In a crowd density estimation dataset,the annotation of crowd locations is an extremely laborious task,and they are not taken into the evaluation metrics.In this paper,we aim to reduce the annotation cost of crowd dat...In a crowd density estimation dataset,the annotation of crowd locations is an extremely laborious task,and they are not taken into the evaluation metrics.In this paper,we aim to reduce the annotation cost of crowd datasets,and propose a crowd density estimation method based on weakly-supervised learning,in the absence of crowd position supervision information,which directly reduces the number of crowds by using the number of pedestrians in the image as the supervised information.For this purpose,we design a new training method,which exploits the correlation between global and local image features by incremental learning to train the network.Specifically,we design a parent-child network(PC-Net)focusing on the global and local image respectively,and propose a linear feature calibration structure to train the PC-Net simultaneously,and the child network learns feature transfer factors and feature bias weights,and uses the transfer factors and bias weights to linearly feature calibrate the features extracted from the Parent network,to improve the convergence of the network by using local features hidden in the crowd images.In addition,we use the pyramid vision transformer as the backbone of the PC-Net to extract crowd features at different levels,and design a global-local feature loss function(L2).We combine it with a crowd counting loss(LC)to enhance the sensitivity of the network to crowd features during the training process,which effectively improves the accuracy of crowd density estimation.The experimental results show that the PC-Net significantly reduces the gap between fullysupervised and weakly-supervised crowd density estimation,and outperforms the comparison methods on five datasets of Shanghai Tech Part A,ShanghaiTech Part B,UCF_CC_50,UCF_QNRF and JHU-CROWD++.展开更多
AIM:To compare superficial and deep vascular properties of optic discs between crowded discs and controls using optical coherence tomography angiography(OCT-A).METHODS:Thirty patients with crowded discs,and 47 control...AIM:To compare superficial and deep vascular properties of optic discs between crowded discs and controls using optical coherence tomography angiography(OCT-A).METHODS:Thirty patients with crowded discs,and 47 control subjects were enrolled in the study.One eye of each individual was included and OCT-A scans of optic discs were obtained in a 4.5×4.5 mm^(2) rectangular area.Radial peripapillary capillary(RPC)density,peripapillary retinal nerve fiber layer(pRNFL)thickness,cup volume,rim area,disc area,cup-to-disc(c/d)area ratio,and vertical c/d ratio were obtained automatically using device software.Automated parapapillary choroidal microvasculature(PPCMv)density was calculated using MATLAB software.When the vertical c/d ratio of the optic disc was absent or small cup,it was considered as a crowded disc.RESULTS:The mean signal strength index of OCT-A images was similar between the crowded discs and control eyes(P=0.740).There was no difference in pRNFL between the two groups(P=0.102).There were no differences in RPC density in whole image(P=0.826)and peripapillary region(P=0.923),but inside disc RPC density was higher in crowded optic discs(P=0.003).The PPCMv density in the inner-hemisuperior region was also lower in crowded discs(P=0.026).The pRNFL thickness was positively correlated with peripapillary RPC density(r=0.498,P<0.001).The inside disc RPC density was negatively correlated with c/d area ratio(r=-0.341,P=0.002).CONCLUSION:The higher inside disc RPC density and lower inner-hemisuperior PPCMv density are found in eyes with crowded optic discs.展开更多
Crowd counting is a promising hotspot of computer vision involving crowd intelligence analysis,achieving tremendous success recently with the development of deep learning.However,there have been stillmany challenges i...Crowd counting is a promising hotspot of computer vision involving crowd intelligence analysis,achieving tremendous success recently with the development of deep learning.However,there have been stillmany challenges including crowd multi-scale variations and high network complexity,etc.To tackle these issues,a lightweight Resconnection multi-branch network(LRMBNet)for highly accurate crowd counting and localization is proposed.Specifically,using improved ShuffleNet V2 as the backbone,a lightweight shallow extractor has been designed by employing the channel compression mechanism to reduce enormously the number of network parameters.A light multi-branch structure with different expansion rate convolutions is demonstrated to extract multi-scale features and enlarged receptive fields,where the information transmission and fusion of diverse scale features is enhanced via residual concatenation.In addition,a compound loss function is introduced for training themethod to improve global context information correlation.The proposed method is evaluated on the SHHA,SHHB,UCF-QNRF and UCF_CC_50 public datasets.The accuracy is better than those of many advanced approaches,while the number of parameters is smaller.The experimental results show that the proposed method achieves a good tradeoff between the complexity and accuracy of crowd counting,indicating a lightweight and high-precision method for crowd counting.展开更多
The past decades have witnessed a wide application of federated learning in crowd sensing,to handle the numerous data collected by the sensors and provide the users with precise and customized services.Meanwhile,how t...The past decades have witnessed a wide application of federated learning in crowd sensing,to handle the numerous data collected by the sensors and provide the users with precise and customized services.Meanwhile,how to protect the private information of users in federated learning has become an important research topic.Compared with the differential privacy(DP)technique and secure multiparty computation(SMC)strategy,the covert communication mechanism in federated learning is more efficient and energy-saving in training the ma-chine learning models.In this paper,we study the covert communication problem for federated learning in crowd sensing Internet-of-Things networks.Different from the previous works about covert communication in federated learning,most of which are considered in a centralized framework and experimental-based,we firstly proposes a centralized covert communication mechanism for federated learning among n learning agents,the time complexity of which is O(log n),approximating to the optimal solution.Secondly,for the federated learning without parameter server,which is a harder case,we show that solving such a problem is NP-hard and prove the existence of a distributed covert communication mechanism with O(log logΔlog n)times,approximating to the optimal solution.Δis the maximum distance between any pair of learning agents.Theoretical analysis and nu-merical simulations are presented to show the performance of our covert communication mechanisms.We hope that our covert communication work can shed some light on how to protect the privacy of federated learning in crowd sensing from the view of communications.展开更多
Obstacle removal in crowd evacuation is critical to safety and the evacuation system efficiency. Recently, manyresearchers proposed game theoreticmodels to avoid and remove obstacles for crowd evacuation. Game theoret...Obstacle removal in crowd evacuation is critical to safety and the evacuation system efficiency. Recently, manyresearchers proposed game theoreticmodels to avoid and remove obstacles for crowd evacuation. Game theoreticalmodels aim to study and analyze the strategic behaviors of individuals within a crowd and their interactionsduring the evacuation. Game theoretical models have some limitations in the context of crowd evacuation. Thesemodels consider a group of individuals as homogeneous objects with the same goals, involve complex mathematicalformulation, and cannot model real-world scenarios such as panic, environmental information, crowds that movedynamically, etc. The proposed work presents a game theoretic model integrating an agent-based model to removethe obstacles from exits. The proposed model considered the parameters named: (1) obstacle size, length, andwidth, (2) removal time, (3) evacuation time, (4) crowd density, (5) obstacle identification, and (6) route selection.The proposed work conducts various experiments considering different conditions, such as obstacle types, obstacleremoval, and several obstacles. Evaluation results show the proposed model’s effectiveness compared with existingliterature in reducing the overall evacuation time, cell selection, and obstacle removal. The study is potentially usefulfor public safety situations such as emergency evacuations during disasters and calamities.展开更多
Estimation of crowd count is becoming crucial nowadays,as it can help in security surveillance,crowd monitoring,and management for different events.It is challenging to determine the approximate crowd size from an ima...Estimation of crowd count is becoming crucial nowadays,as it can help in security surveillance,crowd monitoring,and management for different events.It is challenging to determine the approximate crowd size from an image of the crowd’s density.Therefore in this research study,we proposed a multi-headed convolutional neural network architecture-based model for crowd counting,where we divided our proposed model into two main components:(i)the convolutional neural network,which extracts the feature across the whole image that is given to it as an input,and(ii)the multi-headed layers,which make it easier to evaluate density maps to estimate the number of people in the input image and determine their number in the crowd.We employed the available public benchmark crowd-counting datasets UCF CC 50 and ShanghaiTech parts A and B for model training and testing to validate the model’s performance.To analyze the results,we used two metrics Mean Absolute Error(MAE)and Mean Square Error(MSE),and compared the results of the proposed systems with the state-of-art models of crowd counting.The results show the superiority of the proposed system.展开更多
Quantifying the number of individuals in images or videos to estimate crowd density is a challenging yet crucial task with significant implications for fields such as urban planning and public safety.Crowd counting ha...Quantifying the number of individuals in images or videos to estimate crowd density is a challenging yet crucial task with significant implications for fields such as urban planning and public safety.Crowd counting has attracted considerable attention in the field of computer vision,leading to the development of numerous advanced models and methodologies.These approaches vary in terms of supervision techniques,network architectures,and model complexity.Currently,most crowd counting methods rely on fully supervised learning,which has proven to be effective.However,this approach presents challenges in real-world scenarios,where labeled data and ground-truth annotations are often scarce.As a result,there is an increasing need to explore unsupervised and semi-supervised methods to effectively address crowd counting tasks in practical applications.This paper offers a comprehensive review of crowd counting models,with a particular focus on semi-supervised and unsupervised approaches based on their supervision paradigms.We summarize and critically analyze the key methods in these two categories,highlighting their strengths and limitations.Furthermore,we provide a comparative analysis of prominent crowd counting methods using widely adopted benchmark datasets.We believe that this survey will offer valuable insights and guide future advancements in crowd counting technology.展开更多
Nida’s functional equivalence enjoys a great popularity among translation theories,which plays an indispensable role in the practices of translation.Bulrush in the Crowds is a lyric prose cloaked in melancholy atmosp...Nida’s functional equivalence enjoys a great popularity among translation theories,which plays an indispensable role in the practices of translation.Bulrush in the Crowds is a lyric prose cloaked in melancholy atmosphere.This prose is written in simple but lively,vivid language.It is also highly readable,with flexible structures and various writing techniques.Short and condensed casual sentences are widely employed in this prose.Furthermore,it is good at using figure of speech.Thus,when translation is conducted,mood,structure,style and rhetorical devices should be taken into consideration.展开更多
Evacuation leaders and/or equipment provide route and exit information for people and guide them to the expected destinations, which could make crowd evacuation more efficient in case of emergency. The purpose of this...Evacuation leaders and/or equipment provide route and exit information for people and guide them to the expected destinations, which could make crowd evacuation more efficient in case of emergency. The purpose of this paper is to provide an overview of recent advances in guided crowd evacuation. Different guided crowd evacuation approaches are classified according to guidance approaches and technologies. A comprehensive analysis and comparison of crowd evacuation with static signage, dynamic signage, trained leader, mobile devices, mobile robot and wireless sensor networks are presented based on a single guidance mode perspective. In addition, the different evacuation guidance systems that use high-tech means such as advanced intelligent monitoring techniques, AI techniques, computer technology and intelligent inducing algorithms are reviewed from a system’s perspective. Future researches in the area of crowd evacuation are also discussed.展开更多
A series of accidents caused by crowds within the last decades evoked a lot of scientific interest in modeling the movement of pedestrian crowds. Based on the discrete element method, a granular dynamic model, in whic...A series of accidents caused by crowds within the last decades evoked a lot of scientific interest in modeling the movement of pedestrian crowds. Based on the discrete element method, a granular dynamic model, in which the human body is simplified as a self-driven sphere, is proposed to simulate the characteristics of crowd flow through an exit. In this model, the repulsive force among people is considered to have an anisotropic feature, and the physical contact force due to body deformation is quantified by the Hertz contact model. The movement of the human body is simulated by applying the second Newton's law. The crowd flow through an exit at different desired velocities is studied and simulation results indicated that crowd flow exhibits three distinct states, i.e., smooth state, transition state and phase separation state. In the simulation, the clogging phenomenon occurs more easily when the desired velocity is high and the exit may as a result be totally blocked at a desired velocity of 1.6 m/s or above, leading to faster-to-frozen effect.展开更多
This paper deals with the global dynamical behaviors of the positive solutions for a parabolic type ratio-dependent predator-prey system with a crowding term in the prey equation, where it is assumed that the coeffici...This paper deals with the global dynamical behaviors of the positive solutions for a parabolic type ratio-dependent predator-prey system with a crowding term in the prey equation, where it is assumed that the coefficient of the functional response is less than the coefficient of the intrinsic growth rates of the prey species. We demonstrated some special dynamical behaviors of the positive solutions of this system which the persistence of the coexistence of two species can be obtained when the crowding region in the prey equation only is designed suitably. Furthermore, we can obtain that under some conditions, the unique positive steady state solution of the system is globally asymptotically stable.展开更多
To improve the covalent immobilization of penicillin acylase (PA), macromolecular crowding theory was applied to its immobilization. Influence of mass ratio of enzyme to the silica, as well as, activation time with ...To improve the covalent immobilization of penicillin acylase (PA), macromolecular crowding theory was applied to its immobilization. Influence of mass ratio of enzyme to the silica, as well as, activation time with glutaraldehyde on the activity of assembled PA, was studied. In the mesopores, the effect of fl-cyclodextrin (β-CD) on the immobilization of the enzyme was also investigated. It was remarkable that the coupled yield and relative activity reached 99.5% and 92.3%, respectively, when penicillin acylase assembled covalently in the mesopores. The results here indicate that mimicked macromolecule crowding could significantly ameliorate the performance of covalently immobilized PA.展开更多
An extended crowding genetic algorithm (ECGA) is introduced for solvingoptimal pump configuration problem, which was presented by T. Westerlund in 1994. This problem hasbeen found to be non-convex, and the objective f...An extended crowding genetic algorithm (ECGA) is introduced for solvingoptimal pump configuration problem, which was presented by T. Westerlund in 1994. This problem hasbeen found to be non-convex, and the objective function contained several local optima and globaloptimality could not be ensured by all the traditional MINLP optimization method. The concepts ofspecies conserving and composite encoding are introduced to crowding genetic algorithm (CGA) formaintain the diversity of population more effectively and coping with the continuous and/or discretevariables in MINLP problem. The solution of three-levels pump configuration got from DICOPT++software (OA algorithm) is also given. By comparing with the solutions obtained from DICOPT++, ECPmethod, and MIN-MIN method, the ECGA algorithm proved to be very effective in finding the globaloptimal solution of multi-levels pump configuration via using the problem-specific information.展开更多
基金the Humanities and Social Science Fund of the Ministry of Education of China(21YJAZH077)。
文摘In a crowd density estimation dataset,the annotation of crowd locations is an extremely laborious task,and they are not taken into the evaluation metrics.In this paper,we aim to reduce the annotation cost of crowd datasets,and propose a crowd density estimation method based on weakly-supervised learning,in the absence of crowd position supervision information,which directly reduces the number of crowds by using the number of pedestrians in the image as the supervised information.For this purpose,we design a new training method,which exploits the correlation between global and local image features by incremental learning to train the network.Specifically,we design a parent-child network(PC-Net)focusing on the global and local image respectively,and propose a linear feature calibration structure to train the PC-Net simultaneously,and the child network learns feature transfer factors and feature bias weights,and uses the transfer factors and bias weights to linearly feature calibrate the features extracted from the Parent network,to improve the convergence of the network by using local features hidden in the crowd images.In addition,we use the pyramid vision transformer as the backbone of the PC-Net to extract crowd features at different levels,and design a global-local feature loss function(L2).We combine it with a crowd counting loss(LC)to enhance the sensitivity of the network to crowd features during the training process,which effectively improves the accuracy of crowd density estimation.The experimental results show that the PC-Net significantly reduces the gap between fullysupervised and weakly-supervised crowd density estimation,and outperforms the comparison methods on five datasets of Shanghai Tech Part A,ShanghaiTech Part B,UCF_CC_50,UCF_QNRF and JHU-CROWD++.
文摘AIM:To compare superficial and deep vascular properties of optic discs between crowded discs and controls using optical coherence tomography angiography(OCT-A).METHODS:Thirty patients with crowded discs,and 47 control subjects were enrolled in the study.One eye of each individual was included and OCT-A scans of optic discs were obtained in a 4.5×4.5 mm^(2) rectangular area.Radial peripapillary capillary(RPC)density,peripapillary retinal nerve fiber layer(pRNFL)thickness,cup volume,rim area,disc area,cup-to-disc(c/d)area ratio,and vertical c/d ratio were obtained automatically using device software.Automated parapapillary choroidal microvasculature(PPCMv)density was calculated using MATLAB software.When the vertical c/d ratio of the optic disc was absent or small cup,it was considered as a crowded disc.RESULTS:The mean signal strength index of OCT-A images was similar between the crowded discs and control eyes(P=0.740).There was no difference in pRNFL between the two groups(P=0.102).There were no differences in RPC density in whole image(P=0.826)and peripapillary region(P=0.923),but inside disc RPC density was higher in crowded optic discs(P=0.003).The PPCMv density in the inner-hemisuperior region was also lower in crowded discs(P=0.026).The pRNFL thickness was positively correlated with peripapillary RPC density(r=0.498,P<0.001).The inside disc RPC density was negatively correlated with c/d area ratio(r=-0.341,P=0.002).CONCLUSION:The higher inside disc RPC density and lower inner-hemisuperior PPCMv density are found in eyes with crowded optic discs.
基金Double First-Class Innovation Research Project for People’s Public Security University of China(2023SYL08).
文摘Crowd counting is a promising hotspot of computer vision involving crowd intelligence analysis,achieving tremendous success recently with the development of deep learning.However,there have been stillmany challenges including crowd multi-scale variations and high network complexity,etc.To tackle these issues,a lightweight Resconnection multi-branch network(LRMBNet)for highly accurate crowd counting and localization is proposed.Specifically,using improved ShuffleNet V2 as the backbone,a lightweight shallow extractor has been designed by employing the channel compression mechanism to reduce enormously the number of network parameters.A light multi-branch structure with different expansion rate convolutions is demonstrated to extract multi-scale features and enlarged receptive fields,where the information transmission and fusion of diverse scale features is enhanced via residual concatenation.In addition,a compound loss function is introduced for training themethod to improve global context information correlation.The proposed method is evaluated on the SHHA,SHHB,UCF-QNRF and UCF_CC_50 public datasets.The accuracy is better than those of many advanced approaches,while the number of parameters is smaller.The experimental results show that the proposed method achieves a good tradeoff between the complexity and accuracy of crowd counting,indicating a lightweight and high-precision method for crowd counting.
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFB1005900the National Natural Science Foundation of China(NSFC)under Grant 62102232,62122042,61971269Natural Science Foundation of Shandong province under Grant ZR2021QF064.
文摘The past decades have witnessed a wide application of federated learning in crowd sensing,to handle the numerous data collected by the sensors and provide the users with precise and customized services.Meanwhile,how to protect the private information of users in federated learning has become an important research topic.Compared with the differential privacy(DP)technique and secure multiparty computation(SMC)strategy,the covert communication mechanism in federated learning is more efficient and energy-saving in training the ma-chine learning models.In this paper,we study the covert communication problem for federated learning in crowd sensing Internet-of-Things networks.Different from the previous works about covert communication in federated learning,most of which are considered in a centralized framework and experimental-based,we firstly proposes a centralized covert communication mechanism for federated learning among n learning agents,the time complexity of which is O(log n),approximating to the optimal solution.Secondly,for the federated learning without parameter server,which is a harder case,we show that solving such a problem is NP-hard and prove the existence of a distributed covert communication mechanism with O(log logΔlog n)times,approximating to the optimal solution.Δis the maximum distance between any pair of learning agents.Theoretical analysis and nu-merical simulations are presented to show the performance of our covert communication mechanisms.We hope that our covert communication work can shed some light on how to protect the privacy of federated learning in crowd sensing from the view of communications.
文摘Obstacle removal in crowd evacuation is critical to safety and the evacuation system efficiency. Recently, manyresearchers proposed game theoreticmodels to avoid and remove obstacles for crowd evacuation. Game theoreticalmodels aim to study and analyze the strategic behaviors of individuals within a crowd and their interactionsduring the evacuation. Game theoretical models have some limitations in the context of crowd evacuation. Thesemodels consider a group of individuals as homogeneous objects with the same goals, involve complex mathematicalformulation, and cannot model real-world scenarios such as panic, environmental information, crowds that movedynamically, etc. The proposed work presents a game theoretic model integrating an agent-based model to removethe obstacles from exits. The proposed model considered the parameters named: (1) obstacle size, length, andwidth, (2) removal time, (3) evacuation time, (4) crowd density, (5) obstacle identification, and (6) route selection.The proposed work conducts various experiments considering different conditions, such as obstacle types, obstacleremoval, and several obstacles. Evaluation results show the proposed model’s effectiveness compared with existingliterature in reducing the overall evacuation time, cell selection, and obstacle removal. The study is potentially usefulfor public safety situations such as emergency evacuations during disasters and calamities.
基金funded by Naif Arab University for Security Sciences under grant No.NAUSS-23-R10.
文摘Estimation of crowd count is becoming crucial nowadays,as it can help in security surveillance,crowd monitoring,and management for different events.It is challenging to determine the approximate crowd size from an image of the crowd’s density.Therefore in this research study,we proposed a multi-headed convolutional neural network architecture-based model for crowd counting,where we divided our proposed model into two main components:(i)the convolutional neural network,which extracts the feature across the whole image that is given to it as an input,and(ii)the multi-headed layers,which make it easier to evaluate density maps to estimate the number of people in the input image and determine their number in the crowd.We employed the available public benchmark crowd-counting datasets UCF CC 50 and ShanghaiTech parts A and B for model training and testing to validate the model’s performance.To analyze the results,we used two metrics Mean Absolute Error(MAE)and Mean Square Error(MSE),and compared the results of the proposed systems with the state-of-art models of crowd counting.The results show the superiority of the proposed system.
基金supported by Research Project Support Program for Excellence Institute(2022,ESL)in Incheon National University.
文摘Quantifying the number of individuals in images or videos to estimate crowd density is a challenging yet crucial task with significant implications for fields such as urban planning and public safety.Crowd counting has attracted considerable attention in the field of computer vision,leading to the development of numerous advanced models and methodologies.These approaches vary in terms of supervision techniques,network architectures,and model complexity.Currently,most crowd counting methods rely on fully supervised learning,which has proven to be effective.However,this approach presents challenges in real-world scenarios,where labeled data and ground-truth annotations are often scarce.As a result,there is an increasing need to explore unsupervised and semi-supervised methods to effectively address crowd counting tasks in practical applications.This paper offers a comprehensive review of crowd counting models,with a particular focus on semi-supervised and unsupervised approaches based on their supervision paradigms.We summarize and critically analyze the key methods in these two categories,highlighting their strengths and limitations.Furthermore,we provide a comparative analysis of prominent crowd counting methods using widely adopted benchmark datasets.We believe that this survey will offer valuable insights and guide future advancements in crowd counting technology.
文摘Nida’s functional equivalence enjoys a great popularity among translation theories,which plays an indispensable role in the practices of translation.Bulrush in the Crowds is a lyric prose cloaked in melancholy atmosphere.This prose is written in simple but lively,vivid language.It is also highly readable,with flexible structures and various writing techniques.Short and condensed casual sentences are widely employed in this prose.Furthermore,it is good at using figure of speech.Thus,when translation is conducted,mood,structure,style and rhetorical devices should be taken into consideration.
基金supported jointly by the State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University(RCS2019ZK001)Fundamental Research Funds for Central Universities(2019JBM079)Postdoctoral Innovative Talent Project(BX20190029)
文摘Evacuation leaders and/or equipment provide route and exit information for people and guide them to the expected destinations, which could make crowd evacuation more efficient in case of emergency. The purpose of this paper is to provide an overview of recent advances in guided crowd evacuation. Different guided crowd evacuation approaches are classified according to guidance approaches and technologies. A comprehensive analysis and comparison of crowd evacuation with static signage, dynamic signage, trained leader, mobile devices, mobile robot and wireless sensor networks are presented based on a single guidance mode perspective. In addition, the different evacuation guidance systems that use high-tech means such as advanced intelligent monitoring techniques, AI techniques, computer technology and intelligent inducing algorithms are reviewed from a system’s perspective. Future researches in the area of crowd evacuation are also discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.71473207,51178445,and 71103148)the Research Grant Council,Government of Hong Kong,China(Grant No.City U119011)the Fundamental Research Funds for the Central Universities,China(Grant Nos.2682014CX103 and 2682014RC05)
文摘A series of accidents caused by crowds within the last decades evoked a lot of scientific interest in modeling the movement of pedestrian crowds. Based on the discrete element method, a granular dynamic model, in which the human body is simplified as a self-driven sphere, is proposed to simulate the characteristics of crowd flow through an exit. In this model, the repulsive force among people is considered to have an anisotropic feature, and the physical contact force due to body deformation is quantified by the Hertz contact model. The movement of the human body is simulated by applying the second Newton's law. The crowd flow through an exit at different desired velocities is studied and simulation results indicated that crowd flow exhibits three distinct states, i.e., smooth state, transition state and phase separation state. In the simulation, the clogging phenomenon occurs more easily when the desired velocity is high and the exit may as a result be totally blocked at a desired velocity of 1.6 m/s or above, leading to faster-to-frozen effect.
基金supported by the National Natural Science Foundation of China(11271120,11426099)the Project of Hunan Natural Science Foundation of China(13JJ3085)
文摘This paper deals with the global dynamical behaviors of the positive solutions for a parabolic type ratio-dependent predator-prey system with a crowding term in the prey equation, where it is assumed that the coefficient of the functional response is less than the coefficient of the intrinsic growth rates of the prey species. We demonstrated some special dynamical behaviors of the positive solutions of this system which the persistence of the coexistence of two species can be obtained when the crowding region in the prey equation only is designed suitably. Furthermore, we can obtain that under some conditions, the unique positive steady state solution of the system is globally asymptotically stable.
基金Supported by the National High Technology Research and Development Program of China (863 Program, No.2006AA02Z211), the National Natural Science Foundation of China (No.20376034), the Natural Science Foundation of Jiangsu Province of China (BK2006181), and the Scientific Research Foundation for Young Teachers in the Higher Education Institutions of Anhui Province of China (2005jq1163), and the Foundation of Jiangsu Province of China for College Postgraduate Students in Inno-vation Engineering (2007).
文摘To improve the covalent immobilization of penicillin acylase (PA), macromolecular crowding theory was applied to its immobilization. Influence of mass ratio of enzyme to the silica, as well as, activation time with glutaraldehyde on the activity of assembled PA, was studied. In the mesopores, the effect of fl-cyclodextrin (β-CD) on the immobilization of the enzyme was also investigated. It was remarkable that the coupled yield and relative activity reached 99.5% and 92.3%, respectively, when penicillin acylase assembled covalently in the mesopores. The results here indicate that mimicked macromolecule crowding could significantly ameliorate the performance of covalently immobilized PA.
基金This project is supported by Provincial Science Foundation of Hebei (No.01213553).
文摘An extended crowding genetic algorithm (ECGA) is introduced for solvingoptimal pump configuration problem, which was presented by T. Westerlund in 1994. This problem hasbeen found to be non-convex, and the objective function contained several local optima and globaloptimality could not be ensured by all the traditional MINLP optimization method. The concepts ofspecies conserving and composite encoding are introduced to crowding genetic algorithm (CGA) formaintain the diversity of population more effectively and coping with the continuous and/or discretevariables in MINLP problem. The solution of three-levels pump configuration got from DICOPT++software (OA algorithm) is also given. By comparing with the solutions obtained from DICOPT++, ECPmethod, and MIN-MIN method, the ECGA algorithm proved to be very effective in finding the globaloptimal solution of multi-levels pump configuration via using the problem-specific information.