期刊文献+
共找到84篇文章
< 1 2 5 >
每页显示 20 50 100
Stabilization Mechanism of Calcium Lignosulphonate Used in Expansion Sensitive Soil 被引量:2
1
作者 WU Dajiang SHE Weil +4 位作者 WEI Luansu ZUO Wenqiang' HU Xiangyu HONG Jinxiang MIAO Changwen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第5期847-855,共9页
A series of tests were performed to investigate the macroscopic properties and the stabilization mechanism of calcium lignosulphonate modified expansive soil.Compared with natural soil,soil modified by 4%calcium ligno... A series of tests were performed to investigate the macroscopic properties and the stabilization mechanism of calcium lignosulphonate modified expansive soil.Compared with natural soil,soil modified by 4%calcium lignosulphonate showed 56.5%increased 28 days unconfined compressive strength and 23.8%decreased free expansion rate.The X-ray diffraction analysis results indicate the existence of cation exchange and the reduction of montmorillonite interplanar spacing.The X-computed tomography results demonstrate that calcium lignosulphonate decreased the porosity and optimized the pore distribution.The calcium lignosulphonate also increased the stability of the suspension system according to the Zeta potential results.Moreover,the results of rheological tests show that the moderate amount of calcium lignosulphonate enhanced the yield stress and the plastic viscosity,proving the formation of a strong connection between soil particles. 展开更多
关键词 calcium lignosulphonate expansive soil mechanical characteristic stabilization mechanism
下载PDF
Preparation and stabilization mechanism of carbon dots nanofluids for drag reduction 被引量:1
2
作者 Yi-Ning Wu Yuan Li +3 位作者 Meng-Jiao Cao Cai-Li Dai Long He Yu-Ping Yang 《Petroleum Science》 SCIE CAS CSCD 2020年第6期1717-1725,共9页
During the development of low or ultra-low permeability oil resources,the alternative energy supply becomes a prominent issue.In recent years,carbon dots(CDs)have drawn much attention owing to their application potent... During the development of low or ultra-low permeability oil resources,the alternative energy supply becomes a prominent issue.In recent years,carbon dots(CDs)have drawn much attention owing to their application potential in oil fields for reducing injection pressure and augmenting oil recovery.However,carbon dots characterized of small size,high surface energy are faced with several challenges,such as self-aggregation and settling.The preparation of stably dispersed carbon dots nanofluids is the key factor to guarantee its application performance in formation.In this work,we investigated the stability of hydrophilic carbon dots(HICDs)and hydrophobic carbon dots-Tween 80(HOCDs)nanofluids.The influences of carbon dots concentration,sorts and concentration of salt ions as well as temperature on the stability of CDs were studied.The results showed that HICDs are more sensitive to sort and concentration of salt ions,while HOCDs are more sensitive to temperature.In addition,the core flooding experiments demonstrated that the pressure reduction rate of HICDs and HOCDs nanofluids can be as high as 17.88%and 26.14%,respectively.Hence,the HICDs and HOCDs nanofluids show a good application potential in the reduction of injection pressure during the development of low and ultra-low permeability oil resources. 展开更多
关键词 Carbon dots Nanofluids Drag reduction stabilization mechanism Salt tolerance
下载PDF
Acetylene hydrochlorination over supported ionic liquid phase(SILP)gold-based catalyst:Stabilization of cationic Au species via chemical activation of hydrogen chloride and corresponding mechanisms 被引量:7
3
作者 Jia Zhao Saisai Wang +9 位作者 Bolin Wang Yuxue Yue Chunxiao Jin Jinyue Lu Zheng Fang Xiangxue Pang Feng Feng Lingling Guo Zhiyan Pan Xiaonian Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第2期334-346,共13页
The activation of HCl by cationic Au in the presence of C2H2 is important for the construction of active Au sites and in acetylene hydrochlorination.Here,we report a strategy for activating HCl by the Au-based support... The activation of HCl by cationic Au in the presence of C2H2 is important for the construction of active Au sites and in acetylene hydrochlorination.Here,we report a strategy for activating HCl by the Au-based supported ionic liquid phase(Au–SILP)technology with the[N(CN)2^–]anion.This strategy enables HCl to accept electrons from[N(CN)2^–]anions in Au–[N(CN)2^–]complexes rather than from pure[Bmim][N(CN)2],leading to notable improvement in both the reaction path and the stability of the catalyst without changing the reaction triggered by acetylene adsorption.Furthermore,the induction period of the Au–SILP catalyst was shown to be absent in the reaction process due to the high Au(III)content in the Au(Ⅲ)/Au(Ⅰ)site and the high substrate diffusion rate in the ionic liquid layer.This work provides a facile method to improve the stability of Au-based catalysts for acetylene hydrochlorination. 展开更多
关键词 Acetylene hydrochlorination Electron density Hydrogen chloride activation stabilization mechanism Gold-based supported ionic liquid phase catalyst
下载PDF
Polymerization Kinetics and Stabilization Mechanism of the Monodisperse PMMA Microspheres 被引量:2
4
作者 YU Xianglin YE Chunjie LI Junbo CHENG Dongbing WANG Jun CHEN Rong 《Wuhan University Journal of Natural Sciences》 CAS 2011年第4期337-341,共5页
The effects of the concentration of monomer, crosslinking agent, initiator, stabilizer, and the polarity of medium on the polymerization kinetics were investigated. The results show that the rate of polymerization (Rp... The effects of the concentration of monomer, crosslinking agent, initiator, stabilizer, and the polarity of medium on the polymerization kinetics were investigated. The results show that the rate of polymerization (Rp) and conversion increased with the increase of monomer concentration from 8% to 15% (total mass); the water content in dispersion medium and the initiator 2, 2′ -azobis (isobutyronitrile) (AIBN) concentration increased as well. Rp and conversion decreases with the increase of PVP when it is low, while it increases when it is high. Moreover, PVP plays an important role in microsphere stabilization. The stabilization mechanism was investigated primarily, which involves both adsorbing mechanism and graft mechanism. Within a certain range of crosslinking degree, Rp and conversion increased with the increase of the crosslinker concentration. The effect can be ignored when crosslinker concentration is above 0.3 % (total mass), and the reason was that the monomer can hardly be diffused into the microsphere phase with a certain degree of crosslinking. 展开更多
关键词 dispersion polymerization methyl methacrylate polymerization kinetics stabilization mechanism
原文传递
Auto-ignition and stabilization mechanism of diluted H_2 jet flame 被引量:1
5
作者 Wei FENG Zhi-jun WU +1 位作者 Jun DENG Li-guang LI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2011年第2期154-161,共8页
The controllable active thermo-atmosphere combustor(CATAC) has become a utilizable and effective facility because it benefits the optical diagnostics and modeling. This paper presents the modeling research of the auto... The controllable active thermo-atmosphere combustor(CATAC) has become a utilizable and effective facility because it benefits the optical diagnostics and modeling. This paper presents the modeling research of the auto-ignition and flames of the H2/N2(H2/CH4/N2,or H2/H2O2/N2) mixture on a CATAC,and shows curves varying with temperatures of auto-ignition delay,the height of the site of auto-ignition of lifted flames,and flame lift-off height. The results of auto-ignition delay and the lift-off height are compared the experimental results to validate the model. A turning point can be seen on each curve,identified with criterion temperature. It can be concluded that when the co-flow temperature is higher than the criterion temperature,the auto-ignition and lifted flame of the mixture are not stable. Conversely,below the criterion temperature,the mixture will auto-ignite in a stable fashion. Stabilization mechanisms of auto-ignition and lifted flames are analyzed in terms of the criterion temperature. 展开更多
关键词 SIMULATION COMBUSTOR AUTO-IGNITION Jet flame stabilization mechanism
原文传递
Unraveling the Fundamental Mechanism of Interface Conductive Network Influence on the Fast‑Charging Performance of SiO‑Based Anode for Lithium‑Ion Batteries 被引量:1
6
作者 Ruirui Zhang Zhexi Xiao +6 位作者 Zhenkang Lin Xinghao Yan Ziying He Hairong Jiang Zhou Yang Xilai Jia Fei Wei 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期53-68,共16页
Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effe... Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance. 展开更多
关键词 Fast charging SiO anode Interface conductive network Ionic transport Mechanical stability
下载PDF
Effect and mechanism of reductive polyaniline on the stability of nitrocellulose
7
作者 Wenjiang Li Binbin Wang +5 位作者 Huimin Chen Aoao Lu Chenguang Li Qiang Li Fengqiang Nan Ping Du 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期217-225,共9页
The search for new green and efficient stabilizers is of great importance for the stabilization of nitrocellulose(NC). This is due to the shortcomings of traditional stabilizers, such as high toxicity. In this study, ... The search for new green and efficient stabilizers is of great importance for the stabilization of nitrocellulose(NC). This is due to the shortcomings of traditional stabilizers, such as high toxicity. In this study, reduced polyaniline(r-PANI), which has a similar functional structure to diphenylamine(DPA) but is non-toxic, was prepared from PANI based on the action with N_(2)H_(4) and NH_(3)-H_(2)O, and used for the first time as a potential stabilizer for NC. XPS, FTIR, Raman, and SEM were used to characterize the reduced chemical structure and surface morphology of r-PANI. In addition, the effect of r-PANI on the stabilization of NC was characterized using DSC, VST, isothermal TG, and MMC. Thermal weight loss was reduced by 83% and 68% and gas pressure release by 75% and 49% compared to pure NC and NC&3%DPA, respectively.FTIR and XPS were used to characterize the structural changes of r-PANI before and after reaction with NO_(2). The 1535 cm^(-1) and 1341 cm^(-1) of the FTIR and the 404.98 eV and 406.05 eV of the XPS showed that the -NO_(2) was generated by the absorption of NO_(2). Furthermore, the quantum chemical calculation showed that NO_(2) was directly immobilized on r-PANI by forming -NO_(2) in the neighboring position of the benzene ring. 展开更多
关键词 NITROCELLULOSE Green stabilizer POLYANILINE mechanism of stability
下载PDF
Lithium nitrate regulated carbonate electrolytes for practical Li-metal batteries: Mechanisms, principles and strategies 被引量:4
8
作者 Kun Wang Wenbing Ni +9 位作者 Liguang Wang Lu Gan Jing Zhao Zhengwei Wan Wei Jiang Waqar Ahmad Miaomiao Tian Min Ling Jun Chen Chengdu Liang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期581-600,I0015,共21页
Li-metal batteries(LMBs)regain research prominence owing to the ever-increasing high-energy requirements.Commercially available carbonate electrolytes exhibit unfavourable parasitic reactions with Limetal anode(LMA),l... Li-metal batteries(LMBs)regain research prominence owing to the ever-increasing high-energy requirements.Commercially available carbonate electrolytes exhibit unfavourable parasitic reactions with Limetal anode(LMA),leading to the formation of unstable solid electrolyte interphase(SEI)and the breed of Li dendrites/dead Li.Significantly,lithium nitrate(LiNO_(3)),an excellent film-forming additive,proves crucial to construct a robust Li_(3)N/Li_(2)O/Li_(x)NO_(y)-rich SEI after combining with ether-based electrolytes.Thus,the given challenge leads to natural ideas which suggest the incorporation of LiNO_(3) into commercial carbonate for practical LMBs.Regrettably,LiNO_(3) demonstrates limited solubility(~800 ppm)in commercial carbonate electrolytes.Thence,developing stable SEI and dendrite-free LMA with the incorporation of LiNO_(3) into carbonate electrolytes is an efficacious strategy to realize robust LMBs via a scalable and cost-effective route.Therefore,this review unravels the grievances between LMA,LiNO_(3)and carbonate electrolytes,and enables a comprehensive analysis of LMA stabilizing mechanism with LiNO_(3),dissolution principle of LiNO_(3) in carbonate electrolytes,and LiNO_(3) introduction strategies.This review converges attention on a point that the LiNO_(3)-introduction into commercial carbonate electrolytes is an imperious choice to realize practical LMBs with commercial 4 V layered cathode. 展开更多
关键词 Li-metal battery Carbonate electrolyte Lithium nitrate stabilization mechanism Dissolution principle Introduction strategy
下载PDF
MECHANICAL STABILIZATION OF DEFORMED AUSTENITEDURING CONTINUOUS COOLING TRANSFORMATION IN AC-Mn-Cr-Ni-Mo PLASTIC DIE STEEL 被引量:7
9
作者 D.S.Liu G.D.Wang +1 位作者 X.H.Liu G.Z.Cui 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1998年第2期93-99,共7页
The influence of prior austenite deformed at different temperature on the subsequent continuous cooling bainitic transformation has been investigated in an C-Ma-Cr-Ni-Mo plastic die steel. The results show that the pr... The influence of prior austenite deformed at different temperature on the subsequent continuous cooling bainitic transformation has been investigated in an C-Ma-Cr-Ni-Mo plastic die steel. The results show that the prior deformation in low temperature region of austenite retards significantly the bainitic transformation. For the same continuous cooling schedule, as austenite deformed at lower temperature, the quantity of the classical sheaf-like bainite becomes less. The present results show that severe deformation leads to mechanical stabilization of austenite and causes the difficulty of bainitic ferrite propagation into the austenite. 展开更多
关键词 plastic die steel deformed austenite continuous cooling bainitic transformation mechanical stabilization of austenite
下载PDF
Mechanism of progressive failure of a slope with a steep joint under the action of freezing and thawing:model test 被引量:3
10
作者 LI Cong ZHANG Rong-tang +6 位作者 ZHU Jie-bing LU Bo SHEN Xiao-ke WANG Xiao-wei LIU Jie-sheng WU Liang-liang ZHANG Xin-zhou 《Journal of Mountain Science》 SCIE CSCD 2022年第10期2999-3012,共14页
The stability of slope rock masses is influenced by freeze-thaw cycles in cold region,and the mechanism of stability deterioration is not clear.In order to understand the damage and progressive failure characteristics... The stability of slope rock masses is influenced by freeze-thaw cycles in cold region,and the mechanism of stability deterioration is not clear.In order to understand the damage and progressive failure characteristics of rock masses under the action of freezing and thawing,a model test was conducted on slope with steep joint in this study.The temperature,frost heaving pressure and deformation of slope rock mass were monitored in real-time during the test and the progressive failure mode was studied.The experimental results show that the temperature variations of cracking and the rock mass of a slope are different.There are obvious latent heat stages in the temperature-change plot in the crack,but not in the slope rock masses.The frost heaving effect in the fracture is closely related to the constraint conditions,which change with the deformation of the fracture.The frost heaving pressure fluctuates periodically during freezing and continues to decrease during thawing.The surface deformation of the rock mass increases during freezing,and the deformation is restored when it thaws.Freeze-thaw cycling results in residual deformation of the rock mass which cannot be fully restored.Analysis shows that the rock mass at the free side of the steep-dip joint rotates slightly under the frost heaving effect,causing fracture propagation.The fracture propagation pattern is a circular arc at the beginning,then extends to the possible sliding direction of the rock mass.Frost heaving force and fracture water pressure are the key factors for the failure of the slope,which can cause the crack to penetrate the rock mass,and a landslide ensues when the overall anti-sliding resistance of the rock mass is overcome. 展开更多
关键词 Rock slope Fractured rock mass Freeze-thaw cycle Model experiment Stability degradation mechanism Failure mode
下载PDF
Effects of the precipitation of stabilizers on the mechanism of grain fracturing in a zirconia metering nozzle 被引量:2
11
作者 Liang Zhao Qun-hu Xue Dong-hai Ding 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第9期1041-1047,共7页
The mechanism of grain fracturing in a zirconia metering nozzle used in the continuous casting process was studied. The phase composition, microstructure, and chemical composition of the residual samples were studied ... The mechanism of grain fracturing in a zirconia metering nozzle used in the continuous casting process was studied. The phase composition, microstructure, and chemical composition of the residual samples were studied using an X-ray fluorescence analyzer, scanning electron microscope, and electron probe. Results revealed that the composition, structure, and mineral phase of the original layer, transition layer, and affected layer of the metering nozzle differed because of stabilizer precipitation and steel slag permeation. The stabilizer MgO formed low-melting phases with steel slag and impure SiO2 on the boundaries(pores) of zirconia grains; consequently, grain fracturing occurred and accelerated damage to the metering nozzle was observed. 展开更多
关键词 continuous casting metering nozzle partially stabilized zirconia grains fracture mechanisms electron probe microanalysis
下载PDF
Study on Galloping Stability Mechanism of Conductor and Its Application to Anti-Galloping of Transmission Lines 被引量:1
12
作者 YouChuanyong 《Electricity》 2005年第1期26-30,共5页
Galloping of conductor is a major hazard to safe operation of transmission lines. This paper introduces the basic galloping stability mechanism of conductor, design method of anti-galloping and the application of anti... Galloping of conductor is a major hazard to safe operation of transmission lines. This paper introduces the basic galloping stability mechanism of conductor, design method of anti-galloping and the application of anti-galloping double pendulum and integral eccentric pendulum in China. Galloping stability mechanism of conductor was established based on vertical galloping mechanism developed by Den Hartog and torsional galloping mechanism developed by O. Nigel. A design method of anti-galloping was derived and anti-galloping double pendulum and integral eccentric pendulum were developed. Applications to several transmission lines including a 500 kV transmission line of large span indicated that they have played important roles in anti-galloping. 展开更多
关键词 galloping of conductor stability mechanism transmission line anti-galloping double pendulum integral eccentric pendulum
下载PDF
Utilizing hybrid faradaic mechanism via catalytic and surface interactions for high-performance flexible energy storage system
13
作者 Dong-Gyu Lee Hyeonggeun Choi +9 位作者 Yeonsu Park Min-Cheol Kim Jong Bae Park Suok Lee Younghyun Cho Wook Ahn A-Rang Jang Jung Inn Sohn John Hong Young-Woo Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期541-548,I0013,共9页
Improving the capacitance and energy density is a significant challenge while developing practical and flexible energy storage system(ESS).Redox mediators(RMs),as redox-active electrolyte additives,can provide additio... Improving the capacitance and energy density is a significant challenge while developing practical and flexible energy storage system(ESS).Redox mediators(RMs),as redox-active electrolyte additives,can provide additional energy storing capability via electrochemical faradaic contribution on electrodes for high-performance flexible ESSs.Particularly,determining effective material combinations between electrodes and RMs is essential for maximizing surface faradaic redox reactions for energy-storage performance.In this study,an electrode-RM system comprising heterostructured hybrid(carbon fiber(CF)/MnO_(2)) faradaic electrodes and iodine RMs(I-RMs) in a redox-active electrolyte is investigated.The CF/MnO_(2)with the 1-RMs(CF/MnO_(2)-I) induces dominant catalytic faradaic interaction with the I-RMs,significantly enhancing the surface faradaic kinetics and increasing the overall energy-storage performance.The CF/MnO_(2)-I ESSs show a 12.6-fold(or higher) increased volumetric energy density of 793.81 mWh L^(-1)at a current of 10 μA relative to ESSs using CF/MnO_(2)without I-RMs(CF/MnO_(2)).Moreover,the CF/MnO_(2)-I retains 93.1% of its initial capacitance after 10,000 cycles,validating the excellent cyclability.Finally,the flexibility of the ESSs is tested at different bending angles(180° to 0°),demonstrating its feasibility for flexible and high-wear environments.Therefore,CF/MnO_(2)electrodes present a practical material combination for high-performance flexible energy-storage devices owing to the catalytic faradaic interaction with I-RMs. 展开更多
关键词 Energy storage system Redox mediators Faradaic electrodes Catalytic interactions Mechanical stability
下载PDF
Synthesis of ZnO quantum dots and their agglomeration mechanisms along with emission spectra based on ageing time and temperature
14
作者 乔泊 赵谡玲 +1 位作者 徐征 徐叙瑢 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第9期149-152,共4页
The ZnO quantum dots(QDs) were synthesized with improved chemical solution method.The size of the ZnO QDs is exceedingly uniform with a diameter of approximately 4.8 nm,which are homogeneously dispersed in ethanol.T... The ZnO quantum dots(QDs) were synthesized with improved chemical solution method.The size of the ZnO QDs is exceedingly uniform with a diameter of approximately 4.8 nm,which are homogeneously dispersed in ethanol.The optical absorption edge shifts from 370 nm of bulk material to 359 nm of QD materials due to the quantum size effect,while the photoluminescence peak shifts from 375 nm to 387 nm with the increase of the density of ZnO QDs.The stability of ZnO QDs was studied with different dispersion degrees at 0?C and at room temperature of 25?C.The agglomeration mechanisms and their relationship with the emission spectra were uncovered for the first time.With the ageing of Zn O QDs,the agglomeration is aggravated and the surface defects increase,which leads to the defect emission. 展开更多
关键词 ZnO quantum dots quantum blue shift agglomeration mechanism stability
下载PDF
Energy ceramic design for robust battery cathodes and solid electrolytes 被引量:1
15
作者 Hongbing Yang Chang-An Wang Yanhao Dong 《Advanced Powder Materials》 2024年第3期56-67,共12页
Microstructural design and processing science of ceramics from materials to devices are critical to the present and future applications in various fields.They have profound effects on the mechanical and functional pro... Microstructural design and processing science of ceramics from materials to devices are critical to the present and future applications in various fields.They have profound effects on the mechanical and functional properties,as well as the reliability and lifetime of ceramics.The stability issue has been attracting more and more attentions,as many devices are pushed towards extreme service conditions to gain additional benefits such as energy density and efficiency.In this pespective article,we shall discuss on four selected topics of energy ceramic design,including the oxygen evolution issue of oxide battery cathodes under extreme charge voltages,the synthesis conundrum of single-crystalline battery cathodes,the metal/ceramic interface contact problem in all-solid-state lithium-metal batteries,and the nature of hole polarons in oxygen ion and protonic ceramic electrolytes.Our understanding and solutions to these challenging problems shall be discussed.The new fundamental insights and rationally optimized processing practices presented here could help to develop advanced interdisciplinary ceramics further,enabling exciting applications in the coming decades. 展开更多
关键词 CERAMICS OXIDES BATTERIES Solid electrolytes Stability and degradation mechanisms
下载PDF
Rare Earth Stearates as Thermal Stabilizers for Rigid Poly(vinyl chloride) 被引量:16
16
作者 郑玉婴 蔡伟龙 +2 位作者 傅明连 王灿耀 张星 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第2期172-177,共6页
A series of stearates with different rare-earth ion were investigated as thermal stabilizers for rigid PVC at 180 ℃ in air. Their stabilizing efficiency was based on measuring the rate of dehydrochlorination. The res... A series of stearates with different rare-earth ion were investigated as thermal stabilizers for rigid PVC at 180 ℃ in air. Their stabilizing efficiency was based on measuring the rate of dehydrochlorination. The resulted revealed the higher stabilizing efficiency of the investigated rare-earth stearates as thermal stabilizers for rigid PVC compared with the thermal stabilizers for industry: calcium stearate, zinc stearate, butyl stannum mercaptide, phosphite esters, β-diketone and epoxidized sunflower oil. This was well illustrated by longer incubation period (T_S) values and lower rate of dehydrochlorination. The stable efficiency was affected by the nature of rare-earth element's individual electronic shell. The mechanism for the stabilizing effect of rare-earth stearates was proposed. The result was experimentally proved based on IR spectrum. 展开更多
关键词 poly(vinyl chloride) thermal dehydrochlorination rare-earth stearates stabilization mechanism conductivity method congo red test
下载PDF
Oxide film on bubble surface of aluminum foams produced by gas injection foaming process 被引量:3
17
作者 周宇通 李言祥 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2429-2437,共9页
Based on A356 aluminum alloy,aluminum foams were prepared by gas injection foaming process with pure nitrogen,air and some gas mixtures.The oxygen volume fraction of these gas mixtures varied from 0.2%to 8.0%.Optical ... Based on A356 aluminum alloy,aluminum foams were prepared by gas injection foaming process with pure nitrogen,air and some gas mixtures.The oxygen volume fraction of these gas mixtures varied from 0.2%to 8.0%.Optical microscopy,scanning electron microscopy(SEM) and Auger electron spectroscopy(AES) were used to analyze the influence of oxygen content on cell structure,relative density,macro and micro morphology of cell walls,coverage area fraction of oxide film,thickness of oxide film and other aspects.Results indicate that the coverage area fraction of oxide film on bubble surface increases with the increase of oxygen content when the oxygen volume is less than 1.2%.While when the oxygen volume fraction is larger than 1.6%,an oxide film covers the entire bubble surface and aluminum foams with good cell structure can be produced.The thicknesses of oxide films of aluminum foams produced by gas mixtures containing 1.6%-21%oxygen are almost the same.The reasons why the thickness of oxide film nearly does not change with the variation of oxygen content and the amount of oxygen needed to achieve 100%coverage of oxide film are both discussed.In addition,the role of oxide film on bubble surface in foam stability is also analyzed. 展开更多
关键词 aluminum foam gas injection foaming process oxide film foam stability mechanism
下载PDF
MINTEQ modeling for evaluating the leaching behavior of heavy metals in MSWI fly ash 被引量:12
18
作者 Mang Yan Jiang Jianguo Chen Maozhe 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第11期1398-1402,共5页
At present,all kinds of municipal solid waste incineration (MSWI) fly ash stabilization technology has been reported and successfully applied in many countries.However,leaching procedures are very different that the t... At present,all kinds of municipal solid waste incineration (MSWI) fly ash stabilization technology has been reported and successfully applied in many countries.However,leaching procedures are very different that the technologies lack uniform standard,and it is even impossible to predict the long-term stabilization.Geochemical model can explain the environmental stabilization based on chemical phase and thermodynamic crystal structure,and it is also able to guide the development of environment-friendly stabi... 展开更多
关键词 MINTEQ model incinerator fly ash stabilization mechanism
下载PDF
A novel approach to study the interactions between polymeric stabilized micron-sized oil droplets by optical tweezers 被引量:4
19
作者 An Chen Shaowei Li Jianhong Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第5期1368-1374,共7页
The well understanding of interaction forces between single dispersed droplets is crucial to the understanding of emulsion stabilization mechanism.Recently,many studies have reported the direct quantitative measuremen... The well understanding of interaction forces between single dispersed droplets is crucial to the understanding of emulsion stabilization mechanism.Recently,many studies have reported the direct quantitative measurements of interaction forces between 20-200μm single droplet coated polymers by atomic force microscope(AFM).These studies have revealed many important results about the relationship of the interaction forces and the droplet deformation.However,these studies of the quantitative relationship between the measured interaction forces and the separation distance of the front end of the droplet have rarely been reported.Optical tweezer instrument can make it possible to establish the quantitative relationship between the measured force and the separation distance of the front end of the droplet,which will make better understanding of the interaction mechanisms between droplets.Due to the differences of the measuring mechanism between atomic force microscopy(AFM)and optical tweezers,the theory model of AFM measurements cannot be fitted with the force measurement by optical tweezers.We have made an exhaustive comparison of the measuring differences between AFM and optical tweezer instrument in this work.Moreover,we built a numerical model to derive the repulsive pressure through the measured force curve in order to quantify the measured force of two micron-sized oil droplet coated polymers by optical tweezers.Furthermore,the novel method can be extended to other micron-sized emulsion systems,and these findings will be a vital progress on quantitative force measurements between micron-sized droplets. 展开更多
关键词 Emulsions stabilization mechanism INTERACTIONS POLYMERS Optical tweezers
下载PDF
The geomechanics of Shenhua carbon dioxide capture and storage(CCS) demonstration project in Ordos Basin,China 被引量:9
20
作者 Xiaochun Li Qi Li +2 位作者 Bing Bai Ning Wei Wei Yuan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第6期948-966,共19页
Carbon dioxide(CO2) capture and storage(CCS) is considered widely as one of promising options for CO2emissions reduction,especially for those countries with coal-dominant energy mix like China.Injecting and storing a ... Carbon dioxide(CO2) capture and storage(CCS) is considered widely as one of promising options for CO2emissions reduction,especially for those countries with coal-dominant energy mix like China.Injecting and storing a huge volume of CO2in deep formations are likely to cause a series of geomechanical issues,including ground surface uplift,damage of caprock integrity,and fault reactivation.The Shenhua CCS demonstration project in Ordos Basin,China,is the first and the largest full-chain saline aquifer storage project of CO2in Asia.The injection started in 2010 and ended in 2015.during which totally 0.3 million tonnes(Mt) CO2was injected.The project is unique in which CO2was injected into 18 sandstone formations simultaneously and the overlying coal seams will be mined after the injection stopped in 2015.Hence,intense geomechanical studies and monitoring works have been conducted in recent years,including possible damage resulting from the temperature difference between injected CO2and formations,injection induced stress and deformation change,potential failure mode and safety factor,interaction between coal mining and CO2geological storage,determination of injection pressure limit,and surface monitoring by the interferometric synthetic aperture radar(InSAR) technology.In this paper,we first described the background and its geological conditions of the Shenhua CCS demonstration project.Then,we gave an introduction to the coupled thermo-hydro-mechano-chemical(THMC) processes in CO2geological storage,and mapped the key geomechanical issues into the THMC processes accordingly.Next,we proposed a generalized geomechanical research flowchart for CO2geological storage projects.After that,we addressed and discussed some typical geomechanical issues,including design of injection pressure limit.CO2injection induced near-field damage,and interaction between CO2geological storage and coal mining,in the Shenhua CCS demonstration project.Finally,we concluded some insights to this CCS project. 展开更多
关键词 Mechanical stability Carbon dioxide(CO_2) geological storage Injection pressure limit Caprock integrity Coal mining
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部