期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Spheroidization behavior of dendritic b.c.c. phase in Zr-based β-phase composite 被引量:1
1
作者 Sun Guoyuan Li Ping +1 位作者 Chen Wei Song Xuding 《China Foundry》 SCIE CAS 2013年第2期99-103,共5页
The spheroidization behavior of the dendritic b.c.c, phase dispersed in a bulk metallic glass (BMG) matrix was investigated through applying semi-solid isothermal processing and a subsequent rapid quenching procedur... The spheroidization behavior of the dendritic b.c.c, phase dispersed in a bulk metallic glass (BMG) matrix was investigated through applying semi-solid isothermal processing and a subsequent rapid quenching procedure to a Zr-basedβ-phase composite. The Zr-based composite with the composition of Z%62Ti138NbsoCuegNi5.6Be125 was prefabricated by a water-cooled copper mold-casting method and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that the composite consists of a glassy matrix and uniformly distributed fine dendrites of theβ-Zr solid solution with the body-centered-cubic (b.c.c.) structure. Based on the differential scanning calorimeter (DSC) examination results, and in view of the b.c.c.β-Zr to h.c.p, α-Zr phase transition temperature, a semi-solid holding temperature of 900 ℃ was determined. After reheating the prefabricated composite to the semi-solid temperature, followed by an isothermal holding process at this temperature for 5 min, and then quenching the semi-solid mixture into iced-water; the two-phase microstructure composed of a BMG matrix and uniformly dispersed spherical b.c.c.β-Zr particles with a high degree of sphericity was achieved. The present spheroidization transition is a thermodynamically autonomic behavior, and essentially a diffusion process controlled by kinetic factors; and the formation of the BMG matrix should be attributed to the rapid quenching of the semi-solid mixture as well as the large glass-forming ability of the remaining melt in the semi-solid mixture. 展开更多
关键词 bulk metallic glass composite semi-solid isothermal processing spheroidized microstructure
下载PDF
Effect of Subcritical Annealing Temperature on Microstructure and Mechanical Properties of SCM435 Steel 被引量:6
2
作者 Cheng JI Lei WANG Miao-yong ZHU 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2015年第11期1031-1036,共6页
The effect of subcritical annealing temperature on microstructure and mechanical properties of SCM435 steel was investigated through changing the heating and soaking temperature as 660 °C, 680 °C, 700 °... The effect of subcritical annealing temperature on microstructure and mechanical properties of SCM435 steel was investigated through changing the heating and soaking temperature as 660 °C, 680 °C, 700 °C, 720 °C and 745 °C. The microstructure and mechanical properties of intercritically annealed specimens were analyzed. With increasing the subcritical annealing temperature from 660 °C to 720 °C, the spheroidization ratio gradually increased, and the mechanical properties, formability and Vickers hardness were improved. According to the comprehensive comparison of mechanical properties and formability, the subcritical process at soaking temperature of 680-720 °C could achieve similar annealing effect as that of intercritical process. Therefore, the subcritical annealing temperature could be set as 700 °C in practice, with the Ac1 temperature fluctuation within ±20 °C, and the applicability and stability of subcritical annealing were guaranteed in industrial application. The plant results of the cold heading showed that the subcritical annealing could replace original intercritical annealing successfully with significantly saving time and energy. 展开更多
关键词 subcritical annealing spheroidization ratio SCM435 steel microstructure mechanical property formability
原文传递
Spheroidizing Behavior and Spheroidizing Kinetics of W-phase During Solid-Solution Treatment in Mg–Zn–Y–Mn–(B)Alloys 被引量:2
3
作者 Kai Yang Jin-Shan Zhang +2 位作者 Xi-Mei Zong Wei Liu Chun-Xiang Xu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第5期464-469,共6页
The spheroidizing mechanism of W-phase in the Mg–Zn–Y–Mn–(B) alloys during solid-solution treatment was investigated by using kinetic methodologies. The microstructure and mechanical properties of heat-treated ... The spheroidizing mechanism of W-phase in the Mg–Zn–Y–Mn–(B) alloys during solid-solution treatment was investigated by using kinetic methodologies. The microstructure and mechanical properties of heat-treated Mg_(94)Zn_(2.5)-Y_(2.5)Mn_1 alloy containing 0.003 wt% B were compared with heat-treated Mg_(94)Zn_(2.5)-Y_(2.5)Mn_1 alloy. The heat-treated Mg_(94)Zn_(2.5)-Y_(2.5)Mn_1 alloy with 0.003 wt% B contained fine and uniform W-phase particles, which exhibited optimal mechanical performance. The ultimate tensile strength, yield strength and elongation were 287.7, 125.5 MPa and 21.1%,respectively. 展开更多
关键词 Magnesium alloys W-phase Spheroidizing Kinetics Microstructure Mechanical properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部