Background: Chronic stress is a emotional challenge. Constant pressure presents a serious risk of damage to mental and physical health and hence is associated with increased incidence of various diseases. The ability ...Background: Chronic stress is a emotional challenge. Constant pressure presents a serious risk of damage to mental and physical health and hence is associated with increased incidence of various diseases. The ability to cope with chronic stress may be a function of psychological resilience including intellectual capacities, but more so of external factors such as life experience and education. Adolescents are more vulnerable to chronic stress than adults. The measures introduced during the COVID-19 pandemic brought up major societal problems. As both children and adolescents lost their life anchors, the prevalence of stress in adolescents increased from 20% to 45%. Chronic psychological stress can impede the normal development of schoolchildren. It may cause anxiety, social withdrawal, interpersonal conflicts and aggression. This applies particularly to those in puberty, with the adolescent already facing unstable social bonds and elevated fear about the future. It is likely that the puberty cohort accounts for the dramatic increase in the prevalence of stress. Since it impacts public health, chronic stress among school-age children is increasingly taking on a socio-political dimension. Non-clinical stress intervention studies can investigate how to achieve stress reduction in school children. Methods: In a small pilot study, we analysed the effects of a training program with four different standard interventions, i.e. mindfulness training, progressive muscle reflection, autogenic training, and sound meditation. We obtained baseline scores of 10 stress-indicators, and re-tested after the interventions were performed. Results: The four applied interventions resulted in a reduction of 8 (out of 10) stress-indicators, such as “feeling stressed” or stress related symptoms (headaches, dizziness, sweating). This positive impact of the interventions significantly reduced “Fears about the future” (p Discussion: School children recognise the positive potential of stress reducing training or interventions. Our results provide evidence in support of integrating the training of relaxation techniques in the school curriculum. We propose that a larger study be undertaken to determine which methods would be most effective.展开更多
A finite element model is developed for the simulation of vibration stress relief (VSR) after welding. For the nonresonant vibration, the reduction in stress strongly depends on the amplitude of vibration. For the r...A finite element model is developed for the simulation of vibration stress relief (VSR) after welding. For the nonresonant vibration, the reduction in stress strongly depends on the amplitude of vibration. For the resonant vibration, the vibration frequency is the key for stress relief. The vibration frequency should be close to the structure natural frequency for the desired vibration mode. Only small vibration amplitude is required, which will be amplified during vibration. Vibration time does not have a major impact on vibration stress relief. When the amplitude of vibration stress relief is large, the treatment will be more effective.展开更多
The effect of vibratory stress relief (VSR) is usually evaluated with the indirect method of observing the change of amplitude frequency response characteristics of structures. A new kind of evaluating method of VSR...The effect of vibratory stress relief (VSR) is usually evaluated with the indirect method of observing the change of amplitude frequency response characteristics of structures. A new kind of evaluating method of VSR based on the ultrasonic time-of-arrival method (UTM), which can obtain the residual stress directly through measuring the propagation time of ultrasonic wave in the material, is presented. At first, the principle of the measuring method of residual stress based on UTM is analyzed. Then the measuring system of the method is described, which is in virtue of ultrasonic flaw detector and high-sampling-rate digital oscillograph. And a set of calibration system that contains a piece of standard specimen is also introduced. Experimental results prove the relation between the residual stress and the propagation time of ultrasonic in workpieces. Finally, the measuring and calibration systems are applied in evaluating the effect of VSR. The final test results show that the method is effective.展开更多
Extraction of a protective coal seam (PVCS)-below or above a coal seam to be mined with the potential of coal andgas outburst risk-plays an important role not only in decreasing the stress field in the surrounding roc...Extraction of a protective coal seam (PVCS)-below or above a coal seam to be mined with the potential of coal andgas outburst risk-plays an important role not only in decreasing the stress field in the surrounding rock mass but alsoin increasing the gas desorption capacity and gas flow permeability in the protected coal seam (PTCS). The PVCSis mined to guarantee the safe mining of the PTCS. This study has numerically evaluated the stress redistributioneffects using FLAC3D model for a longwall face in Shanxi Province. The effects of mining depth, mining height andinter-burden rock mass properties were evaluated using the stress relief angle and stress relief coefficient. Verticalstress distribution, stress relief angle and stress relief coefficient in the PTCS were analyzed as the face advancedin the PVCS. The results showed that the stress relief achieved in different locations of the PTCS varied as the faceadvanced. Sensitivity analyses on the pertinent variables indicate that the stress relief in the PTCS is affected mostby the mining depth followed by the inter-burden lithology and the mining height. Furthermore, the elastic moduliof different layers within the inter-burden rock mass are more important than their uniaxial compressive strength(UCS) and Poisson’s ratio. These observations can guide gas drainage borehole design to minimize the accidentsof coal and gas outbursts.展开更多
When the global outbreak of new coronary pneumonia broke out in 2020,online public opinion events triggered by cultural differences among overseas students had come into the public view.To further explore the relation...When the global outbreak of new coronary pneumonia broke out in 2020,online public opinion events triggered by cultural differences among overseas students had come into the public view.To further explore the relationship between the cultural alienation of overseas students and their own happiness,this study takes visualization and analysis of positive,negative sentiment analysis of Weibo netizens’comment data in the“Xu Kexin Incident”as the starting point,on the basis of introducing cultural alienation,stress relief methods,and cultural intelligence,combining gender and social ability,social relations and other individual attributes,designed a questionnaire to investigate 502 overseas students,through the construction and analysis of the adjusted Cox risk ratio intermedi-ary model,comprehensive single factor interference and multi-factor cross-over comprehensive analysis.The results show that the cultural alienation of overseas students has a significant effect on their own well-being.The study concluded as follows:(1)Netizens hold polarized views on the three dimensions of overseas students’mask,safety,and culture;(2)Stress relief methods play an intermediary role between cultural alienation and the happiness of overseas students,among which Negative stress relief methods play a greater role;(3)The level of cultural intelligence regulates the intermediary process of stress relief methods.The higher the level of cultural intelligence,the stronger the regulatory effect.展开更多
High strength aluminum alloys of 7xxx series have unacceptable levels of quenching residual stresses from solution heat treatment. The residual stress not only results in machining distortion and dimensional instabili...High strength aluminum alloys of 7xxx series have unacceptable levels of quenching residual stresses from solution heat treatment. The residual stress not only results in machining distortion and dimensional instability, but also increases the possibility of stress corrosion cracks. Therefore, it is necessary to reduce the residual stress to an acceptable level. The crack compliance method was adopted to study the influences of various stress relief methods on residual stress patterns in 7050 aluminum alloy. The results show that 90% residual stress can be eliminated by the cold stretching(Tx51) method. And a lower level of residual stress can be achieved by the uphill quenching(Tx53) method or the cold compression(Tx52). However, there is a very steep residual stress gradient normal to exterior surfaces.展开更多
Zn electrodes are suffering the dendrite growth owing to the enrichment of local space charge, distinct exposed face and residual stress. In this work, we investigated the crystal face properties and stress state of Z...Zn electrodes are suffering the dendrite growth owing to the enrichment of local space charge, distinct exposed face and residual stress. In this work, we investigated the crystal face properties and stress state of Zn foil through static energy calculations, dynamic crystal growth analysis and finite element simulation of stress states. Then thermal driven is deployed to modify the exposure face and residual stress of Zn foil, aiming for a dendrite-free electrode. The calculation of surface energies and simulation of crystal growth models for different crystal faces indicate that the(0 0 1) face can maintain stability during deposition. Inspired by this mechanism, the(1 0 1) exposed commercial Zn foil is modified by thermal processing. Firstly, the exposure level of the(0 0 1) face increases, though only the peak corresponding to the(0 0 2) crystal face is observed, due to the extinction effect of the densely packed plane(0 0 1) face.Further, the surface morphology becomes smooth and the stress is released with the progresses time.These stress relief and crystal face transition process strengthen the uniformity of ion distribution, and increase the interface stability during the crystal growth, which reduce the defect sites in the deposition.As a result, the Zn electrode exhibits tiny voltage hysteresis and outstanding cycle stability, which reveals improved electrochemical performance. Additionally, Li and Na can also be improved in exposed crystal faces and release strain energy through similar methods to enhance cycling stability.展开更多
With the increasing depth of coal mining each year,rock burst has emerged as one of the most severe dynamic disasters in deep mining.The research status of rock burst prevention and control theory is summarized.Focuse...With the increasing depth of coal mining each year,rock burst has emerged as one of the most severe dynamic disasters in deep mining.The research status of rock burst prevention and control theory is summarized.Focused on deep coal mining,the major issues encountered in researching the prevention theory of rock bursts are summarized.Subsequently,the scientific connotation theory of stress relief-support reinforcement cooperative prevention and control of rock bursts in deep coal mines is proposed.Then,the mechanisms underlying the major research directions of the theory of stress relief-support reinforcement coordinated prevention and control and present a preliminarily theoretical framework for stress relief-support reinforcement coordinated prevention and control are outlined.To tackle the key scientific problems in the coordinated prevention and control of rock bursts on relief and support in deep mine,the in-depth research based on the synergetic theory is conducted.This involved exploring the principles of near-field coal mass stress relief,near-field roof andfloor stress relief,and anchor support.Additionally,the stress-energy evolution processes of the roadway near-field surrounding rock structure under various stress relief and anchor support modes be analyzed.Subsequently,a mechanical model for the optimized matching of stress relief surrounding rock and anchor support is established,with the control of the rock burst energy source at its core.Finally,the principle of collaborative prevention and control of deep mining rock burst stress relief and support from the perspectives of structural synergy,strength synergy,and stiffness synergy is elucidated.This insight is expected to provide theoretical support for the research and development of designs and techniques for deep mining rock burst prevention and control.展开更多
As a main constituent of geological body, the rock masses have distinct differences from other materials, one of which is that rock masses are initially stressed in their natural states. Hence, it is an extremely chal...As a main constituent of geological body, the rock masses have distinct differences from other materials, one of which is that rock masses are initially stressed in their natural states. Hence, it is an extremely challenging and significant research project to know the present residual stress of the rock masses in the earth's crust. Although some regularities of distribution of in-situ rock stresses can be deduced, the basic means to study the state of rock stress is in-situ stress measurement. After a brief review of several measuring methods of in-situ 3D rock stress, a new one, borehole wall stress relief method (BWSRM) to determine the in-situ 3D rock stress tensor in a single drilled borehole was proposed. Based on the principle of in-situ rock stress measurement with BWSRM, an original geostress measuring instrument was designed and manufactured. Preliminary experiments for determination of in-situ stress orientation and magnitude were carried out at an experimental tunnel in Jinping Ⅱ hydropower station in China, where the buried depth of overburden was about 2430 m. The results showed that it was feasible to measure the in-situ 3D rock stresses with BWSRM presented in this paper. The BWSRM has a broad prospect for in-situ 3D rock stress measurements in practical rock engineering.展开更多
The measurement of surface stresses in surrounding rocks with the use of a relief method of annular hole-drilling was studied by numerical analysis. The stress relief process by hole-drilling was then simulated with t...The measurement of surface stresses in surrounding rocks with the use of a relief method of annular hole-drilling was studied by numerical analysis. The stress relief process by hole-drilling was then simulated with the use of finite element method. The influences of the borehole diameter(d), the initial stresses and the ratio of the initial principle stresses on the variations of the remained stress and the released stress in function of the relief depth(h) were discussed. The relation between the non-dimensional ratio of the released principle strains and that of the initial principle stresses, and the effect of the elastic modulus and the Poisson ratio of the rock mass on the stress relief curves were studied. The results show that the stress relief behavior formulated with the non-dimensional ratio of the released stress and the ratio of h/d is only sensitive to the ratio of the initial principle stresses and the Poisson ratio. The stresses are completely released when h equals 1.6d, and the tensile stresses take place on the bore core surface in the relief measurement process. Finally, a non-complete relief method of annular hole-drilling for measuring surface stress in surrounding rocks is proposed and the procedure is presented.展开更多
Coarse-grained heat-affected zone(CGHAZ) of a low alloyed,granular bainitic steel T24 was simulated in a Gleeble apparatus.The stress relief of the CGHAZ was analyzed by annealing the samples.The morphology and beha...Coarse-grained heat-affected zone(CGHAZ) of a low alloyed,granular bainitic steel T24 was simulated in a Gleeble apparatus.The stress relief of the CGHAZ was analyzed by annealing the samples.The morphology and behavior of the microstructure near the grain boundaries during stress relief were investigated by means of focused ion beam,in situ tensile testing,transmission electron microscopy,scanning electron microscopy and electron back-scatter diffraction.It was observed that there were large martensite/austenite islands distributed along the grain boundaries of CGHAZ.During stress relief at elevated temperature,the retained austenite at the grain boundaries decomposed into M3C carbides and a ferrite forming softening zone.Together with the stress relief,piled up of dislocations occurred within the ferrite in the area adjacent to the ferrite/M3C interface,which resulted in high level of stress accumulation and caused crack initiation along the grain boundaries.These results indicate that the stress relief induced the grain boundary crack is controlled by other mechanisms rather than the creep-like grain boundary sliding.展开更多
A representation of residual stress graphic symbols in technical product documents is studied.The residual stress state of the product can be annotated in the technical product documents such as design drawings,proces...A representation of residual stress graphic symbols in technical product documents is studied.The residual stress state of the product can be annotated in the technical product documents such as design drawings,process documents,test reports,papers and monographs.The composition of residual stress and the design of basic symbols,measurement method symbols,relief method symbols and state symbols of residual stress,and the representation of annotation for residual stress in documents are introduced.Residual stress symbol can be used in the design,manufacturing,inspection and service for the residual stress state requirements of the products in the mechanical manufacturing industry,as well as in light industry,daily necessities and other related industries.展开更多
Overstress in the surrounding rock of the roadway is a key reason that causes failures of deep roadways. Destressing blasting is one of the promising techniques that could improve the supporting quality. If the depth ...Overstress in the surrounding rock of the roadway is a key reason that causes failures of deep roadways. Destressing blasting is one of the promising techniques that could improve the supporting quality. If the depth of the pressure relief blast hole is too shallow, the surrounding rock of the roadway will be broken or even collapsed. If the pressure relief blast hole is too deep, the pressure relief area will be located in the deep part of the surrounding rock of the roadway, which cannot achieve the purpose of releasing the stress in the shallow part of the surrounding rock and cause waste of the blast hole. The width or range of the pressure relief area should just fall in the high stress area of the surrounding rock of the roadway, so the pressure relief blast hole should have a reasonable depth. In order to quantitatively describe the relationship between borehole depth and the width of the stress relief zone, numerical simulations were carried out in ANSYS according to different borehole depths. The results show that the optimal destressing effect is achieved when borehole depth is 4 m. Peak stress of and is significantly reduced by 30.51% and 49.07% after blasting. Meanwhile, the high-stress area shifts about 4.8 m from the roadside to the depth of surrounding rock, thus a 3.8 m wide stress relief zone is formed around the roadside, thus, the aim of quantizing the effects of destress blasting is achieved.展开更多
The deformation control of surrounding rock in gobside roadway with thick and hard roof poses a significant challenge to the safety and efficiency of coal mining.To address this issue,a novel approach combining direct...The deformation control of surrounding rock in gobside roadway with thick and hard roof poses a significant challenge to the safety and efficiency of coal mining.To address this issue,a novel approach combining directional and non-directional blasting techniques,known as combined blasting,was proposed.This study focuses on the experimental investigation of the proposed method in the 122108 working face in Caojiatan Coal Mine as the engineering background.The initial phase of the study involves physical model experiments to reveal the underlying mechanisms of combined blasting for protecting gob-side roadway with thick and hard roof.The results demonstrate that this approach effectively accelerates the collapse of thick and hard roofs,enhances the fragmentation and expansion coefficient of gangue,facilitates the filling of the goaf with gangue,and provides support to the overlying strata,thus reducing the subsidence of the overlying strata above the goaf.Additionally,the method involves cutting the main roof into shorter beams to decrease the stress and disrupt stress transmission pathways.Subsequent numerical simulations were conducted to corroborate the findings of the physical model experiments,thus validating the accuracy of the experimental results.Furthermore,field engineering experiments were performed,affirming the efficacy of the combined blasting method in mitigating the deformation of surrounding rock and achieving the desired protection of the gob-side roadway.展开更多
文摘Background: Chronic stress is a emotional challenge. Constant pressure presents a serious risk of damage to mental and physical health and hence is associated with increased incidence of various diseases. The ability to cope with chronic stress may be a function of psychological resilience including intellectual capacities, but more so of external factors such as life experience and education. Adolescents are more vulnerable to chronic stress than adults. The measures introduced during the COVID-19 pandemic brought up major societal problems. As both children and adolescents lost their life anchors, the prevalence of stress in adolescents increased from 20% to 45%. Chronic psychological stress can impede the normal development of schoolchildren. It may cause anxiety, social withdrawal, interpersonal conflicts and aggression. This applies particularly to those in puberty, with the adolescent already facing unstable social bonds and elevated fear about the future. It is likely that the puberty cohort accounts for the dramatic increase in the prevalence of stress. Since it impacts public health, chronic stress among school-age children is increasingly taking on a socio-political dimension. Non-clinical stress intervention studies can investigate how to achieve stress reduction in school children. Methods: In a small pilot study, we analysed the effects of a training program with four different standard interventions, i.e. mindfulness training, progressive muscle reflection, autogenic training, and sound meditation. We obtained baseline scores of 10 stress-indicators, and re-tested after the interventions were performed. Results: The four applied interventions resulted in a reduction of 8 (out of 10) stress-indicators, such as “feeling stressed” or stress related symptoms (headaches, dizziness, sweating). This positive impact of the interventions significantly reduced “Fears about the future” (p Discussion: School children recognise the positive potential of stress reducing training or interventions. Our results provide evidence in support of integrating the training of relaxation techniques in the school curriculum. We propose that a larger study be undertaken to determine which methods would be most effective.
基金the National Defence Basic Research and Development Programme of China(No.59975008).
文摘A finite element model is developed for the simulation of vibration stress relief (VSR) after welding. For the nonresonant vibration, the reduction in stress strongly depends on the amplitude of vibration. For the resonant vibration, the vibration frequency is the key for stress relief. The vibration frequency should be close to the structure natural frequency for the desired vibration mode. Only small vibration amplitude is required, which will be amplified during vibration. Vibration time does not have a major impact on vibration stress relief. When the amplitude of vibration stress relief is large, the treatment will be more effective.
基金This project is supported by National Natural Science Foundation of China(No.50305036).
文摘The effect of vibratory stress relief (VSR) is usually evaluated with the indirect method of observing the change of amplitude frequency response characteristics of structures. A new kind of evaluating method of VSR based on the ultrasonic time-of-arrival method (UTM), which can obtain the residual stress directly through measuring the propagation time of ultrasonic wave in the material, is presented. At first, the principle of the measuring method of residual stress based on UTM is analyzed. Then the measuring system of the method is described, which is in virtue of ultrasonic flaw detector and high-sampling-rate digital oscillograph. And a set of calibration system that contains a piece of standard specimen is also introduced. Experimental results prove the relation between the residual stress and the propagation time of ultrasonic in workpieces. Finally, the measuring and calibration systems are applied in evaluating the effect of VSR. The final test results show that the method is effective.
基金This paper was supported by the Natural Science Foundation of Jiangsu Higher Education Institutions(No.20KJB440002)the National Natural Science Foundation of China(Project Nos.51804129,51808246 and 51904112)+5 种基金China Postdoctoral Science Foundation(No.2020M671301)the Postdoctoral Science Foundation of Jiangsu Province(Nos.2019K139 and 2019Z107)the Huai’an Science and Technology Plan project(No.HAB201836)the Industry Education Research Cooperation Projects in Jiangsu Province(No.BY2020007)Undergraduate Innovation and Entrepreneurship Training Program(No.202011049111XJ)the Foundation of Huaiyin Institute of Technology(No.Z301B20530).
文摘Extraction of a protective coal seam (PVCS)-below or above a coal seam to be mined with the potential of coal andgas outburst risk-plays an important role not only in decreasing the stress field in the surrounding rock mass but alsoin increasing the gas desorption capacity and gas flow permeability in the protected coal seam (PTCS). The PVCSis mined to guarantee the safe mining of the PTCS. This study has numerically evaluated the stress redistributioneffects using FLAC3D model for a longwall face in Shanxi Province. The effects of mining depth, mining height andinter-burden rock mass properties were evaluated using the stress relief angle and stress relief coefficient. Verticalstress distribution, stress relief angle and stress relief coefficient in the PTCS were analyzed as the face advancedin the PVCS. The results showed that the stress relief achieved in different locations of the PTCS varied as the faceadvanced. Sensitivity analyses on the pertinent variables indicate that the stress relief in the PTCS is affected mostby the mining depth followed by the inter-burden lithology and the mining height. Furthermore, the elastic moduliof different layers within the inter-burden rock mass are more important than their uniaxial compressive strength(UCS) and Poisson’s ratio. These observations can guide gas drainage borehole design to minimize the accidentsof coal and gas outbursts.
基金support of the Hebei Natural Science Foundation of China(G2019203532)the Program for Youth Talents by Department of Education in Hebei Province(BJ2017082)later funded project of Ministry of Education Humanities and social sciences research project(17JHQ026).
文摘When the global outbreak of new coronary pneumonia broke out in 2020,online public opinion events triggered by cultural differences among overseas students had come into the public view.To further explore the relationship between the cultural alienation of overseas students and their own happiness,this study takes visualization and analysis of positive,negative sentiment analysis of Weibo netizens’comment data in the“Xu Kexin Incident”as the starting point,on the basis of introducing cultural alienation,stress relief methods,and cultural intelligence,combining gender and social ability,social relations and other individual attributes,designed a questionnaire to investigate 502 overseas students,through the construction and analysis of the adjusted Cox risk ratio intermedi-ary model,comprehensive single factor interference and multi-factor cross-over comprehensive analysis.The results show that the cultural alienation of overseas students has a significant effect on their own well-being.The study concluded as follows:(1)Netizens hold polarized views on the three dimensions of overseas students’mask,safety,and culture;(2)Stress relief methods play an intermediary role between cultural alienation and the happiness of overseas students,among which Negative stress relief methods play a greater role;(3)The level of cultural intelligence regulates the intermediary process of stress relief methods.The higher the level of cultural intelligence,the stronger the regulatory effect.
文摘High strength aluminum alloys of 7xxx series have unacceptable levels of quenching residual stresses from solution heat treatment. The residual stress not only results in machining distortion and dimensional instability, but also increases the possibility of stress corrosion cracks. Therefore, it is necessary to reduce the residual stress to an acceptable level. The crack compliance method was adopted to study the influences of various stress relief methods on residual stress patterns in 7050 aluminum alloy. The results show that 90% residual stress can be eliminated by the cold stretching(Tx51) method. And a lower level of residual stress can be achieved by the uphill quenching(Tx53) method or the cold compression(Tx52). However, there is a very steep residual stress gradient normal to exterior surfaces.
基金financially supported by the National Natural Science Foundation of China (52401283)National Natural Science Foundation of Jiangsu Province (BK20230933)。
文摘Zn electrodes are suffering the dendrite growth owing to the enrichment of local space charge, distinct exposed face and residual stress. In this work, we investigated the crystal face properties and stress state of Zn foil through static energy calculations, dynamic crystal growth analysis and finite element simulation of stress states. Then thermal driven is deployed to modify the exposure face and residual stress of Zn foil, aiming for a dendrite-free electrode. The calculation of surface energies and simulation of crystal growth models for different crystal faces indicate that the(0 0 1) face can maintain stability during deposition. Inspired by this mechanism, the(1 0 1) exposed commercial Zn foil is modified by thermal processing. Firstly, the exposure level of the(0 0 1) face increases, though only the peak corresponding to the(0 0 2) crystal face is observed, due to the extinction effect of the densely packed plane(0 0 1) face.Further, the surface morphology becomes smooth and the stress is released with the progresses time.These stress relief and crystal face transition process strengthen the uniformity of ion distribution, and increase the interface stability during the crystal growth, which reduce the defect sites in the deposition.As a result, the Zn electrode exhibits tiny voltage hysteresis and outstanding cycle stability, which reveals improved electrochemical performance. Additionally, Li and Na can also be improved in exposed crystal faces and release strain energy through similar methods to enhance cycling stability.
基金supported by the Major Program of Shandong Provincial Natural Science Foundation(ZR2019ZD13)Project of Taishan Scholar in Shandong Province(No.tstp20221126)+1 种基金GUO Wei-yao was supported by the National Natural Science Foundation of China(52274086)Education System government-sponsored studyabroad program of Shandong Province.
文摘With the increasing depth of coal mining each year,rock burst has emerged as one of the most severe dynamic disasters in deep mining.The research status of rock burst prevention and control theory is summarized.Focused on deep coal mining,the major issues encountered in researching the prevention theory of rock bursts are summarized.Subsequently,the scientific connotation theory of stress relief-support reinforcement cooperative prevention and control of rock bursts in deep coal mines is proposed.Then,the mechanisms underlying the major research directions of the theory of stress relief-support reinforcement coordinated prevention and control and present a preliminarily theoretical framework for stress relief-support reinforcement coordinated prevention and control are outlined.To tackle the key scientific problems in the coordinated prevention and control of rock bursts on relief and support in deep mine,the in-depth research based on the synergetic theory is conducted.This involved exploring the principles of near-field coal mass stress relief,near-field roof andfloor stress relief,and anchor support.Additionally,the stress-energy evolution processes of the roadway near-field surrounding rock structure under various stress relief and anchor support modes be analyzed.Subsequently,a mechanical model for the optimized matching of stress relief surrounding rock and anchor support is established,with the control of the rock burst energy source at its core.Finally,the principle of collaborative prevention and control of deep mining rock burst stress relief and support from the perspectives of structural synergy,strength synergy,and stiffness synergy is elucidated.This insight is expected to provide theoretical support for the research and development of designs and techniques for deep mining rock burst prevention and control.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50579037, 50639080, 50979054)the Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering (Grant No. SKLZ0901)
文摘As a main constituent of geological body, the rock masses have distinct differences from other materials, one of which is that rock masses are initially stressed in their natural states. Hence, it is an extremely challenging and significant research project to know the present residual stress of the rock masses in the earth's crust. Although some regularities of distribution of in-situ rock stresses can be deduced, the basic means to study the state of rock stress is in-situ stress measurement. After a brief review of several measuring methods of in-situ 3D rock stress, a new one, borehole wall stress relief method (BWSRM) to determine the in-situ 3D rock stress tensor in a single drilled borehole was proposed. Based on the principle of in-situ rock stress measurement with BWSRM, an original geostress measuring instrument was designed and manufactured. Preliminary experiments for determination of in-situ stress orientation and magnitude were carried out at an experimental tunnel in Jinping Ⅱ hydropower station in China, where the buried depth of overburden was about 2430 m. The results showed that it was feasible to measure the in-situ 3D rock stresses with BWSRM presented in this paper. The BWSRM has a broad prospect for in-situ 3D rock stress measurements in practical rock engineering.
基金Projects(2013BAB02B01,2013BAB02B03)supported by the National Key Technology R&D Program of ChinaProject(N120801002)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(N20130042110010)supported by the Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘The measurement of surface stresses in surrounding rocks with the use of a relief method of annular hole-drilling was studied by numerical analysis. The stress relief process by hole-drilling was then simulated with the use of finite element method. The influences of the borehole diameter(d), the initial stresses and the ratio of the initial principle stresses on the variations of the remained stress and the released stress in function of the relief depth(h) were discussed. The relation between the non-dimensional ratio of the released principle strains and that of the initial principle stresses, and the effect of the elastic modulus and the Poisson ratio of the rock mass on the stress relief curves were studied. The results show that the stress relief behavior formulated with the non-dimensional ratio of the released stress and the ratio of h/d is only sensitive to the ratio of the initial principle stresses and the Poisson ratio. The stresses are completely released when h equals 1.6d, and the tensile stresses take place on the bore core surface in the relief measurement process. Finally, a non-complete relief method of annular hole-drilling for measuring surface stress in surrounding rocks is proposed and the procedure is presented.
基金the financial support from China Huaneng Group and Huaneng Power International,Inc
文摘Coarse-grained heat-affected zone(CGHAZ) of a low alloyed,granular bainitic steel T24 was simulated in a Gleeble apparatus.The stress relief of the CGHAZ was analyzed by annealing the samples.The morphology and behavior of the microstructure near the grain boundaries during stress relief were investigated by means of focused ion beam,in situ tensile testing,transmission electron microscopy,scanning electron microscopy and electron back-scatter diffraction.It was observed that there were large martensite/austenite islands distributed along the grain boundaries of CGHAZ.During stress relief at elevated temperature,the retained austenite at the grain boundaries decomposed into M3C carbides and a ferrite forming softening zone.Together with the stress relief,piled up of dislocations occurred within the ferrite in the area adjacent to the ferrite/M3C interface,which resulted in high level of stress accumulation and caused crack initiation along the grain boundaries.These results indicate that the stress relief induced the grain boundary crack is controlled by other mechanisms rather than the creep-like grain boundary sliding.
基金Supported by the National Natural Science Foundation of China (Grant No. U1737203)National Key Basic Research Project (Grant No. 2020-JCJQ-ZD-191)
文摘A representation of residual stress graphic symbols in technical product documents is studied.The residual stress state of the product can be annotated in the technical product documents such as design drawings,process documents,test reports,papers and monographs.The composition of residual stress and the design of basic symbols,measurement method symbols,relief method symbols and state symbols of residual stress,and the representation of annotation for residual stress in documents are introduced.Residual stress symbol can be used in the design,manufacturing,inspection and service for the residual stress state requirements of the products in the mechanical manufacturing industry,as well as in light industry,daily necessities and other related industries.
文摘Overstress in the surrounding rock of the roadway is a key reason that causes failures of deep roadways. Destressing blasting is one of the promising techniques that could improve the supporting quality. If the depth of the pressure relief blast hole is too shallow, the surrounding rock of the roadway will be broken or even collapsed. If the pressure relief blast hole is too deep, the pressure relief area will be located in the deep part of the surrounding rock of the roadway, which cannot achieve the purpose of releasing the stress in the shallow part of the surrounding rock and cause waste of the blast hole. The width or range of the pressure relief area should just fall in the high stress area of the surrounding rock of the roadway, so the pressure relief blast hole should have a reasonable depth. In order to quantitatively describe the relationship between borehole depth and the width of the stress relief zone, numerical simulations were carried out in ANSYS according to different borehole depths. The results show that the optimal destressing effect is achieved when borehole depth is 4 m. Peak stress of and is significantly reduced by 30.51% and 49.07% after blasting. Meanwhile, the high-stress area shifts about 4.8 m from the roadside to the depth of surrounding rock, thus a 3.8 m wide stress relief zone is formed around the roadside, thus, the aim of quantizing the effects of destress blasting is achieved.
基金funding support from the National Natural Science Foundation of China(Grant Nos.52074298 and 52204164)Fundamental Research Funds for the Central Universities(Grant No.2022XJSB03).
文摘The deformation control of surrounding rock in gobside roadway with thick and hard roof poses a significant challenge to the safety and efficiency of coal mining.To address this issue,a novel approach combining directional and non-directional blasting techniques,known as combined blasting,was proposed.This study focuses on the experimental investigation of the proposed method in the 122108 working face in Caojiatan Coal Mine as the engineering background.The initial phase of the study involves physical model experiments to reveal the underlying mechanisms of combined blasting for protecting gob-side roadway with thick and hard roof.The results demonstrate that this approach effectively accelerates the collapse of thick and hard roofs,enhances the fragmentation and expansion coefficient of gangue,facilitates the filling of the goaf with gangue,and provides support to the overlying strata,thus reducing the subsidence of the overlying strata above the goaf.Additionally,the method involves cutting the main roof into shorter beams to decrease the stress and disrupt stress transmission pathways.Subsequent numerical simulations were conducted to corroborate the findings of the physical model experiments,thus validating the accuracy of the experimental results.Furthermore,field engineering experiments were performed,affirming the efficacy of the combined blasting method in mitigating the deformation of surrounding rock and achieving the desired protection of the gob-side roadway.