The static behavior of piezoelectric circular spherical shallow shells under both electrical and mechanical loads is studied by using the differential quadrature element method (DQEM). Geometrical nonlinearity effect ...The static behavior of piezoelectric circular spherical shallow shells under both electrical and mechanical loads is studied by using the differential quadrature element method (DQEM). Geometrical nonlinearity effect is considered. Detailed formulations and procedures are given for the first time. Several examples are analyzed and accurate results are obtained by the DQEM. Based on the results in this paper, one may conclude that the DQEM is a useful tool for obtaining solutions of structural elements. It can be seen that the shell shape may be theore tically controlled and snap through may occur when the applied voltage reaches a critical value even without mechanical load for certain geometric configurations.展开更多
A finite element analysis, including static and buckling analysis is presented for several notable concrete spherical shells around the world. Also, the structural optimization study of these shells was performed for ...A finite element analysis, including static and buckling analysis is presented for several notable concrete spherical shells around the world. Also, the structural optimization study of these shells was performed for thickness distribution and structure shape to reduce overall tensile stress, deflection and reinforcements. The finite element analysis using Sofistik software shows that a distributed concrete thickness reduces shell stresses, deflections and reinforcements. A geometrically non-linear analysis of these structures with and without imperfections was also performed. To take into account the possible plastification of the material an analysis with non-linear material was performed simultaneously with the geometrically non-linear analysis. This helps in developing an understanding of the structural behaviour and helps to identify all potential failure causes using failure analysis.展开更多
If the parameter , which measures the thickness-to-rise of the sliell, is small, the axismnnetrie polar dimpling oj .shallow .spherical .shell due to quadratic pressure distribution i.s dynamic instability, i.e., a sm...If the parameter , which measures the thickness-to-rise of the sliell, is small, the axismnnetrie polar dimpling oj .shallow .spherical .shell due to quadratic pressure distribution i.s dynamic instability, i.e., a small perturbation can change il to an asymmetric polar dimple mode. In two cases, the problem can be reduced to an eigenvalue problem where T can approximately be reduced to a Sturm-Liouvi/le operator if The existence of at least one real eigenvalue of T, which means that the axisyntmetric polar dimpling is dynamically unstable, i.s proved by spectral theorem or Hilbert theorem. Furthermore, an eigenfunction, which represents one of the asymmetric modes of the unstable dimple shell, belonging to an eigenvalue of T, is found.展开更多
In this paper, the nonlinear equations of motion for shallow spherical shells with axisymmetric deformation including transverse shear are derived. The nonlinear static and dynamic response and dynamic buckling of sha...In this paper, the nonlinear equations of motion for shallow spherical shells with axisymmetric deformation including transverse shear are derived. The nonlinear static and dynamic response and dynamic buckling of shallow spherical shells with circular hole on elastically restrained edge are investigated. By using the orthogonal point collocation method for space and Newmarh-β scheme for time, the displacement functions are separated and the nonlinear differential equations are replaced by linear algebraic equations to seek solutions. The numerical results are presented for different cases and compared with available data.展开更多
This paper deals with nonlinear free vibration of reticulated shallow spherical shells taking into account the effect of transverse shear deformation. The shell is formed by beam members placed in two orthogonal direc...This paper deals with nonlinear free vibration of reticulated shallow spherical shells taking into account the effect of transverse shear deformation. The shell is formed by beam members placed in two orthogonal directions. The nondimensional fundamental governing equations in terms of the deflection, rotational angle, and force function are presented, and the solution for the nonlinear free frequency is derived by using the asymptotic iteration method. The asymptotic solution can be used readily to perform the parameter analysis of such space structures with numerous geometrical and material parameters. Numerical examples are given to illustrate the characteristic amplitudefrequency relation and softening and hardening nonlinear behaviors as well as the effect of transverse shear on the linear and nonlinear frequencies of reticulated shells and plates.展开更多
The nonlinear thermal buckling of symmetrically laminated cylindrically orthotropic shallow spherical shell under temperature field and uniform pressure including transverse shear is studied. Also the analytic formula...The nonlinear thermal buckling of symmetrically laminated cylindrically orthotropic shallow spherical shell under temperature field and uniform pressure including transverse shear is studied. Also the analytic formulas for determining the critical buckling loads under different temperature fields are obtained by using the modified iteration method. The effect of transverse shear deformation and different temperature fields on critical buckling load is discussed.展开更多
This study explored the buckling of multiple intersecting spherical shells.A three-segment spherical shell was designed using the theory of deformation coordination;the design was compared with that of a volume-equiva...This study explored the buckling of multiple intersecting spherical shells.A three-segment spherical shell was designed using the theory of deformation coordination;the design was compared with that of a volume-equivalent cylindrical shell and ring-ribbed cylindrical shell.The numerical results indicated that the buckling capacity of the three-segment spherical shell was superior to those of the other two cylindrical shells.To validate our numerical approach,three laboratory-scale shell models were fabricated.Each model was accurately measured and slowly tested in a pressure chamber;thus,the tested shells were studied numerically.The experimental collapse modes agreed well with numerical results,and the collapse load of the three-segment pressure shell was considerably higher than that of the two cylindrical shells.展开更多
This paper studies the dynamic behavior of large deformation of spherical shells impacted by a flat-nosed missile.By using isometric transformations,the deformation modes are given.On the basis of Perzyna-Symonds visc...This paper studies the dynamic behavior of large deformation of spherical shells impacted by a flat-nosed missile.By using isometric transformations,the deformation modes are given.On the basis of Perzyna-Symonds viscoplastic constitutive equations,the motion equations of the shells are obtained by rigid- viscoplastic variational principle.A comparison made between the numerical results and experimental ones indicates that the two groups of results are in conformity with each other.展开更多
Aim To study the dynamic failure of the plastic spherical shell impacted by a missile. Methods The deformation mode of spherical shells was given by introducing isometric transformation. The governing equation of mo...Aim To study the dynamic failure of the plastic spherical shell impacted by a missile. Methods The deformation mode of spherical shells was given by introducing isometric transformation. The governing equation of motion of the rigid plastic spherical shell was given by energy balance. This equation was solved by using Runge Kutta method. Results The relationships between the impact force, dimple radius, central point deflection and time were obtained. The response time initial velocity, the maximal impact force permanent initial velocity, the central point deflection initial velocity and the dimple radius initial velocity characteristics were respectively plotted. Conclusion A comparison made between the theoretical results and the experimental ones indicates that the two groups of results are in conformity with each other.展开更多
The equations of large deformations of laminated orthotropic spherical shellsare derived. The effects of transverse shear deformation and initial imperfection are considered. on this basis. the semi-analytical solutio...The equations of large deformations of laminated orthotropic spherical shellsare derived. The effects of transverse shear deformation and initial imperfection are considered. on this basis. the semi-analytical solution of the axisymrnetric snap-throughbuckling of laminated orthotropic shallow spherical shells under uniform pressure is obtained using orthogonal collocation method. The effects of material parameters, structuralparameters, initial imperfection and transverse shear deformation are discussed.展开更多
The problem of axisymmetric nonlinear vibration for shallow thin spherical and conical shells when temperature and strain fields are coupled is studied. Based on the large deflection theories of von Krmn and the theor...The problem of axisymmetric nonlinear vibration for shallow thin spherical and conical shells when temperature and strain fields are coupled is studied. Based on the large deflection theories of von Krmn and the theory of thermoelasticity, the whole governing equations and their simplified type are derived. The time-spatial variables are separated by Galerkin's technique, thus reducing the governing equations to a system of time-dependent nonlinear ordinary differential equation. By means of regular perturbation method and multiple-scales method, the first-order approximate analytical solution for characteristic relation of frequency vs amplitude parameters along with the decay rate of amplitude are obtained, and the effects of different geometric parameters and coupling factors as well as boundary conditions on thermoelastically coupled nonlinear vibration behaviors are discussed.展开更多
By the aid of differential geometry analysis on the initial buckling of shell element, a set of new and exact buckling bifurcation equations of the spherical shells is derived. Making use of Galerkin variational metho...By the aid of differential geometry analysis on the initial buckling of shell element, a set of new and exact buckling bifurcation equations of the spherical shells is derived. Making use of Galerkin variational method, the general stability of the hinged spherical shells with the circumferential shear loads is studied. Constructing the buckling mode close to the bifurcation point deformations, the critical eigenvalues, critical load intensities and critical stresses of torsional buckling ranging from the shallow shells to the hemispherical shell are obtained for the first time.展开更多
In this paper.the equations of motion of axisymmetrically laminated cylindrical orthotropic spherical shells are derived.Theeffects of transverse shear deformation and rotatory inertia are considered.On this basis,th...In this paper.the equations of motion of axisymmetrically laminated cylindrical orthotropic spherical shells are derived.Theeffects of transverse shear deformation and rotatory inertia are considered.On this basis,the dynamic response of spherical shells under axisymmetric dynamic load is calculated using the finite difference method The effects of material parameters.structural parameters and transverse shear dgformation are discussed.展开更多
The snap fit is a common mechanical mechanism.We have studied the spherical snap fit carefully for its physical asymmetry,which is easy to assemble but difficult to disassemble.Because of the complexity of spherical s...The snap fit is a common mechanical mechanism.We have studied the spherical snap fit carefully for its physical asymmetry,which is easy to assemble but difficult to disassemble.Because of the complexity of spherical snap fit,it is difficult to get a theoretical formula to describe its physical asymmetry.In this paper,the pushing assembly and pulling disassembly of spherical snap fit are studied by both finite element analysis and experiments.The theoretical formulaes of spherical snap fit have been obtained based on numerical simulations and theoretical results of cylindrical snap fit.展开更多
Based on the large deflection dynamic equations of axisymmetric shallow shells of revolution, the nonlinear forced vibration of a corrugated shallow shell under uniform load is investigated. The nonlinear partial diff...Based on the large deflection dynamic equations of axisymmetric shallow shells of revolution, the nonlinear forced vibration of a corrugated shallow shell under uniform load is investigated. The nonlinear partial differential equations of shallow shell are reduced to the nonlinear integral-differential equations by the method of Green's function. To solve the integral-differential equations, expansion method is used to obtain Green's function. Then the integral-differential equations are reduced to the form with degenerate core by expanding Green's function as series of characteristic function. Therefore, the integral-differential equations become nonlinear ordinary differential equations with regard to time. The amplitude-frequency response under harmonic force is obtained by considering single mode vibration. As a numerical example, forced vibration phenomena of shallow spherical shells with sinusoidal corrugation are studied. The obtained solutions are available for reference to design of corrugated shells .展开更多
Based on Biot’s wave equation, this paper discusses the transient response of a spherical cavity with a partially sealed shell embedded in viscoelastic saturated soil. The analytical solution is derived for the trans...Based on Biot’s wave equation, this paper discusses the transient response of a spherical cavity with a partially sealed shell embedded in viscoelastic saturated soil. The analytical solution is derived for the transient response to an axisymmetric surface load and fluid pressure in Laplace transform domain. Numerical results are obtained by inverting the Laplace transform presented by Durbin, and are used to analyze the influences of the partial permeable property of boundary and relative rigidity of shell and soil on the transient response of the spherical cavity. It is shown that the influence of these two parameters is remarkable. The available solutions of permeable and impermeable boundary without shell are only two extreme cases of this paper.展开更多
Shell structures have increasingly widespread applications in biomedical ultrasound fields such as contrast agents and drug delivery,which requires the precise prediction of the acoustic radiation force under various ...Shell structures have increasingly widespread applications in biomedical ultrasound fields such as contrast agents and drug delivery,which requires the precise prediction of the acoustic radiation force under various circumstances to improve the system efficiency.The acoustic radiation force exerted by a zero-order quasi-Bessel-Gauss beam on an elastic spherical shell near an impedance boundary is theoretically and numerically studied in this study.By means of the finite series method and the image theory,a zero-order quasi-Bessel-Gauss beam is expanded in terms of spherical harmonic functions,and the exact solution of the acoustic radiation force is derived based on the acoustic scattering theory.The acoustic radiation force function,which represents the radiation force per unit energy density and per unit cross-sectional surface,is especially investigated.Some simulated results for a polymethyl methacrylate shell and an aluminum shell are provided to illustrate the behavior of acoustic radiation force in this case.The simulated results show the oscillatory property and the negative radiation force caused by the impedance boundary.An appropriate relative thickness of the shell can generate sharp peaks for a polymethyl methacrylate shell.Strong radiation force can be obtained at small half-cone angles and the beam waist only affects the results at high frequencies.Considering that the quasi-Bessel-Gauss beam possesses both the energy focusing property and the non-diffracting advantage,this study is expected to be useful in the development of acoustic tweezers,contrast agent micro-shells,and drug delivery applications.展开更多
Plastic limit load of viscoplastic thick-walled cylinder and spherical shell subjected to internal pressure is investigated analytically using a strain gradient plasticity theory. As a result, the current solutions ca...Plastic limit load of viscoplastic thick-walled cylinder and spherical shell subjected to internal pressure is investigated analytically using a strain gradient plasticity theory. As a result, the current solutions can capture the size effect at the micron scale. Numerical results show that the smaller the inner radius of the cylinder or spherical shell, the more significant the scale effects. Results also show that the size effect is more evident with increasing strain or strain-rate sensitivity index. The classical plastic-based solutions of the same problems are shown to be a special case of the present solution.展开更多
In this paper, the axisymmetric nonlinear free vibration problems of cylindrically orthotropic shallow thin spherical and conical shells under uniformly distributed static loads are studied by using MWR and Lindstedt-...In this paper, the axisymmetric nonlinear free vibration problems of cylindrically orthotropic shallow thin spherical and conical shells under uniformly distributed static loads are studied by using MWR and Lindstedt-Poincare perturbation method, from which, the characteristic relation between frequency ratio and amplitude is obtained. The effects of static loads, geometric and material parameters on vibrational behavior of shells are also discussed.展开更多
A set of nonlinearly coupled algebraic and differential eigenvalue equations of nonlinear axisymmetric free vibration of orthotropic shallow thin spherical and conical shells are formulated following an assumed time-m...A set of nonlinearly coupled algebraic and differential eigenvalue equations of nonlinear axisymmetric free vibration of orthotropic shallow thin spherical and conical shells are formulated following an assumed time-mode approach suggested in this paper. Analytic solutions are presented and an asymptotic relation for the amplitude-frequency response of the shells is derived. The effects of geometrical and material parameters on vibrations of the shells are investigated.展开更多
文摘The static behavior of piezoelectric circular spherical shallow shells under both electrical and mechanical loads is studied by using the differential quadrature element method (DQEM). Geometrical nonlinearity effect is considered. Detailed formulations and procedures are given for the first time. Several examples are analyzed and accurate results are obtained by the DQEM. Based on the results in this paper, one may conclude that the DQEM is a useful tool for obtaining solutions of structural elements. It can be seen that the shell shape may be theore tically controlled and snap through may occur when the applied voltage reaches a critical value even without mechanical load for certain geometric configurations.
文摘A finite element analysis, including static and buckling analysis is presented for several notable concrete spherical shells around the world. Also, the structural optimization study of these shells was performed for thickness distribution and structure shape to reduce overall tensile stress, deflection and reinforcements. The finite element analysis using Sofistik software shows that a distributed concrete thickness reduces shell stresses, deflections and reinforcements. A geometrically non-linear analysis of these structures with and without imperfections was also performed. To take into account the possible plastification of the material an analysis with non-linear material was performed simultaneously with the geometrically non-linear analysis. This helps in developing an understanding of the structural behaviour and helps to identify all potential failure causes using failure analysis.
基金The Project Supported by National Natural Science Foundation of ChinaThis paper was accepted to present at ICTAM 88(Grenoble)
文摘If the parameter , which measures the thickness-to-rise of the sliell, is small, the axismnnetrie polar dimpling oj .shallow .spherical .shell due to quadratic pressure distribution i.s dynamic instability, i.e., a small perturbation can change il to an asymmetric polar dimple mode. In two cases, the problem can be reduced to an eigenvalue problem where T can approximately be reduced to a Sturm-Liouvi/le operator if The existence of at least one real eigenvalue of T, which means that the axisyntmetric polar dimpling is dynamically unstable, i.s proved by spectral theorem or Hilbert theorem. Furthermore, an eigenfunction, which represents one of the asymmetric modes of the unstable dimple shell, belonging to an eigenvalue of T, is found.
文摘In this paper, the nonlinear equations of motion for shallow spherical shells with axisymmetric deformation including transverse shear are derived. The nonlinear static and dynamic response and dynamic buckling of shallow spherical shells with circular hole on elastically restrained edge are investigated. By using the orthogonal point collocation method for space and Newmarh-β scheme for time, the displacement functions are separated and the nonlinear differential equations are replaced by linear algebraic equations to seek solutions. The numerical results are presented for different cases and compared with available data.
文摘This paper deals with nonlinear free vibration of reticulated shallow spherical shells taking into account the effect of transverse shear deformation. The shell is formed by beam members placed in two orthogonal directions. The nondimensional fundamental governing equations in terms of the deflection, rotational angle, and force function are presented, and the solution for the nonlinear free frequency is derived by using the asymptotic iteration method. The asymptotic solution can be used readily to perform the parameter analysis of such space structures with numerous geometrical and material parameters. Numerical examples are given to illustrate the characteristic amplitudefrequency relation and softening and hardening nonlinear behaviors as well as the effect of transverse shear on the linear and nonlinear frequencies of reticulated shells and plates.
基金the National Natural Science Foundation of China(No.10572054)
文摘The nonlinear thermal buckling of symmetrically laminated cylindrically orthotropic shallow spherical shell under temperature field and uniform pressure including transverse shear is studied. Also the analytic formulas for determining the critical buckling loads under different temperature fields are obtained by using the modified iteration method. The effect of transverse shear deformation and different temperature fields on critical buckling load is discussed.
基金This study was supported by the National Natural Science Foundation of China(Grant numbers 51709132 and 51679133),Jiangsu Provincial Government Scholarship Programme,and the“Construction of a Leading Innovation Team”project by Hangzhou City Government.
文摘This study explored the buckling of multiple intersecting spherical shells.A three-segment spherical shell was designed using the theory of deformation coordination;the design was compared with that of a volume-equivalent cylindrical shell and ring-ribbed cylindrical shell.The numerical results indicated that the buckling capacity of the three-segment spherical shell was superior to those of the other two cylindrical shells.To validate our numerical approach,three laboratory-scale shell models were fabricated.Each model was accurately measured and slowly tested in a pressure chamber;thus,the tested shells were studied numerically.The experimental collapse modes agreed well with numerical results,and the collapse load of the three-segment pressure shell was considerably higher than that of the two cylindrical shells.
基金This subject was SHpported by the Natural Science Foundation of Shanxi
文摘This paper studies the dynamic behavior of large deformation of spherical shells impacted by a flat-nosed missile.By using isometric transformations,the deformation modes are given.On the basis of Perzyna-Symonds viscoplastic constitutive equations,the motion equations of the shells are obtained by rigid- viscoplastic variational principle.A comparison made between the numerical results and experimental ones indicates that the two groups of results are in conformity with each other.
文摘Aim To study the dynamic failure of the plastic spherical shell impacted by a missile. Methods The deformation mode of spherical shells was given by introducing isometric transformation. The governing equation of motion of the rigid plastic spherical shell was given by energy balance. This equation was solved by using Runge Kutta method. Results The relationships between the impact force, dimple radius, central point deflection and time were obtained. The response time initial velocity, the maximal impact force permanent initial velocity, the central point deflection initial velocity and the dimple radius initial velocity characteristics were respectively plotted. Conclusion A comparison made between the theoretical results and the experimental ones indicates that the two groups of results are in conformity with each other.
文摘The equations of large deformations of laminated orthotropic spherical shellsare derived. The effects of transverse shear deformation and initial imperfection are considered. on this basis. the semi-analytical solution of the axisymrnetric snap-throughbuckling of laminated orthotropic shallow spherical shells under uniform pressure is obtained using orthogonal collocation method. The effects of material parameters, structuralparameters, initial imperfection and transverse shear deformation are discussed.
文摘The problem of axisymmetric nonlinear vibration for shallow thin spherical and conical shells when temperature and strain fields are coupled is studied. Based on the large deflection theories of von Krmn and the theory of thermoelasticity, the whole governing equations and their simplified type are derived. The time-spatial variables are separated by Galerkin's technique, thus reducing the governing equations to a system of time-dependent nonlinear ordinary differential equation. By means of regular perturbation method and multiple-scales method, the first-order approximate analytical solution for characteristic relation of frequency vs amplitude parameters along with the decay rate of amplitude are obtained, and the effects of different geometric parameters and coupling factors as well as boundary conditions on thermoelastically coupled nonlinear vibration behaviors are discussed.
文摘By the aid of differential geometry analysis on the initial buckling of shell element, a set of new and exact buckling bifurcation equations of the spherical shells is derived. Making use of Galerkin variational method, the general stability of the hinged spherical shells with the circumferential shear loads is studied. Constructing the buckling mode close to the bifurcation point deformations, the critical eigenvalues, critical load intensities and critical stresses of torsional buckling ranging from the shallow shells to the hemispherical shell are obtained for the first time.
文摘In this paper.the equations of motion of axisymmetrically laminated cylindrical orthotropic spherical shells are derived.Theeffects of transverse shear deformation and rotatory inertia are considered.On this basis,the dynamic response of spherical shells under axisymmetric dynamic load is calculated using the finite difference method The effects of material parameters.structural parameters and transverse shear dgformation are discussed.
基金the financial support from Xi’an University of Architecture and Technology(Project No.002/2040221134)。
文摘The snap fit is a common mechanical mechanism.We have studied the spherical snap fit carefully for its physical asymmetry,which is easy to assemble but difficult to disassemble.Because of the complexity of spherical snap fit,it is difficult to get a theoretical formula to describe its physical asymmetry.In this paper,the pushing assembly and pulling disassembly of spherical snap fit are studied by both finite element analysis and experiments.The theoretical formulaes of spherical snap fit have been obtained based on numerical simulations and theoretical results of cylindrical snap fit.
文摘Based on the large deflection dynamic equations of axisymmetric shallow shells of revolution, the nonlinear forced vibration of a corrugated shallow shell under uniform load is investigated. The nonlinear partial differential equations of shallow shell are reduced to the nonlinear integral-differential equations by the method of Green's function. To solve the integral-differential equations, expansion method is used to obtain Green's function. Then the integral-differential equations are reduced to the form with degenerate core by expanding Green's function as series of characteristic function. Therefore, the integral-differential equations become nonlinear ordinary differential equations with regard to time. The amplitude-frequency response under harmonic force is obtained by considering single mode vibration. As a numerical example, forced vibration phenomena of shallow spherical shells with sinusoidal corrugation are studied. The obtained solutions are available for reference to design of corrugated shells .
文摘Based on Biot’s wave equation, this paper discusses the transient response of a spherical cavity with a partially sealed shell embedded in viscoelastic saturated soil. The analytical solution is derived for the transient response to an axisymmetric surface load and fluid pressure in Laplace transform domain. Numerical results are obtained by inverting the Laplace transform presented by Durbin, and are used to analyze the influences of the partial permeable property of boundary and relative rigidity of shell and soil on the transient response of the spherical cavity. It is shown that the influence of these two parameters is remarkable. The available solutions of permeable and impermeable boundary without shell are only two extreme cases of this paper.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.81527901,11604361,and 91630309)。
文摘Shell structures have increasingly widespread applications in biomedical ultrasound fields such as contrast agents and drug delivery,which requires the precise prediction of the acoustic radiation force under various circumstances to improve the system efficiency.The acoustic radiation force exerted by a zero-order quasi-Bessel-Gauss beam on an elastic spherical shell near an impedance boundary is theoretically and numerically studied in this study.By means of the finite series method and the image theory,a zero-order quasi-Bessel-Gauss beam is expanded in terms of spherical harmonic functions,and the exact solution of the acoustic radiation force is derived based on the acoustic scattering theory.The acoustic radiation force function,which represents the radiation force per unit energy density and per unit cross-sectional surface,is especially investigated.Some simulated results for a polymethyl methacrylate shell and an aluminum shell are provided to illustrate the behavior of acoustic radiation force in this case.The simulated results show the oscillatory property and the negative radiation force caused by the impedance boundary.An appropriate relative thickness of the shell can generate sharp peaks for a polymethyl methacrylate shell.Strong radiation force can be obtained at small half-cone angles and the beam waist only affects the results at high frequencies.Considering that the quasi-Bessel-Gauss beam possesses both the energy focusing property and the non-diffracting advantage,this study is expected to be useful in the development of acoustic tweezers,contrast agent micro-shells,and drug delivery applications.
基金supported by the Ph. D. Programs Foundation of Ministry of Education of China(No. 20050403002)
文摘Plastic limit load of viscoplastic thick-walled cylinder and spherical shell subjected to internal pressure is investigated analytically using a strain gradient plasticity theory. As a result, the current solutions can capture the size effect at the micron scale. Numerical results show that the smaller the inner radius of the cylinder or spherical shell, the more significant the scale effects. Results also show that the size effect is more evident with increasing strain or strain-rate sensitivity index. The classical plastic-based solutions of the same problems are shown to be a special case of the present solution.
文摘In this paper, the axisymmetric nonlinear free vibration problems of cylindrically orthotropic shallow thin spherical and conical shells under uniformly distributed static loads are studied by using MWR and Lindstedt-Poincare perturbation method, from which, the characteristic relation between frequency ratio and amplitude is obtained. The effects of static loads, geometric and material parameters on vibrational behavior of shells are also discussed.
基金Project supported by the National Natural Science Foundation of China
文摘A set of nonlinearly coupled algebraic and differential eigenvalue equations of nonlinear axisymmetric free vibration of orthotropic shallow thin spherical and conical shells are formulated following an assumed time-mode approach suggested in this paper. Analytic solutions are presented and an asymptotic relation for the amplitude-frequency response of the shells is derived. The effects of geometrical and material parameters on vibrations of the shells are investigated.