OBr has been considered as a promising solid electrolyte candidate,but it still suffers challenges to achieve a high ionic conductivity owing to the high intrinsic symmetry of the crystal lattice.Herein,we presented a design strategy that introduces various point defects and grain boundaries to break the high lattice symmetry of Li_(3)OBr crystal,and their effect and microscopic mechanism of promoting the migration of Li-ion were explored theoretically.It has been found that Li_(i)are the dominant defects responsible for the fast Li-ion diffusion in bulk Li_(3)OBr and its surface,but they are easily trapped by the grain boundaries,leading to the annihilating of the Frenkel defect pair V'_(Li)+Li_(i),and thus limits the V'_(Li)diffusion at the grain boundaries.The V_(Br)defect near the grain boundaries can effectively drive V'_(Li)across the grain boundary,thereby converting the carrier of Li^(+)migration from Li,in the bulk and surface to V'_(Li)at the grain boundary,and thus improving the ionic conductivity in the whole Li_(3)OBr crystal.This work provides a comprehensive insight into the Li^(+)transport and conduction mechanism in the Li_(3)OBr electrolyte.It opens a new way of improving the conductivity for all-solid-state Li electrolyte material through the defect design.
基金Fiscal Year 2023-2024 High-Level and Growth Research and Development Subsidy for supporting the research and development activities for small and medium-size enterprise(SMEs),which is administered by Chiba Industry Advancement Center(Grant No.2066 and 2027)。
文摘This paper is aimed to present a clean,inexpensive and sustainable method to synthesize high purity lithium sulfide(Li_(2)S)powder through hydrogen reduction of lithium sulfate(Li_(2)SO_(4)).A three-step reduction process has been successfully developed to synthesize well-crystallized and single-phase Li_(2)S powder by investigating the melting,sintering and reduction behavior of the mixtures of Li_(2)SO_(4)-Li_(2)S.High purity alumina was found to be the most suitable crucible material for producing high purity Li_(2)S,because it was not attacked by the Li_(2)SO_(4)-Li_(2)S melt during heating,as compared with other materials,such as carbon,mullite,quartz,boron nitride and stainless steel.The use of synthesized LizS resulted in higher purity and substantially higher room temperature ionic conductivity(2.77 mS·cm^(-1))for the argyrodite sulfide electrolyte Li_(6)PS_(5)Cl than commercial Li_(2)S(1.12 mS·cm^(-1)).This novel method offers a great opportunity to produce battery grade Li_(2)S for sulfide solid electrolyte applications.
基金the support of the Zhejiang Provincial Natural Science Foundation of China (LR20E020002, LD22E020006)the National Natural Science Foundation of China (NSFC) (U20A20253, 21972127, 22279116)。
文摘The rapid development of new energy vehicles and 5G communication technologies has led to higher demands for the safety,energy density,and cycle performance of lithium-ion batteries as power sources.However,the currently used liquid carbonate compounds in commercial lithium-ion battery electrolytes pose potential safety hazards such as leakage,swelling,corrosion,and flammability.Solid electrolytes can be used to mitigate these risks and create a safer lithium battery.Furthermore,high-energy density can be achieved by using solid electrolytes along with high-voltage cathode and metal lithium anode.Two types of solid electrolytes are generally used:inorganic solid electrolytes and polymer solid electrolytes.Inorganic solid electrolytes have high ionic conductivity,electrochemical stability window,and mechanical strength,but suffer from large solid/solid contact resistance between the electrode and electrolyte.Polymer solid electrolytes have good flexibility,processability,and contact interface properties,but low room temperature ionic conductivity,necessitating operation at elevated temperatures.Composite solid electrolytes(CSEs) are a promising alternative because they offer light weight and flexibility,like polymers,as well as the strength and stability of inorganic electrolytes.This paper presents a comprehensive review of recent advances in CSEs to help researchers optimize CSE composition and interactions for practical applications.It covers the development history of solid-state electrolytes,CSE properties with respect to nanofillers,morphology,and polymer types,and also discusses the lithium-ion transport mechanism of the composite electrolyte,and the methods of engineering interfaces with the positive and negative electrodes.Overall,the paper aims to provide an outlook on the potential applications of CSEs in solid-state lithium batteries,and to inspire further research aimed at the development of more systematic optimization strategies for CSEs.
基金This work was supported by the Major Science and Technology Projects of Henan Province(221100230200)the National Key Research and Development Program of China(2020YFB1713500)Open Fund of State Key Laboratory of Advanced Refractories(No.SKLAR202210).
文摘Polyethylene oxide(PEO)-based solid polymer electrolytes(SPEs)with good electrochemical stability and excellent Li salt solubility are considered as one of the most promising SPEs for solid-state lithium metal batteries(SSLMBs).However,PEO-based SPEs suffer from low ionic conductivity at room temperature and high interfacial resistance with the electrodes due to poor interfacial contact,seriously hindering their practical applications.As an emerging technology,in-situ polymerization process has been widely used in PEO-based SPEs because it can effectively increase Li-ion transport at the interface and improve the interfacial contact between the electrolyte and electrodes.Herein,we review recent advances in design and fabrication of in-situ polymerized PEO-based SPEs to realize enhanced performance in LMBs.The merits and current challenges of various SPEs,as well as their stabilizing strategies are presented.Furthermore,various in-situ polymerization methods(such as free radical polymerization,cationic polymerization,anionic polymerization)for the preparation of PEO-based SPEs are summarized.In addition,the application of in-situ polymerization technology in PEO-based SPEs for adjustment of the functional units and addition of different functional filler materials was systematically discussed to explore the design concepts,methods and working mechanisms.Finally,the challenges and future prospects of in-situ polymerized PEO-based SPEs for SSLMBs are also proposed.
基金supported by the Beijing Natural Science Foundation(JQ20004,L182021)the National Natural Science Foundation of China(21808124)the National Key Research and Development Program(2016YFA0202500)。
文摘Solid electrolyte interphase(SEI)has been widely recognized as the most important and the least understood component in lithium batteries.Considering the intrinsic instability in both chemical and mechanical,the failure of SEI is inevitable and strongly associated with the performance decay of practical working batteries.In this Review,the failure mechanisms and the corresponding regulation strategies of SEI are focused.Firstly,the fundamental properties of SEI,including the formation principles,and the typical composition and structures are briefly introduced.Moreover,the common SEI failure modes involving thermal failure,chemical failure,and mechanical failure are classified and discussed,respectively.Beyond that,the regulation strategies of SEI with respect to different failure modes are further concluded.Finally,the future endeavor in further disclosing the mysteries of SEI is prospected.
基金financially supported by the National Key R&D Program of China under Grant No.2018YFB0905400,Corning Incorporatedthe National Natural Science Foundation of China under Grant No.51772315,No.51432010
文摘Cubic phase Li7La3Zr2O12(LLZO),a member of the Li–Garnet family,is a promising solid electrolyte and has been widely studied in recent years.However,LLZO samples prepared via conventional ambient air sintering reported in the published literature often contain large grains with lower than desired(<94%)relative density.In this study,a non-contact method of co-firing with mother powder method is proposed to prepare high-quality Ta-doped LLZO–MgO composite ceramics.By sintering at 1150℃for 5 h,the ceramics can reach relative density of 98.2%,conductivity of 5.17×10^-4 S cm^-1 at 25℃and fracture strength of 150 MPa.The sintered samples have uniform fine-grained microstructure and high critical current densities of 0.75–0.95 mA cm-2 at room temperature in Li–Li symmetry cell with Au modification.In addition,systematic sintering experiments and characterizations are conducted to explore the function of MgO in inhibiting the Ta-LLZO grain growth and its existing form inside the composite ceramics.
基金supported by National Key Research and Development Program(2016YFA0202500)the National Natural Science Foundation of China(21776019)Beijing Natural Science Foundation(L182021)。
文摘Lithium-ion battery has greatly changed our lifestyle and the solid electrolyte interphase(SEI)covered on the graphite anode determines the service life of a battery.The formation method and the formation temperature at initial cycle of a battery determine the feature of the SEI.Herein,we investigate the gap of formation behavior in both a half cell(graphite matches with lithium anode)and a full cell(graphite matches with NCM,short for LiNixCoyMn1-x-yO2)at different temperatures.We conclude that high temperature causes severe side reactions and low temperature will result in low ionic conductive SEI layer,the interface formed at room temperature owns the best ionic conductivity and stability.
基金supported by the National High Technology Research and Development Program of China(Grant No.2013AA050906)the National Natural Science Foundation of China(Grant Nos.51172250 and 51202265)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA09010201)Zhejiang Province Key Science and Technology Innovation Team,China(Grant No.2013PT16)
文摘The scientific basis of all-solid-state lithium batteries with inorganic solid electrolytes is reviewed briefly, touching upon solid electrolytes, electrode materials, electrolyte/electrode interface phenomena, fabrication, and evaluation. The challenges and prospects are outlined as well.