A Target State Estimator (TSE) for airborne radar system is proposed in this paper. It is very important for fire control system to obtain accurate estimation of the maneuvering target and the TSE becomes a key link i...A Target State Estimator (TSE) for airborne radar system is proposed in this paper. It is very important for fire control system to obtain accurate estimation of the maneuvering target and the TSE becomes a key link in the integrated Flight/Fire Control (IFFC) system. By adopting the Cartesian coordinates and pseudomeasurements ,the result ed TSE has it s advantages in computation.In addition, by employing accurate range and range-rate redundant filter, the range direction estimations obtained in Cartesian filter are greatly improved. The TSE shows its satisfaCtory performance in the Monte Carlo simulation of the IFFC system.展开更多
For a 5G wireless communication system,a convolutional deep neural network(CNN)is employed to synthesize a robust channel state estimator(CSE).The proposed CSE extracts channel information from transmit-and-receive pa...For a 5G wireless communication system,a convolutional deep neural network(CNN)is employed to synthesize a robust channel state estimator(CSE).The proposed CSE extracts channel information from transmit-and-receive pairs through offline training to estimate the channel state information.Also,it utilizes pilots to offer more helpful information about the communication channel.The proposedCNN-CSE performance is compared with previously published results for Bidirectional/long short-term memory(BiLSTM/LSTM)NNs-based CSEs.The CNN-CSE achieves outstanding performance using sufficient pilots only and loses its functionality at limited pilots compared with BiLSTM and LSTM-based estimators.Using three different loss function-based classification layers and the Adam optimization algorithm,a comparative study was conducted to assess the performance of the presented DNNs-based CSEs.The BiLSTM-CSE outperforms LSTM,CNN,conventional least squares(LS),and minimum mean square error(MMSE)CSEs.In addition,the computational and learning time complexities for DNN-CSEs are provided.These estimators are promising for 5G and future communication systems because they can analyze large amounts of data,discover statistical dependencies,learn correlations between features,and generalize the gotten knowledge.展开更多
An efficient observability analysis method is proposed to enable online detection of performance degradation of an optimization-based sliding window visual-inertial state estimation framework.The proposed methodology ...An efficient observability analysis method is proposed to enable online detection of performance degradation of an optimization-based sliding window visual-inertial state estimation framework.The proposed methodology leverages numerical techniques in nonlinear observability analysis to enable online evaluation of the system observability and indication of the state estimation performance.Specifically,an empirical observability Gramian based approach is introduced to efficiently measure the observability condition of the windowed nonlinear system,and a scalar index is proposed to quantify the average system observability.The proposed approach is specialized to a challenging optimizationbased sliding window monocular visual-inertial state estimation formulation and evaluated through simulation and experiments to assess the efficacy of the methodology.The analysis result shows that the proposed approach can correctly indicate degradation of the state estimation accuracy with real-time performance.展开更多
Minimax state estimation is discussed for uncerttain systems with L2 bounded constraint. A dtaity relation-equality is introduced to estimate terminal state variabes x(T) by measurable outputs . hawing a game theory, ...Minimax state estimation is discussed for uncerttain systems with L2 bounded constraint. A dtaity relation-equality is introduced to estimate terminal state variabes x(T) by measurable outputs . hawing a game theory, opti-mal estimation leads to a simple solution. LQL control scheme, is further discussed to make it rational in the actual application.展开更多
This paper presents a properly designed branchcurrent based state estimator(BCBSE)used as the main core ofan accurate fault location approach(FLA)devoted to distribution networks.Contrary to the approaches available i...This paper presents a properly designed branchcurrent based state estimator(BCBSE)used as the main core ofan accurate fault location approach(FLA)devoted to distribution networks.Contrary to the approaches available in the literature,it uses only a limited set of conventional measurementsobtained from smart meters to accurately locate faults at busesor branches without requiring measurements provided by phasor measurement units(PMUs).This is possible due to themethods used to model the angular reference and the faultedbus,in addition to the proper choice of the weights in the stateestimator(SE).The proposed approach is based on a searchingprocedure composed of up to three stages:①the identificationof the faulted zones;②the identification of the bus closest tothe fault;and③the location of the fault itself,searching onbranches connected to the bus closest to the fault.Furthermore,this paper presents a comprehensive assessment of the proposedapproach,even considering the presence of distributed generation,and a sensitivity study on the proper weights required bythe SE for fault location purposes,which can not be found inthe literature.Results show that the proposed BCBSE-basedFLA is robust,accurate,and aligned with the requirements ofthe traditional and active distribution networks.展开更多
This paper proposes an L_(p)(0<p<1)quasi norm state estimator for power system static state estimation.Compared with the existing L1 and L2 norm estimators,the proposed estimator can suppress the bad data more e...This paper proposes an L_(p)(0<p<1)quasi norm state estimator for power system static state estimation.Compared with the existing L1 and L2 norm estimators,the proposed estimator can suppress the bad data more effectively.The robustness of the proposed estimator is discussed,and an analysis shows that its ability to suppress bad data increases as p decreases.Moreover,an algorithm is suggested to solve the nonconvex state estimation problem.By introducing a relaxation factor in the mathematical model of the proposed estimator,the algorithm can prevent the solution from converging to a local optimum as much as possible.Finally,simulations on a 3-bus DC system,the IEEE 14-bus and IEEE 300-bus systems as well as a 1204-bus provincial system verify the high computation efficiency and robustness of the proposed estimator.展开更多
This letter extends the complex-variable perturbed Gauss-Newton method to estimate the state of unbalanced power systems by exploiting the Fortescue transformation.It proposes a novel and efficient graph-based way to ...This letter extends the complex-variable perturbed Gauss-Newton method to estimate the state of unbalanced power systems by exploiting the Fortescue transformation.It proposes a novel and efficient graph-based way to deal with singularities due to zero-sequence network parts bounded with delta transformer windings and isolated from the ground.The estimator can handle both phasor and complex power measurements.Compared with the standard complex-variable unbalanced state estimator,it achieves better numerical stability and a speed-up of around three times using a sequential implementation and five times using parallel execution.展开更多
The error of single step-ahead output prediction is the information traditionally used to correct the state estimate while exploiting the new measurement of the system output.However,its dynamics and statistical prope...The error of single step-ahead output prediction is the information traditionally used to correct the state estimate while exploiting the new measurement of the system output.However,its dynamics and statistical properties can be further studied and exploited in other ways.It is known that in the case of suboptimal state estimation,this output prediction error forms a correlated sequence,hence it can be effectively predicted in real time.Such a suboptimal scenario is typical in applications where the process noise model is not known or it is uncertain.Therefore,the paper deals with the problems of analytical and empirical modeling,identification,and prediction of the output error of the suboptimal state estimator for the sake of improving the output prediction accuracy and ultimately the performance of the model predictive control.The improvements are validated on an empirical model of type 1 diabetes within an in-silico experiment focused on glycemia prediction and implementation of the MPC-based artificial pancreas.展开更多
We propose a new and efficient algorithm to detect, identify, and correct measurement errors and branch parameter errors of power systems. A dynamic state estimation algorithm is used based on the Kalman filter theory...We propose a new and efficient algorithm to detect, identify, and correct measurement errors and branch parameter errors of power systems. A dynamic state estimation algorithm is used based on the Kalman filter theory. The proposed algorithm also successfully detects and identifies sudden load changes in power systems. The method uses three normalized vectors to process errors at each sampling time: normalized measurement residual, normalized Lagrange multiplier, and normalized innovation vector. An IEEE 14-bus test system was used to verify and demonstrate the effectiveness of the proposed method. Numerical results are presented and discussed to show the accuracy of the method.展开更多
Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,...Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,we developed a reactor operation digital twin(RODT).However,non-differentiabilities and discontinuities arise when employing machine learning-based surrogate forward models,challenging traditional gradient-based inverse methods and their variants.This study investigated deterministic and metaheuristic algorithms and developed hybrid algorithms to address these issues.An efficient modular RODT software framework that incorporates these methods into its post-evaluation module is presented for comprehensive comparison.The methods were rigorously assessed based on convergence profiles,stability with respect to noise,and computational performance.The numerical results show that the hybrid KNNLHS algorithm excels in real-time online applications,balancing accuracy and efficiency with a prediction error rate of only 1%and processing times of less than 0.1 s.Contrastingly,algorithms such as FSA,DE,and ADE,although slightly slower(approximately 1 s),demonstrated higher accuracy with a 0.3%relative L_2 error,which advances RODT methodologies to harness machine learning and system modeling for improved reactor monitoring,systematic diagnosis of off-normal events,and lifetime management strategies.The developed modular software and novel optimization methods presented offer pathways to realize the full potential of RODT for transforming energy engineering practices.展开更多
Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles...Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles,the current mature application of traditional vehicle state estimation algorithms can not meet the requirements of drive-by-wire chassis vehicle state estimation.This paper proposes a state estimation method for drive-by-wire chassis vehicle based on the dual unscented particle filter algorithm,which make full use of the known advantages of the four-wheel drive torque and steer angle parameters of the drive-by-wire chassis vehicle.In the dual unscented particle filter algorithm,two unscented particle filter transfer information to each other,observe the vehicle state information and the tire force parameter information of the four wheels respectively,which reduce the influence of parameter uncertainty and model parameter changes on the estimation accuracy during driving.The performance with the dual unscented particle filter algorithm,which is analyzed in terms of the time-average square error,is superior of the unscented Kalman filter algorithm.The effectiveness of the algorithm is further verified by driving simulator test.In this paper,a vehicle state estimator based on dual unscented particle filter algorithm was proposed for the first time to improve the estimation accuracy of vehicle parameters and states.展开更多
Neural networks are becoming ubiquitous in various areas of physics as a successful machine learning(ML)technique for addressing different tasks.Based on ML technique,we propose and experimentally demonstrate an effic...Neural networks are becoming ubiquitous in various areas of physics as a successful machine learning(ML)technique for addressing different tasks.Based on ML technique,we propose and experimentally demonstrate an efficient method for state reconstruction of the widely used Sagnac polarization-entangled photon source.By properly modeling the target states,a multi-output fully connected neural network is well trained using only six of the sixteen measurement bases in standard tomography technique,and hence our method reduces the resource consumption without loss of accuracy.We demonstrate the ability of the neural network to predict state parameters with a high precision by using both simulated and experimental data.Explicitly,the mean absolute error for all the parameters is below 0.05 for the simulated data and a mean fidelity of 0.99 is achieved for experimentally generated states.Our method could be generalized to estimate other kinds of states,as well as other quantum information tasks.展开更多
Cyber-physical systems(CPSs)have emerged as an essential area of research in the last decade,providing a new paradigm for the integration of computational and physical units in modern control systems.Remote state esti...Cyber-physical systems(CPSs)have emerged as an essential area of research in the last decade,providing a new paradigm for the integration of computational and physical units in modern control systems.Remote state estimation(RSE)is an indispensable functional module of CPSs.Recently,it has been demonstrated that malicious agents can manipulate data packets transmitted through unreliable channels of RSE,leading to severe estimation performance degradation.This paper aims to present an overview of recent advances in cyber-attacks and defensive countermeasures,with a specific focus on integrity attacks against RSE.Firstly,two representative frameworks for the synthesis of optimal deception attacks with various performance metrics and stealthiness constraints are discussed,which provide a deeper insight into the vulnerabilities of RSE.Secondly,a detailed review of typical attack detection and resilient estimation algorithms is included,illustrating the latest defensive measures safeguarding RSE from adversaries.Thirdly,some prevalent attacks impairing the confidentiality and data availability of RSE are examined from both attackers'and defenders'perspectives.Finally,several challenges and open problems are presented to inspire further exploration and future research in this field.展开更多
This article investigates the issue of finite-time state estimation in coupled neural networks under random mixed cyberattacks,in which the Markov process is used to model the mixed cyberattacks.To optimize the utiliz...This article investigates the issue of finite-time state estimation in coupled neural networks under random mixed cyberattacks,in which the Markov process is used to model the mixed cyberattacks.To optimize the utilization of channel resources,a decentralized event-triggered mechanism is adopted during the information transmission.By establishing the augmentation system and constructing the Lyapunov function,sufficient conditions are obtained for the system to be finite-time bounded and satisfy the H∞ performance index.Then,under these conditions,a suitable state estimator gain is obtained.Finally,the feasibility of the method is verified by a given illustrative example.展开更多
This paper investigates the anomaly-resistant decentralized state estimation(SE) problem for a class of wide-area power systems which are divided into several non-overlapping areas connected through transmission lines...This paper investigates the anomaly-resistant decentralized state estimation(SE) problem for a class of wide-area power systems which are divided into several non-overlapping areas connected through transmission lines. Two classes of measurements(i.e., local measurements and edge measurements) are obtained, respectively, from the individual area and the transmission lines. A decentralized state estimator, whose performance is resistant against measurement with anomalies, is designed based on the minimum error entropy with fiducial points(MEEF) criterion. Specifically, 1) An augmented model, which incorporates the local prediction and local measurement, is developed by resorting to the unscented transformation approach and the statistical linearization approach;2) Using the augmented model, an MEEF-based cost function is designed that reflects the local prediction errors of the state and the measurement;and 3) The local estimate is first obtained by minimizing the MEEF-based cost function through a fixed-point iteration and then updated by using the edge measuring information. Finally, simulation experiments with three scenarios are carried out on the IEEE 14-bus system to illustrate the validity of the proposed anomaly-resistant decentralized SE scheme.展开更多
In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation ...In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.展开更多
For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SF...For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SFC)is proposed to realize the state transition the pure state of the target state including eigenstate and superposition state.The proposed switching control consists of a constant control and a control law designed based on the Lyapunov method,in which the Lyapunov function is the state distance of the system.The constant control is used to drive the system state from an initial state to the convergence domain only containing the target state,and a Lyapunov-based control is used to make the state enter the convergence domain and then continue to converge to the target state.At the same time,the continuous weak measurement of quantum system and the quantum state tomography method based on the on-line alternating direction multiplier(QST-OADM)are used to obtain the system information and estimate the quantum state which is used as the input of the quantum system controller.Then,the pure state feedback switching control method based on the on-line estimated state feedback is realized in an n-qubit stochastic open quantum system.The complete derivation process of n-qubit QST-OADM algorithm is given;Through strict theoretical proof and analysis,the convergence conditions to ensure any initial state of the quantum system to converge the target pure state are given.The proposed control method is applied to a 2-qubit stochastic open quantum system for numerical simulation experiments.Four possible different position cases between the initial estimated state and that of the controlled system are studied and discussed,and the performances of the state transition under the corresponding cases are analyzed.展开更多
With the development of unmanned driving technology,intelligent robots and drones,high-precision localization,navigation and state estimation technologies have also made great progress.Traditional global navigation sa...With the development of unmanned driving technology,intelligent robots and drones,high-precision localization,navigation and state estimation technologies have also made great progress.Traditional global navigation satellite system/inertial navigation system(GNSS/INS)integrated navigation systems can provide high-precision navigation information continuously.However,when this system is applied to indoor or GNSS-denied environments,such as outdoor substations with strong electromagnetic interference and complex dense spaces,it is often unable to obtain high-precision GNSS positioning data.The positioning and orientation errors will diverge and accumulate rapidly,which cannot meet the high-precision localization requirements in large-scale and long-distance navigation scenarios.This paper proposes a method of high-precision state estimation with fusion of GNSS/INS/Vision using a nonlinear optimizer factor graph optimization as the basis for multi-source optimization.Through the collected experimental data and simulation results,this system shows good performance in the indoor environment and the environment with partial GNSS signal loss.展开更多
1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to...1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to the global energy crisis[1].Besides,the use of fossil fuels will generate a mass of air pollutants(e.g.,carbon dioxide,sulfur dioxide,etc.),which will cause serious environmental pollution,climate change[2],etc.To resolve the aforementioned issues,countries around the world have implemented a variety of measures hoping to fundamentally adjust the global energy structure and achieve sustainable development.Thereinto,“Paris Agreement”reached in 2015 under the framework of“United Nations Framework Convention on Climate Change”aims to control the increase in the average temperature of the globe to within 2°C below preindustrial levels,and thereafter to peak global greenhouse gas emissions as soon as possible,continuously decreasing thereafter[3].United Kingdom plans to reduce the average exhaust emissions of“new cars”to approximately 50–70 g/km by 20230,which is roughly half of what it is now[4].In addition,China proposed a plan at“United Nations General Assembly”in 2020 to peak carbon dioxide emissions by 2030 and strive to achieve carbon neutrality by 2060.It is a fact that the whole world is committed to changing the current energy structure,protecting the Earth’s ecology,and achieving global sustainable development[5].展开更多
A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan....A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan. In addition, there is still a lack of tailored health estimations for fast-charging batteries;most existing methods are applicable at lower charging rates. This paper proposes a novel method for estimating the health of lithium-ion batteries, which is tailored for multi-stage constant current-constant voltage fast-charging policies. Initially, short charging segments are extracted by monitoring current switches,followed by deriving voltage sequences using interpolation techniques. Subsequently, a graph generation layer is used to transform the voltage sequence into graphical data. Furthermore, the integration of a graph convolution network with a long short-term memory network enables the extraction of information related to inter-node message transmission, capturing the key local and temporal features during the battery degradation process. Finally, this method is confirmed by utilizing aging data from 185 cells and 81 distinct fast-charging policies. The 4-minute charging duration achieves a balance between high accuracy in estimating battery state of health and low data requirements, with mean absolute errors and root mean square errors of 0.34% and 0.66%, respectively.展开更多
文摘A Target State Estimator (TSE) for airborne radar system is proposed in this paper. It is very important for fire control system to obtain accurate estimation of the maneuvering target and the TSE becomes a key link in the integrated Flight/Fire Control (IFFC) system. By adopting the Cartesian coordinates and pseudomeasurements ,the result ed TSE has it s advantages in computation.In addition, by employing accurate range and range-rate redundant filter, the range direction estimations obtained in Cartesian filter are greatly improved. The TSE shows its satisfaCtory performance in the Monte Carlo simulation of the IFFC system.
基金funded by Taif University Researchers Supporting Project No.(TURSP-2020/214),Taif University,Taif,Saudi Arabia。
文摘For a 5G wireless communication system,a convolutional deep neural network(CNN)is employed to synthesize a robust channel state estimator(CSE).The proposed CSE extracts channel information from transmit-and-receive pairs through offline training to estimate the channel state information.Also,it utilizes pilots to offer more helpful information about the communication channel.The proposedCNN-CSE performance is compared with previously published results for Bidirectional/long short-term memory(BiLSTM/LSTM)NNs-based CSEs.The CNN-CSE achieves outstanding performance using sufficient pilots only and loses its functionality at limited pilots compared with BiLSTM and LSTM-based estimators.Using three different loss function-based classification layers and the Adam optimization algorithm,a comparative study was conducted to assess the performance of the presented DNNs-based CSEs.The BiLSTM-CSE outperforms LSTM,CNN,conventional least squares(LS),and minimum mean square error(MMSE)CSEs.In addition,the computational and learning time complexities for DNN-CSEs are provided.These estimators are promising for 5G and future communication systems because they can analyze large amounts of data,discover statistical dependencies,learn correlations between features,and generalize the gotten knowledge.
文摘An efficient observability analysis method is proposed to enable online detection of performance degradation of an optimization-based sliding window visual-inertial state estimation framework.The proposed methodology leverages numerical techniques in nonlinear observability analysis to enable online evaluation of the system observability and indication of the state estimation performance.Specifically,an empirical observability Gramian based approach is introduced to efficiently measure the observability condition of the windowed nonlinear system,and a scalar index is proposed to quantify the average system observability.The proposed approach is specialized to a challenging optimizationbased sliding window monocular visual-inertial state estimation formulation and evaluated through simulation and experiments to assess the efficacy of the methodology.The analysis result shows that the proposed approach can correctly indicate degradation of the state estimation accuracy with real-time performance.
文摘Minimax state estimation is discussed for uncerttain systems with L2 bounded constraint. A dtaity relation-equality is introduced to estimate terminal state variabes x(T) by measurable outputs . hawing a game theory, opti-mal estimation leads to a simple solution. LQL control scheme, is further discussed to make it rational in the actual application.
基金supported in part by the grant#2021/11380-5,Centro Paulista de Estudos da Transi??o Energética (CPTEn),São Paulo Research Foundation (FAPESP)the grant#88887.661856/2022-00,Coordenação de Aperfei?oamento de Pessoal de Nível Superior–Brasil (CAPES)the grant#88887.370014/2019-00,Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES)。
文摘This paper presents a properly designed branchcurrent based state estimator(BCBSE)used as the main core ofan accurate fault location approach(FLA)devoted to distribution networks.Contrary to the approaches available in the literature,it uses only a limited set of conventional measurementsobtained from smart meters to accurately locate faults at busesor branches without requiring measurements provided by phasor measurement units(PMUs).This is possible due to themethods used to model the angular reference and the faultedbus,in addition to the proper choice of the weights in the stateestimator(SE).The proposed approach is based on a searchingprocedure composed of up to three stages:①the identificationof the faulted zones;②the identification of the bus closest tothe fault;and③the location of the fault itself,searching onbranches connected to the bus closest to the fault.Furthermore,this paper presents a comprehensive assessment of the proposedapproach,even considering the presence of distributed generation,and a sensitivity study on the proper weights required bythe SE for fault location purposes,which can not be found inthe literature.Results show that the proposed BCBSE-basedFLA is robust,accurate,and aligned with the requirements ofthe traditional and active distribution networks.
基金This work was supported by the National Natural Science Foundation of China(No.51967002).
文摘This paper proposes an L_(p)(0<p<1)quasi norm state estimator for power system static state estimation.Compared with the existing L1 and L2 norm estimators,the proposed estimator can suppress the bad data more effectively.The robustness of the proposed estimator is discussed,and an analysis shows that its ability to suppress bad data increases as p decreases.Moreover,an algorithm is suggested to solve the nonconvex state estimation problem.By introducing a relaxation factor in the mathematical model of the proposed estimator,the algorithm can prevent the solution from converging to a local optimum as much as possible.Finally,simulations on a 3-bus DC system,the IEEE 14-bus and IEEE 300-bus systems as well as a 1204-bus provincial system verify the high computation efficiency and robustness of the proposed estimator.
基金supported by MONKS,Sarajevo,FBiH,Bosnia and Herzegovina(No.27-02-11-41250-34/21).
文摘This letter extends the complex-variable perturbed Gauss-Newton method to estimate the state of unbalanced power systems by exploiting the Fortescue transformation.It proposes a novel and efficient graph-based way to deal with singularities due to zero-sequence network parts bounded with delta transformer windings and isolated from the ground.The estimator can handle both phasor and complex power measurements.Compared with the standard complex-variable unbalanced state estimator,it achieves better numerical stability and a speed-up of around three times using a sequential implementation and five times using parallel execution.
基金supported by the grant VEGA 1/0049/20—Modelling and Control of Biosystems,the Ministry of Education,Science,Development and Sport of the Slovak Republic.
文摘The error of single step-ahead output prediction is the information traditionally used to correct the state estimate while exploiting the new measurement of the system output.However,its dynamics and statistical properties can be further studied and exploited in other ways.It is known that in the case of suboptimal state estimation,this output prediction error forms a correlated sequence,hence it can be effectively predicted in real time.Such a suboptimal scenario is typical in applications where the process noise model is not known or it is uncertain.Therefore,the paper deals with the problems of analytical and empirical modeling,identification,and prediction of the output error of the suboptimal state estimator for the sake of improving the output prediction accuracy and ultimately the performance of the model predictive control.The improvements are validated on an empirical model of type 1 diabetes within an in-silico experiment focused on glycemia prediction and implementation of the MPC-based artificial pancreas.
文摘We propose a new and efficient algorithm to detect, identify, and correct measurement errors and branch parameter errors of power systems. A dynamic state estimation algorithm is used based on the Kalman filter theory. The proposed algorithm also successfully detects and identifies sudden load changes in power systems. The method uses three normalized vectors to process errors at each sampling time: normalized measurement residual, normalized Lagrange multiplier, and normalized innovation vector. An IEEE 14-bus test system was used to verify and demonstrate the effectiveness of the proposed method. Numerical results are presented and discussed to show the accuracy of the method.
基金supported by the Natural Science Foundation of Shanghai(No.23ZR1429300)Innovation Funds of CNNC(Lingchuang Fund,Contract No.CNNC-LCKY-202234)the Project of the Nuclear Power Technology Innovation Center of Science Technology and Industry(No.HDLCXZX-2023-HD-039-02)。
文摘Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,we developed a reactor operation digital twin(RODT).However,non-differentiabilities and discontinuities arise when employing machine learning-based surrogate forward models,challenging traditional gradient-based inverse methods and their variants.This study investigated deterministic and metaheuristic algorithms and developed hybrid algorithms to address these issues.An efficient modular RODT software framework that incorporates these methods into its post-evaluation module is presented for comprehensive comparison.The methods were rigorously assessed based on convergence profiles,stability with respect to noise,and computational performance.The numerical results show that the hybrid KNNLHS algorithm excels in real-time online applications,balancing accuracy and efficiency with a prediction error rate of only 1%and processing times of less than 0.1 s.Contrastingly,algorithms such as FSA,DE,and ADE,although slightly slower(approximately 1 s),demonstrated higher accuracy with a 0.3%relative L_2 error,which advances RODT methodologies to harness machine learning and system modeling for improved reactor monitoring,systematic diagnosis of off-normal events,and lifetime management strategies.The developed modular software and novel optimization methods presented offer pathways to realize the full potential of RODT for transforming energy engineering practices.
基金Supported by National Key Research and Development Program of China(Grant No.2021YFB2500703)Science and Technology Department Program of Jilin Province of China(Grant No.20230101121JC).
文摘Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles,the current mature application of traditional vehicle state estimation algorithms can not meet the requirements of drive-by-wire chassis vehicle state estimation.This paper proposes a state estimation method for drive-by-wire chassis vehicle based on the dual unscented particle filter algorithm,which make full use of the known advantages of the four-wheel drive torque and steer angle parameters of the drive-by-wire chassis vehicle.In the dual unscented particle filter algorithm,two unscented particle filter transfer information to each other,observe the vehicle state information and the tire force parameter information of the four wheels respectively,which reduce the influence of parameter uncertainty and model parameter changes on the estimation accuracy during driving.The performance with the dual unscented particle filter algorithm,which is analyzed in terms of the time-average square error,is superior of the unscented Kalman filter algorithm.The effectiveness of the algorithm is further verified by driving simulator test.In this paper,a vehicle state estimator based on dual unscented particle filter algorithm was proposed for the first time to improve the estimation accuracy of vehicle parameters and states.
基金Project supported by the National Key Research and Development Program of China (Grant No.2019YFA0705000)Leading-edge technology Program of Jiangsu Natural Science Foundation (Grant No.BK20192001)the National Natural Science Foundation of China (Grant No.11974178)。
文摘Neural networks are becoming ubiquitous in various areas of physics as a successful machine learning(ML)technique for addressing different tasks.Based on ML technique,we propose and experimentally demonstrate an efficient method for state reconstruction of the widely used Sagnac polarization-entangled photon source.By properly modeling the target states,a multi-output fully connected neural network is well trained using only six of the sixteen measurement bases in standard tomography technique,and hence our method reduces the resource consumption without loss of accuracy.We demonstrate the ability of the neural network to predict state parameters with a high precision by using both simulated and experimental data.Explicitly,the mean absolute error for all the parameters is below 0.05 for the simulated data and a mean fidelity of 0.99 is achieved for experimentally generated states.Our method could be generalized to estimate other kinds of states,as well as other quantum information tasks.
基金the Natural Sciences and Engineering Research Council(NSERC)of Canada。
文摘Cyber-physical systems(CPSs)have emerged as an essential area of research in the last decade,providing a new paradigm for the integration of computational and physical units in modern control systems.Remote state estimation(RSE)is an indispensable functional module of CPSs.Recently,it has been demonstrated that malicious agents can manipulate data packets transmitted through unreliable channels of RSE,leading to severe estimation performance degradation.This paper aims to present an overview of recent advances in cyber-attacks and defensive countermeasures,with a specific focus on integrity attacks against RSE.Firstly,two representative frameworks for the synthesis of optimal deception attacks with various performance metrics and stealthiness constraints are discussed,which provide a deeper insight into the vulnerabilities of RSE.Secondly,a detailed review of typical attack detection and resilient estimation algorithms is included,illustrating the latest defensive measures safeguarding RSE from adversaries.Thirdly,some prevalent attacks impairing the confidentiality and data availability of RSE are examined from both attackers'and defenders'perspectives.Finally,several challenges and open problems are presented to inspire further exploration and future research in this field.
基金Project supported by the National Natural Science Foundation of China(Grant No.62303016)the Research and Development Project of Engineering Research Center of Biofilm Water Purification and Utilization Technology of the Ministry of Education of China(Grant No.BWPU2023ZY02)+1 种基金the University Synergy Innovation Program of Anhui Province,China(Grant No.GXXT-2023-020)the Key Project of Natural Science Research in Universities of Anhui Province,China(Grant No.2024AH050171).
文摘This article investigates the issue of finite-time state estimation in coupled neural networks under random mixed cyberattacks,in which the Markov process is used to model the mixed cyberattacks.To optimize the utilization of channel resources,a decentralized event-triggered mechanism is adopted during the information transmission.By establishing the augmentation system and constructing the Lyapunov function,sufficient conditions are obtained for the system to be finite-time bounded and satisfy the H∞ performance index.Then,under these conditions,a suitable state estimator gain is obtained.Finally,the feasibility of the method is verified by a given illustrative example.
基金supported in part by the National Natural Science Foundation of China(61933007, U21A2019, 62273005, 62273088, 62303301)the Program of Shanghai Academic/Technology Research Leader of China (20XD1420100)+2 种基金the Hainan Province Science and Technology Special Fund of China(ZDYF2022SHFZ105)the Natural Science Foundation of Anhui Province of China (2108085MA07)the Alexander von Humboldt Foundation of Germany。
文摘This paper investigates the anomaly-resistant decentralized state estimation(SE) problem for a class of wide-area power systems which are divided into several non-overlapping areas connected through transmission lines. Two classes of measurements(i.e., local measurements and edge measurements) are obtained, respectively, from the individual area and the transmission lines. A decentralized state estimator, whose performance is resistant against measurement with anomalies, is designed based on the minimum error entropy with fiducial points(MEEF) criterion. Specifically, 1) An augmented model, which incorporates the local prediction and local measurement, is developed by resorting to the unscented transformation approach and the statistical linearization approach;2) Using the augmented model, an MEEF-based cost function is designed that reflects the local prediction errors of the state and the measurement;and 3) The local estimate is first obtained by minimizing the MEEF-based cost function through a fixed-point iteration and then updated by using the edge measuring information. Finally, simulation experiments with three scenarios are carried out on the IEEE 14-bus system to illustrate the validity of the proposed anomaly-resistant decentralized SE scheme.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62373197 and 61873326)。
文摘In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.
基金supported by the National Natural Science Foundation of China(62473354).
文摘For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SFC)is proposed to realize the state transition the pure state of the target state including eigenstate and superposition state.The proposed switching control consists of a constant control and a control law designed based on the Lyapunov method,in which the Lyapunov function is the state distance of the system.The constant control is used to drive the system state from an initial state to the convergence domain only containing the target state,and a Lyapunov-based control is used to make the state enter the convergence domain and then continue to converge to the target state.At the same time,the continuous weak measurement of quantum system and the quantum state tomography method based on the on-line alternating direction multiplier(QST-OADM)are used to obtain the system information and estimate the quantum state which is used as the input of the quantum system controller.Then,the pure state feedback switching control method based on the on-line estimated state feedback is realized in an n-qubit stochastic open quantum system.The complete derivation process of n-qubit QST-OADM algorithm is given;Through strict theoretical proof and analysis,the convergence conditions to ensure any initial state of the quantum system to converge the target pure state are given.The proposed control method is applied to a 2-qubit stochastic open quantum system for numerical simulation experiments.Four possible different position cases between the initial estimated state and that of the controlled system are studied and discussed,and the performances of the state transition under the corresponding cases are analyzed.
基金supported in part by the Guangxi Power Grid Company’s 2023 Science and Technol-ogy Innovation Project(No.GXKJXM20230169)。
文摘With the development of unmanned driving technology,intelligent robots and drones,high-precision localization,navigation and state estimation technologies have also made great progress.Traditional global navigation satellite system/inertial navigation system(GNSS/INS)integrated navigation systems can provide high-precision navigation information continuously.However,when this system is applied to indoor or GNSS-denied environments,such as outdoor substations with strong electromagnetic interference and complex dense spaces,it is often unable to obtain high-precision GNSS positioning data.The positioning and orientation errors will diverge and accumulate rapidly,which cannot meet the high-precision localization requirements in large-scale and long-distance navigation scenarios.This paper proposes a method of high-precision state estimation with fusion of GNSS/INS/Vision using a nonlinear optimizer factor graph optimization as the basis for multi-source optimization.Through the collected experimental data and simulation results,this system shows good performance in the indoor environment and the environment with partial GNSS signal loss.
文摘1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to the global energy crisis[1].Besides,the use of fossil fuels will generate a mass of air pollutants(e.g.,carbon dioxide,sulfur dioxide,etc.),which will cause serious environmental pollution,climate change[2],etc.To resolve the aforementioned issues,countries around the world have implemented a variety of measures hoping to fundamentally adjust the global energy structure and achieve sustainable development.Thereinto,“Paris Agreement”reached in 2015 under the framework of“United Nations Framework Convention on Climate Change”aims to control the increase in the average temperature of the globe to within 2°C below preindustrial levels,and thereafter to peak global greenhouse gas emissions as soon as possible,continuously decreasing thereafter[3].United Kingdom plans to reduce the average exhaust emissions of“new cars”to approximately 50–70 g/km by 20230,which is roughly half of what it is now[4].In addition,China proposed a plan at“United Nations General Assembly”in 2020 to peak carbon dioxide emissions by 2030 and strive to achieve carbon neutrality by 2060.It is a fact that the whole world is committed to changing the current energy structure,protecting the Earth’s ecology,and achieving global sustainable development[5].
基金National Key Research and Development Program of China (Grant No. 2022YFE0102700)National Natural Science Foundation of China (Grant No. 52102420)+2 种基金research project “Safe Da Batt” (03EMF0409A) funded by the German Federal Ministry of Digital and Transport (BMDV)China Postdoctoral Science Foundation (Grant No. 2023T160085)Sichuan Science and Technology Program (Grant No. 2024NSFSC0938)。
文摘A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan. In addition, there is still a lack of tailored health estimations for fast-charging batteries;most existing methods are applicable at lower charging rates. This paper proposes a novel method for estimating the health of lithium-ion batteries, which is tailored for multi-stage constant current-constant voltage fast-charging policies. Initially, short charging segments are extracted by monitoring current switches,followed by deriving voltage sequences using interpolation techniques. Subsequently, a graph generation layer is used to transform the voltage sequence into graphical data. Furthermore, the integration of a graph convolution network with a long short-term memory network enables the extraction of information related to inter-node message transmission, capturing the key local and temporal features during the battery degradation process. Finally, this method is confirmed by utilizing aging data from 185 cells and 81 distinct fast-charging policies. The 4-minute charging duration achieves a balance between high accuracy in estimating battery state of health and low data requirements, with mean absolute errors and root mean square errors of 0.34% and 0.66%, respectively.