To study the effects of local nitrogen supply on water and nutrient absorption, French bean (Phaseolus vulgaris L.) plants were grown in a split root system. Five treatments supplied with different nitrogen forms we...To study the effects of local nitrogen supply on water and nutrient absorption, French bean (Phaseolus vulgaris L.) plants were grown in a split root system. Five treatments supplied with different nitrogen forms were compared: homogeneous nitrate (NN) and homogenous ammonium (AA) supply, spatially separated supply of nitrate and ammonium (NA), half of the root system supplied with N-free nutrient solution, the other half with either nitrate (NO) or ammonium (AO). The results showed that 10 d after onset of treatments, root dry matter (DM) in the nitratesupplied vessels treated with NA was more than two times higher than that in the ammonium-supplied vessels. Water uptake from the nitrate-supplied vessels treated with NA was 281% higher than under ammonium supply. In treatments NO and AO, the local supply of N resulted in clearly higher root DM, and water uptake from the nitratesupplied vessels was 82% higher than in the -N vessels. However, in AO plants, water uptake from the -N nutrient solution was 129% higher than from the ammonium-supplied vessels. This indicates a compensatory effect, which resulted in almost identical rates of total water uptake of treatments AA and AO, which had comparable shoot DM and leaf area. Ammonium supply reduced potassium and magnesium absorption. Water uptake was positively correlated with N, Mg and K uptake.展开更多
Split-root system(SRS) approaches allow the differential treatment of separate and independent root systems, while sharing a common aerial part. As such, SRS is a useful tool for the discrimination of systemic(shoo...Split-root system(SRS) approaches allow the differential treatment of separate and independent root systems, while sharing a common aerial part. As such, SRS is a useful tool for the discrimination of systemic(shoot origin)versus local(root/nodule origin) regulation mechanisms. This type of approach is particularly useful when studying the complex regulatory mechanisms governing the symbiosis established between legumes and Rhizobium bacteria. The current work provides an overview of the main insights gained from the application of SRS approaches to understand how nodule number(nodulation autoregulation) and nitrogen fixation are controlled both under non-stressful conditions and in response to a variety of stresses. Nodule number appears to be mainly controlled at the systemic level through a signal which is produced by nodule/root tissue, translocated to the shoot, and transmitted back to the root system, involving shoot Leu-rich repeat receptor-like kinases. In contrast, both local and systemic mechanisms have been shown to operate for the regulation of nitrogenase activity in nodules. Under drought and heavy metal stress, the regulation is mostly local,whereas the application of exogenous nitrogen seems to exert a regulation of nitrogen fixation both at the local and systemic levels.展开更多
We focus on the notion of an integrable root in the framework of split Lie triple systems T with a coherent 0-root space. As a main result, it is shown that if T has all its nonzero roots integrable, then its standard...We focus on the notion of an integrable root in the framework of split Lie triple systems T with a coherent 0-root space. As a main result, it is shown that if T has all its nonzero roots integrable, then its standard embedding is a split Lie algebra having all its nonzero roots integrable. As a consequence, a local finiteness theorem for split Lie triple systems, saying that whenever all nonzero roots of T are integrable then T is locally finite, is stated. Finally, a classification theorem for split simple Lie triple systems having all its nonzero roots integrable is given.展开更多
We study the structure of arbitrary split Leibniz triple systems with a coherent O-root space. By developing techniques of connections of roots for this kind of triple systems, under certain conditions, in the case of...We study the structure of arbitrary split Leibniz triple systems with a coherent O-root space. By developing techniques of connections of roots for this kind of triple systems, under certain conditions, in the case of T being of maximal length', the simplicity of the Leibniz triple systems is characterized.展开更多
基金Supported by the Deutsche Forschungsgemeinschaft (Sa359/9) and the National Natural Science Foundation of China (30400279).Acknowledgements We thank Barbel Biegler and Anne ThieBen (Institute of Plant Nutrition and Soil Science, Kiel University, Germany) for skilled technical help.
文摘To study the effects of local nitrogen supply on water and nutrient absorption, French bean (Phaseolus vulgaris L.) plants were grown in a split root system. Five treatments supplied with different nitrogen forms were compared: homogeneous nitrate (NN) and homogenous ammonium (AA) supply, spatially separated supply of nitrate and ammonium (NA), half of the root system supplied with N-free nutrient solution, the other half with either nitrate (NO) or ammonium (AO). The results showed that 10 d after onset of treatments, root dry matter (DM) in the nitratesupplied vessels treated with NA was more than two times higher than that in the ammonium-supplied vessels. Water uptake from the nitrate-supplied vessels treated with NA was 281% higher than under ammonium supply. In treatments NO and AO, the local supply of N resulted in clearly higher root DM, and water uptake from the nitratesupplied vessels was 82% higher than in the -N vessels. However, in AO plants, water uptake from the -N nutrient solution was 129% higher than from the ammonium-supplied vessels. This indicates a compensatory effect, which resulted in almost identical rates of total water uptake of treatments AA and AO, which had comparable shoot DM and leaf area. Ammonium supply reduced potassium and magnesium absorption. Water uptake was positively correlated with N, Mg and K uptake.
基金partially funded by the Spanish National Research and Development Program (AGL2011-30386-CO2-1 and AGL2011-23738)
文摘Split-root system(SRS) approaches allow the differential treatment of separate and independent root systems, while sharing a common aerial part. As such, SRS is a useful tool for the discrimination of systemic(shoot origin)versus local(root/nodule origin) regulation mechanisms. This type of approach is particularly useful when studying the complex regulatory mechanisms governing the symbiosis established between legumes and Rhizobium bacteria. The current work provides an overview of the main insights gained from the application of SRS approaches to understand how nodule number(nodulation autoregulation) and nitrogen fixation are controlled both under non-stressful conditions and in response to a variety of stresses. Nodule number appears to be mainly controlled at the systemic level through a signal which is produced by nodule/root tissue, translocated to the shoot, and transmitted back to the root system, involving shoot Leu-rich repeat receptor-like kinases. In contrast, both local and systemic mechanisms have been shown to operate for the regulation of nitrogenase activity in nodules. Under drought and heavy metal stress, the regulation is mostly local,whereas the application of exogenous nitrogen seems to exert a regulation of nitrogen fixation both at the local and systemic levels.
基金the PCI of the UCA‘Teoría de Lie y Teoría de Espacios de Banach’,by the PAI's with project numbers FQM-298,FQM-3737,FQM-02467the project of the Spanish Ministerio de Educación y Ciencia MTM2004-06580-C02-02 and with rondos FEDER
文摘We focus on the notion of an integrable root in the framework of split Lie triple systems T with a coherent 0-root space. As a main result, it is shown that if T has all its nonzero roots integrable, then its standard embedding is a split Lie algebra having all its nonzero roots integrable. As a consequence, a local finiteness theorem for split Lie triple systems, saying that whenever all nonzero roots of T are integrable then T is locally finite, is stated. Finally, a classification theorem for split simple Lie triple systems having all its nonzero roots integrable is given.
基金Supported by NNSF of China (11801121)NSF of Heilongjiang province(QC2018006)the Fundamental Research Fundation for Universities of Heilongjiang Province(LGYC2018JC002)。
基金Supported by Scientific Research Fund of Heilongjiang Provincial Education Department(Grant No.12541184)
文摘We study the structure of arbitrary split Leibniz triple systems with a coherent O-root space. By developing techniques of connections of roots for this kind of triple systems, under certain conditions, in the case of T being of maximal length', the simplicity of the Leibniz triple systems is characterized.