FeS_(2)cathode is promising for all-solid-state lithium batteries due to its ultra-high capacity,low cost,and environmental friendliness.However,the poor performances,induced by limited electrode-electrolyte interface...FeS_(2)cathode is promising for all-solid-state lithium batteries due to its ultra-high capacity,low cost,and environmental friendliness.However,the poor performances,induced by limited electrode-electrolyte interface,severe volume expansion,and polysulfide shuttle,hinder the application of FeS_(2)in all-solid-state lithium batteries.Herein,an integrated 3D FeS_(2)electrode with full infiltration of Li6PS5Cl sulfide electrolytes is designed to address these challenges.Such a 3D integrated design not only achieves intimate and maximized interfacial contact between electrode and sulfide electrolytes,but also effectively buffers the inner volume change of FeS_(2)and completely eliminates the polysulfide shuttle through direct solid-solid conversion of Li2S/S.Besides,the vertical 3D arrays guarantee direct electron transport channels and horizontally shortened ion diffusion paths,endowing the integrated electrode with a remarkably reduced interfacial impedance and enhanced reaction kinetics.Benefiting from these synergies,the integrated all-solid-state lithium battery exhibits the largest reversible capacity(667 mAh g^(-1)),best rate performance,and highest capacity retention of 82%over 500 cycles at 0.1 C compared to both a liquid battery and non-integrated all-solid-state lithium battery.The cycling performance is among the best reported for FeS_(2)-based all-solid-state lithium batteries.This work presents an innovative synergistic strategy for designing long-cycling high-energy all-solid-state lithium batteries,which can be readily applied to other battery systems,such as lithium-sulfur batteries.展开更多
Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorgani...Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorganic solid electrolytes are desirable properties for realizing high-performance safe solid-state batteries by replacing conventional liquid electrolytes.However,the low chemical and electrochemical stability of sulfide-based inorganic solid electrolytes hinder the commercialization of sulfide-based safe solid-state batteries.Particularly,the instability of sulfide-based inorganic solid electrolytes is intensified in the cathode,comprising various materials.In this study,carbonate-based ionic conductive polymers are introduced to the cathode to protect cathode materials and suppress the reactivity of sulfide electrolytes.Several instruments,including electrochemical spectroscopy,X-ray photoelectron spectroscopy,and scanning electron microscopy,confirm the chemical and electrochemical stability of the polymer electrolytes in contact with sulfide-based inorganic solid electrolytes.Sulfide-based solid-state cells show stable electrochemical performance over 100 cycles when the ionic conductive polymers were applied to the cathode.展开更多
All-solid-state lithium batteries(ASSLBs) based on sulfide solid-state electrolytes and high voltage layered oxide cathode are regarded as one of the most promising candidates for energy storage systems with high ener...All-solid-state lithium batteries(ASSLBs) based on sulfide solid-state electrolytes and high voltage layered oxide cathode are regarded as one of the most promising candidates for energy storage systems with high energy density and high safety.However,they usually suffer poor cathode/electrolyte interfacial stability,severely limiting their practical applications.In this work,a core-shell cathode with uniformly nanosized Li0.5La0.5TiO3(LLTO) electrolyte coating on LiNi0.5Co0.3Mn0.2O2(NCM532) is designed to improve the cathode/electrolyte interface stability.Nanosized LLTO coating layer not only significantly boosts interfacial migration of lithium ions,but also efficiently alleviates space-charge layer and inhibits the electrochemical decomposition of electrolyte.As a result,the assembled ASSLBs with high mass loading(9 mg cm-2)LLTO coated NCM532(LLTO@NCM532) cathode exhibit high initial capacity(135 mAh g^(-1)) and excellent cycling performance with high capacity retention(80% after 200 cycles) at 0.1 C and 25℃.This nanosized LLTO coating layer design provides a facile and effective strategy for constructing high performance ASSLBs with superior interfacial stability.展开更多
The interfacial instability between Ni-rich layered oxide cathodes and sulfide electrolytes is a serious problem,leading to poor electrochemical properties of all-solid-state lithium batteries(ASSLB).The chemical/elec...The interfacial instability between Ni-rich layered oxide cathodes and sulfide electrolytes is a serious problem,leading to poor electrochemical properties of all-solid-state lithium batteries(ASSLB).The chemical/electrochemical side reactions are considered to be the origin of the interfacial deterioration.However,the influence of chemical and electrochemical side reactions on the interfacial deterioration is rarely studied specifically.In this work,the deterioration mechanism of the interface between LiNi0.85-xCo0.15AlxO2 and Li10GeP2S12 is investigated in detail by combining in/ex-situ Raman spectra and Electrochemical Impedance Spectroscopy(EIS).It can be determined that chemical side reaction between LiNi0.8Co0.15Al0.05O2 and Li10GeP2S12 will occur immediately once contacted,and the interfacial deterioration becomes more serious after charge-discharge process under the dual effects of chemical and electrochemical side reactions.Moreover,our research reveals that the interfacial stability and the cycle performance of ASSLB can be greatly enhanced by increasing Al-substitution for Ni in LiNi0.85-xCo0.15AlxO2.In particular,the capacity retention of LiNi0.6Co0.15Al0.25O2 cathode after 200 cycles can reach 81.9%,much higher than that of LiNi0.8Co0.15Al0.05O2 cathode(12.5%@200 cycles).This work gives an insight to study the interfacial issues between Ni-rich layered oxide cathode and sulfide electrolyte for ASSLBs.展开更多
Sulfide solid electrolytes are promising for high energy density and safety in all-solid-state batteries due to their high ionic conductivity and good mechanical properties.However,the application of sulfide solid ele...Sulfide solid electrolytes are promising for high energy density and safety in all-solid-state batteries due to their high ionic conductivity and good mechanical properties.However,the application of sulfide solid electrolytes in all-solid-state batteries with lithium anode is restricted by the side reactions at lithium/electrolytes interfaces and the growth of lithium dendrite caused by nonuniform lithium deposition.Herein,a homogeneous LiF-Li_(3)N composite protective layer is in situ formed via a manipulated reaction of pentafluorobenzamide with Li metal.The LiF-Li_(3)N layer with both high interfacial energy and interfacial adhesion energy can synergistically suppress side reactions and inhibit the growth of lithium dendrite,achieving uniform deposition of lithium.The critical current densities of Li_(10)GeP_(2)S_(12)and Li_(6)PS_(5)Cl are increased to 3.25 and 1.25 mA cm^(-2)with Li@LiF-Li_(3)N layer,which are almost triple and twice as those of Li-symmetric cells in the absence of protection layer,respectively.Moreover,the Li@LiF-Li_(3)N/Li10GeP2S12/Li@LiF-Li_(3)N cell can stably cycle for 9000 h at 0.1 mA cm^(-2)under 0.1 mA h cm^(-2),and Li@LiF-Li_(3)N/Li_(6)PS_(5)Cl/Li@LiF-Li_(3)N cell achieves stable Li plating/stripping for 8000 h at 0.1 mA cm^(-2)under10 m A h cm^(-2).The improved dynamic stability of lithium plating/stripping in Li@LiF-Li_(3)N/Li_(10)GeP_(2)S_(12)or Li_(6)PS_(5)Cl interfaces is proved by three-electrode cells.As a result,LiCoO_(2)/electrolytes/Li@LiF-Li_(3)N batteries with Li_(10)GeP_(2)S_(12)and Li_(6)PS_(5)Cl exhibit remarkable cycling stability of 500 cycles with capacity retentions of 93.5%and 89.2%at 1 C,respectively.展开更多
All-solid-state lithium batteries(ASSLBs)based on sulfide solid electrolytes(SEs)are one of the most promising strategies for next-generation energy storage systems and electronic devices.However,the poor chemical/ele...All-solid-state lithium batteries(ASSLBs)based on sulfide solid electrolytes(SEs)are one of the most promising strategies for next-generation energy storage systems and electronic devices.However,the poor chemical/electrochemical stability of sulfide SEs with oxide cathode materials and high interfacial impedance,particularly due to physical contact failure,are the major limiting factors to the development of sulfide SEs in ASSLBs.Herein,the composite cathode of MOF-derived Fe_(7)S_(8)@C and Li_(6)PS_(5)Br fabricated by an infiltration method(IN-Fe_(7)S_(8))with dissoluble sulfide electrolyte(dissoluble SE)is reported.Dissoluble SE can easily infiltrate the porous sheet-type Fe_(7)S_(8)@C cathode to homogeneously contact with Fe_(7)S_(8)nanoparticles that are embedded in the surrounding carbon matrixes and form a fast ionic transport network.Benefiting from applying dissoluble SE and Fe_(7)S_(8)@C,the IN-Fe_(7)S_(8)-based cells displayed a reversible capacity of 510 mAh g^(-1)after 180 cycles at 0.045 mA cm^(-2)at 30℃.This work demonstrates a novel and practical method for the development of high-performance all-sulfide-based solid state batteries.展开更多
Sulfide solid electrolytes(SEs)have attracted ever-increasing attention due to their superior roomtemperature ionic conductivity(~10^(-2) S cm^(-1)).Additionally,the integration of sulfide SEs and highvoltage cathodes...Sulfide solid electrolytes(SEs)have attracted ever-increasing attention due to their superior roomtemperature ionic conductivity(~10^(-2) S cm^(-1)).Additionally,the integration of sulfide SEs and highvoltage cathodes is promising to achieve higher energy density.However,the incompatible interfaces between sulfide SEs and high-voltage cathodes have been one of the key factors limiting their applications.Therefore,this review presents a critical summarization of the interfacial issues in all-solid-state lithium batteries based on sulfide SEs and high-voltage cathodes and proposes strategies to stabilize the electrolyte/cathode interfaces.Moreover,the future research direction of electrolyte/cathode interfaces and application prospects of powder technology in sulfide-based ASSLBs were also discussed.展开更多
This paper is aimed to present a clean,inexpensive and sustainable method to synthesize high purity lithium sulfide(Li_(2)S)powder through hydrogen reduction of lithium sulfate(Li_(2)SO_(4)).A three-step reduction pro...This paper is aimed to present a clean,inexpensive and sustainable method to synthesize high purity lithium sulfide(Li_(2)S)powder through hydrogen reduction of lithium sulfate(Li_(2)SO_(4)).A three-step reduction process has been successfully developed to synthesize well-crystallized and single-phase Li_(2)S powder by investigating the melting,sintering and reduction behavior of the mixtures of Li_(2)SO_(4)-Li_(2)S.High purity alumina was found to be the most suitable crucible material for producing high purity Li_(2)S,because it was not attacked by the Li_(2)SO_(4)-Li_(2)S melt during heating,as compared with other materials,such as carbon,mullite,quartz,boron nitride and stainless steel.The use of synthesized LizS resulted in higher purity and substantially higher room temperature ionic conductivity(2.77 mS·cm^(-1))for the argyrodite sulfide electrolyte Li_(6)PS_(5)Cl than commercial Li_(2)S(1.12 mS·cm^(-1)).This novel method offers a great opportunity to produce battery grade Li_(2)S for sulfide solid electrolyte applications.展开更多
All-solid-state lithium batteries(ASSLBs)have attracted increasing attention due to their high safety and energy density.Among all corresponding solid electrolytes,sulfide electrolytes are considered to be the most pr...All-solid-state lithium batteries(ASSLBs)have attracted increasing attention due to their high safety and energy density.Among all corresponding solid electrolytes,sulfide electrolytes are considered to be the most promising ion conductors due to high ionic conductivities.Despite this,many challenges remain in the application of ASSLBs,including the stability of sulfide electrolytes,complex interfacial issues between sulfide electrolytes and oxide electrodes as well as unstable anodic interfaces.Although oxide cathodes remain the most viable electrode materials due to high stability and industrialization degrees,the matching of sulfide electrolytes with oxide cathodes is challenging for commercial use in ASSLBs.Based on this,this review will present an overview of emerging ASSLBs based on sulfide electrolytes and oxide cathodes and high-light critical properties such as compatible electrolyte/electrode interfaces.And by considering the current challenges and opportunities of sulfide electrolyte-based ASSLBs,possible research directions and perspectives are discussed.展开更多
Sulfide-based solid-state electrolytes with ultrahigh lithium ion conductivities have been considered as the most promising electrolyte system to enable practical all-solid-state batteries.However,the practical applic...Sulfide-based solid-state electrolytes with ultrahigh lithium ion conductivities have been considered as the most promising electrolyte system to enable practical all-solid-state batteries.However,the practical applications of the sulfide-based all-solid-state batteries are hindered by severe interfacial issues as well as large-scale material preparation and battery fabrication problems.Liquid-involved interfacial treatments and preparation processes compatible with current battery manufacturing capable of improving electrode/electrolyte interface contacts and realizing the mass production of sulfide electrolytes and the scalable fabrication of sulfide-based battery component have attracted considerable attention.In this perspective,the current advances in liquid-involved treatments and processes in sulfide-based all-solid-state batteries are summarized.Then relative chemical mechanisms and existing challenges are included.Finally,future guidance is also proposed for sulfide-based batteries.Focusing on the sulfide-based all-solid-state batteries,we aim at providing a fresh insight on understandings towards liquid-involved processes and promoting the development of all-solid-state batteries with higher energy density and better safety.展开更多
The interface instability between layered oxide cathode and sulfide electrolyte is a key point affecting the perform ance of sulfide-based all-solid-state lithium batteries.Coating with fast-ionic conductor and constr...The interface instability between layered oxide cathode and sulfide electrolyte is a key point affecting the perform ance of sulfide-based all-solid-state lithium batteries.Coating with fast-ionic conductor and constructing core-shell structure can effectively alleviate the interfacial side reactions and improve the interfacial stability between layered oxide and sulfide electrolyte.However,what have been neglected is the surface base(including Li_(2)CO_(3) and LiOH)of layered oxide can also affect the interfacial stability.To clarify this point clearly and improve the interfacial stability,the surface base of LiCoO_(2)(LCO)is regulated and investigated in this work.First,LCO with surface base Li_(2)CO_(3)(LCO@Li_(2)CO_(3))is prepared by the reaction of Co_(3)O_4 and excess Li_(2)CO_(3).Then,the bare LCO is obtained after LCO@Li_(2)CO_(3) is washed with deionized water and calcined again.Besides,LCO with surface base Li_(2)O(LCO@Li_(2)O)is also prepared with the bare LCO and LiOH.As a result,the electrochemical performances of LCO@Li_(2)O are significantly improved and much higher than those of LCO@Li_(2)CO_(3) and the bare LCO electrodes.In particular,LCO@Li_(2)O-2 cathode display the most outstanding electrochemical performances(discharge capacity138.4 mAh·g^(-1)at 0.2C,105 mAh·g^(-1)at 2C and a capacity retention of 95.4%after 150 cycles at 0.5C).The high discharge capacity and excellent cycle stability of LCO@Li_(2)O electrode confirm the effectiveness of regulating the surface base of layered oxide from Li_(2)CO_(3) to Li_(2)O.The surface base regulating is expected to be a simple but effective strategy to construct the stable interface between the cathode and the sulfide electrolyte of the all-solid-state lithium batteries.展开更多
Lithium-sulfur(Li-S)batteries are considered as promising candidates for novel energy storage technology that achieves energy density of 500 Wh·kg^(−1).However,poor cycle stability resulting from notorious shuttl...Lithium-sulfur(Li-S)batteries are considered as promising candidates for novel energy storage technology that achieves energy density of 500 Wh·kg^(−1).However,poor cycle stability resulting from notorious shuttle effect and the safety concerns deriving from flammability of ether-based electrolyte hinder the practical application of Li-S batteries.Because of low solubility to polysulfide,high ionic conductivity,and safety property,sulfide-based electrolytes can fundamentally address above issues.It is widely known that the effective transports of both electrons and ions are basic requirement for redox reaction of active materials in cathode.Thereby,construction of fast and stable ionic and electronic transport paths in cathode is especially pivotal for cycle stability of solid-state Li-S batteries(SSLSBs).In this review,we provide research progresses on facilitating transport of charge carriers in composite cathode of SSLSBs.From perspective of materials,intrinsically conductivity of electrolyte and carbon shows dramatic effect on migration of charge carriers in cathode of SSLSBs,thereby the conductive additives are summarized in the manuscript.Additionally,the charge transport in cathode of SSLSBs fully depends on the physical contact between active materials and conductive additives,therefore we summarized the strategies optimizing interfacial contact and reducing interfacial resistance.Finally,potential future research directions and prospects for SSLSBs with improved energy density and cycle performance are also proposed.展开更多
Silicon(Si)is a competitive anode material owing to its high theoretical capacity and low electrochemical potential.Recently,the prospect of Si anodes in solid-state batteries(SSBs)has been proposed due to less solid ...Silicon(Si)is a competitive anode material owing to its high theoretical capacity and low electrochemical potential.Recently,the prospect of Si anodes in solid-state batteries(SSBs)has been proposed due to less solid electrolyte interphase(SEI)formation and particle pulverization.However,major challenges arise for Si anodes in SSBs at elevated temperatures.In this work,the failure mechanisms of Si-Li_(6)PS_(5)Cl(LPSC)composite anodes above 80℃are thoroughly investigated from the perspectives of interface stability and(electro)chemo-mechanical effect.The chemistry and growth kinetics of Lix Si|LPSC interphase are demonstrated by combining electrochemical,chemical and computational characterizations.Si and/or Si–P compound formed at Lix Si|LPSC interface prove to be detrimental to interface stability at high temperatures.On the other hand,excessive volume expansion and local stress caused by Si lithiation at high temperatures damage the mechanical structure of Si-LPSC composite anodes.This work elucidates the behavior and failure mechanisms of Si-based anodes in SSBs at high temperatures and provides insights into upgrading Si-based anodes for application in SSBs.展开更多
All-solid-state lithium-metal batteries(ASSLMBs)are widely considered as the ultimately advanced lithium batteries owing to their improved energy density and enhanced safety features.Among various solid electrolytes,s...All-solid-state lithium-metal batteries(ASSLMBs)are widely considered as the ultimately advanced lithium batteries owing to their improved energy density and enhanced safety features.Among various solid electrolytes,sulfide solid electrolyte(SSE)Li_(6)PS_(5)Cl has garnered significant attention.However,its application is limited by its poor cyclability and low critical current density(CCD).In this study,we introduce a novel approach to enhance the performance of Li_(6)PS_(5)Cl by doping it with fluorine,using lithium fluoride nanoparticles(LiFs)as the doping precursor.The F-doped electrolyte Li_(6)PS_(5)Cl-0.2LiF(nano)shows a doubled CCD,from 0.5 to 1.0 mA/cm^(2) without compromising the ionic conductivity;in fact,conductivity is enhanced from 2.82 to 3.30 mS/cm,contrary to the typical performance decline seen in conventionally doped Li_(6)PS_(5)Cl electrolytes.In symmetric Li|SSE|Li cells,the lifetime of Li_(6)PS_(5)Cl-0.2LiF(nano)is 4 times longer than that of Li_(6)PS_(5)Cl,achieving 1500 h vs.371 h under a charging/discharging current density of 0.2 mA/cm^(2).In Li|SSE|LiNbO_(3)@NCM721 full cells,which are tested under a cycling rate of 0.1 C at 30℃,the lifetime of Li_(6)PS_(5)Cl-0.2LiF(nano)is four times that of Li_(6)PS_(5)Cl,reaching 100 cycles vs.26 cycles.Therefore,the doping of nano-LiF off ers a promising approach to developing high-performance Li_(6)PS_(5)Cl for ASSLMBs.展开更多
Li7P3S11solid electrolytes with high lithium-ion conductivity are promising candidates for use in all-solidstate lithium batteries.However,this electrolyte’s poor interfacial compatibility with lithium electrodes cau...Li7P3S11solid electrolytes with high lithium-ion conductivity are promising candidates for use in all-solidstate lithium batteries.However,this electrolyte’s poor interfacial compatibility with lithium electrodes causes unstable cyclability.In this study,in order to address this problem,(100-x)Li7P3S11-xLi2OHBr(x=0,2,5,10,20,30,40,and 50)electrolytes are prepared by a high energy ball-milling technique and heat-treatment process.The resulting(100-x)Li7P3S11-xLi2OHBr(x=2,5,10,20,30,40,and 50)electrolytes provide improved electrochemical performance with good cycling stability and a wide electrochemical window of up to 10 V(vs.Li/Li+).Moreover,these electrolytes have high ionic conductivity of 10-4–10-5S/cm at room temperature.Particularly,the 90Li7P3S11-10Li2OHBr electrolyte displays the highest conductivity of 4.4×10-4S/cm at room temperature as well as improved cyclability.Moreover,90Li7P3S11-10Li2OHBr shows decreased interfacial resistance between the solid electrolyte and cathode electrode,which was revealed by Electrochemical Impedance Spectroscopy(EIS)analysis.The initial discharge capacity of 90Li7P3S11-10Li2OHBr was found to be 135 m Ah/g when used in a In|solid electrolyte|Li(Ni0.6Co0.2Mn0.2)O2 all-solid-state lithium battery(ASSLB).Thus,we can conclude the addition of Li2OHBr into the Li7P3S11results in enhanced electrochemical properties.展开更多
All-solid-state lithium batteries(ASSLBs),utilizing sulfide solid electrolyte,are considered as the promising design on account of their superior safety and high energy density,whereas the time-consuming preparation p...All-solid-state lithium batteries(ASSLBs),utilizing sulfide solid electrolyte,are considered as the promising design on account of their superior safety and high energy density,whereas the time-consuming preparation process of sulfide electrolyte powders and the thickness of electrolyte layer hinder their practical application.Herein,an innovative ultimate-energy mechanical alloying plus rapid thermal processing approach is employed to rapidly synthesize the crystalline Argyrodite-type conductor Li_(5.3)PS_(4.3)ClBr_(0.7)(LPSCIBr)with superior ionic conductivity(11.7 mS cm^(-1)).Furthermore,to realize the higher energy density of the battery,an ultrathin LPSCIBr sulfide electrolyte membrane with superior ionic conductivity of 6.5 mS cm^(-1)is fabricated with the aid of polytetrafluoroethylene(PTFE)binder and the reinforced cellulose mesh.Moreover,a simple solid electrolyte interphase(SEI)is constructed on the surface of lithium metal to enhance anodic stability.Benefiting from the joint efforts of these merits,the modified ASSLBs with a high cell-level energy density of 311 Wh kg^(-1) show an excellent cyclic stability.The assembled all-solid-state Li_(2) S/Li pouch cell can operate even under the severe conditions of bending and cutting,demonstrating the enormous potential of the sulfide electrolyte membrane for ASSLBs application.展开更多
All-solid-state batteries(ASSB) with lithium anode have attracted ever-increasing attention towards developing safer batteries with high energy densities.While great advancement has been achieved in developing solid e...All-solid-state batteries(ASSB) with lithium anode have attracted ever-increasing attention towards developing safer batteries with high energy densities.While great advancement has been achieved in developing solid electrolytes(SE) with superb ionic conductivity rivalling that of the current liquid technology,it has yet been very difficult in their successful application to ASSBs with sustaining rate and cyclic performances.Here in this work,we have realized a stable ASSB using the Li_(6.25)PS_(5.25)Cl_(0.75) fast ionconducting electrolyte together with LiNbO_3 coated LiCoO_2 as cathode and lithium foil as the anode.The effective diffusion coefficient of Li-ions in the battery is higher than 10^(-12) cm~2 s^(-1),and the significantly enhanced electrochemical matching at the cathode-electrolyte interface was essential to enable long-term stability against high oxidation potential,with the LCO@LNO/Li_(6.25)PS_(5.25)Cl_(0.75)/Li battery to retain 74.12% capacity after 430 cycles at 100 μA cm-2 and 59.7% of capacity after 800 cycles at 50 μA cm^(-2),at a high charging cut-off voltage of 4.2 V.This demonstrates that the Li_(6.25)PS_(5.25)Cl_(0.75) can be an excellent electrolyte for the realization of stable ASSBs with high-voltage cathodes and metallic lithium as anode,once the electrochemical compatibility between cathode and electrolyte can be addressed with a suitable buffer coating.展开更多
All-solid-state lithium battery(ASLB)based on sulfide-based electrolyte is considered to be a candidate for the next-generation high-energy storage system.Despite the high ionic conductivity of sulfide solid electroly...All-solid-state lithium battery(ASLB)based on sulfide-based electrolyte is considered to be a candidate for the next-generation high-energy storage system.Despite the high ionic conductivity of sulfide solid electrolyte,the poor interfacial stability(mechanically and chemically)between active materials and sulfide solid electrolytes in composite cathodes leads to inferior electrochemical performances,which impedes the practical application of sulfide electrolytes.In the past years,various of strategies have been carried out to achieve an interface with low impedance in the composite cathodes.Herein,a review of recent progress of composite cathodes for all-solid-state sulfide-based lithium batteries is summarized,including the interfacial issues,design strategies,fabrication methods,and characterization techniques.Finally,the main challenges and perspectives of composite cathodes for high-performance all-solidstate batteries are highlighted for future development.展开更多
A commentary on pressure-induced pre-lithiation towards Si anodes in allsolid-state Li-ion batteries(ASSLIBs)using sulfide electrolytes(SEs)is presented.First,feasible pre-lithiation technologies for Si anodes in SE-b...A commentary on pressure-induced pre-lithiation towards Si anodes in allsolid-state Li-ion batteries(ASSLIBs)using sulfide electrolytes(SEs)is presented.First,feasible pre-lithiation technologies for Si anodes in SE-based ASSLIBs especially the significant pressure-induced pre-lithiation strategies are briefly reviewed.Then,a recent achievement by Meng et al.in this field is elaborated in detail.Finally,the significance of Meng’s work is discussed.展开更多
In order to obtain high power density,energy density and safe energy storage lithium ion batteries(LIB)to meet growing demand for electronic products,oxide cathodes have been widely explored in all-solidstate lithium ...In order to obtain high power density,energy density and safe energy storage lithium ion batteries(LIB)to meet growing demand for electronic products,oxide cathodes have been widely explored in all-solidstate lithium batteries(ASSLB)using sulfide solid electrolyte.However,the electrochemical performances are still not satisfactory,due to the high interfacial resistance caused by severe interfacial instability between sulfide solid electrolyte and oxide cathode,especially Ni-rich oxide cathodes,in charge-discharge process.Ni-rich LiNi0.8Co0.1Mn0.1O2(NCM811)material at present is one of the most key cathode candidates to achieve the high energy density up to 300 Wh kg^-1 in liquid LIB,but rarely investigated in ASSLB using sulfide electrolyte.To design the stable interface between NCM811 and sulfide electrolyte should be extremely necessary.In this work,in view of our previous work,LiNbO3 coating with about 1 wt% content is adopted to improve the interfacial stability and the electrochemical performances of NCM811 cathode in ASSLB using Li10GeP2S12 solid electrolyte.Consequently,LiNbO3-coated NCM811 cathode displays the higher discharge capacity and rate performance than the reported oxide electrodes in ASSLB using sulfide solid electrolyte to our knowledge.展开更多
基金supported by the National Natural Science Foundation of China(Grant nos.52272201,52072136,52172229,52302303,and 51972257)Yanchang Petroleum-WHUT Joint Program(yc-whlg-2022ky-05)+1 种基金the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology,2022-KF-20)Fundamental Research Funds for the Central Universities(2023IVA106)for financial support
文摘FeS_(2)cathode is promising for all-solid-state lithium batteries due to its ultra-high capacity,low cost,and environmental friendliness.However,the poor performances,induced by limited electrode-electrolyte interface,severe volume expansion,and polysulfide shuttle,hinder the application of FeS_(2)in all-solid-state lithium batteries.Herein,an integrated 3D FeS_(2)electrode with full infiltration of Li6PS5Cl sulfide electrolytes is designed to address these challenges.Such a 3D integrated design not only achieves intimate and maximized interfacial contact between electrode and sulfide electrolytes,but also effectively buffers the inner volume change of FeS_(2)and completely eliminates the polysulfide shuttle through direct solid-solid conversion of Li2S/S.Besides,the vertical 3D arrays guarantee direct electron transport channels and horizontally shortened ion diffusion paths,endowing the integrated electrode with a remarkably reduced interfacial impedance and enhanced reaction kinetics.Benefiting from these synergies,the integrated all-solid-state lithium battery exhibits the largest reversible capacity(667 mAh g^(-1)),best rate performance,and highest capacity retention of 82%over 500 cycles at 0.1 C compared to both a liquid battery and non-integrated all-solid-state lithium battery.The cycling performance is among the best reported for FeS_(2)-based all-solid-state lithium batteries.This work presents an innovative synergistic strategy for designing long-cycling high-energy all-solid-state lithium batteries,which can be readily applied to other battery systems,such as lithium-sulfur batteries.
基金supported by the Enhancement of Performance and Production Technology of Lithium-based Next-generation Rechargeable Battery(project number 20012371)from the Ministry of Trade,Industry and Energy(MOTIE)of Koreasupported by project number KS2322-20(A Study on the Convergence Materials for Off-Grid Energy Conversion/Storage Integrated Devices)of the Korea Research Institute of Chemical Technology(KRICT).
文摘Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorganic solid electrolytes are desirable properties for realizing high-performance safe solid-state batteries by replacing conventional liquid electrolytes.However,the low chemical and electrochemical stability of sulfide-based inorganic solid electrolytes hinder the commercialization of sulfide-based safe solid-state batteries.Particularly,the instability of sulfide-based inorganic solid electrolytes is intensified in the cathode,comprising various materials.In this study,carbonate-based ionic conductive polymers are introduced to the cathode to protect cathode materials and suppress the reactivity of sulfide electrolytes.Several instruments,including electrochemical spectroscopy,X-ray photoelectron spectroscopy,and scanning electron microscopy,confirm the chemical and electrochemical stability of the polymer electrolytes in contact with sulfide-based inorganic solid electrolytes.Sulfide-based solid-state cells show stable electrochemical performance over 100 cycles when the ionic conductive polymers were applied to the cathode.
基金supported by the National Natural Science Foundation of China (51575030, 51532002 and 51872027)Natural Science Foundation of Beijing Municipality (L172023)。
文摘All-solid-state lithium batteries(ASSLBs) based on sulfide solid-state electrolytes and high voltage layered oxide cathode are regarded as one of the most promising candidates for energy storage systems with high energy density and high safety.However,they usually suffer poor cathode/electrolyte interfacial stability,severely limiting their practical applications.In this work,a core-shell cathode with uniformly nanosized Li0.5La0.5TiO3(LLTO) electrolyte coating on LiNi0.5Co0.3Mn0.2O2(NCM532) is designed to improve the cathode/electrolyte interface stability.Nanosized LLTO coating layer not only significantly boosts interfacial migration of lithium ions,but also efficiently alleviates space-charge layer and inhibits the electrochemical decomposition of electrolyte.As a result,the assembled ASSLBs with high mass loading(9 mg cm-2)LLTO coated NCM532(LLTO@NCM532) cathode exhibit high initial capacity(135 mAh g^(-1)) and excellent cycling performance with high capacity retention(80% after 200 cycles) at 0.1 C and 25℃.This nanosized LLTO coating layer design provides a facile and effective strategy for constructing high performance ASSLBs with superior interfacial stability.
基金financially supported partly by the National Key Research and Development Program of China(2018YFE0111600)Tianjin Sci.&Tech.Program(17YFZCGX00560,18ZXJMTG00040,19JCZDJC31800)。
文摘The interfacial instability between Ni-rich layered oxide cathodes and sulfide electrolytes is a serious problem,leading to poor electrochemical properties of all-solid-state lithium batteries(ASSLB).The chemical/electrochemical side reactions are considered to be the origin of the interfacial deterioration.However,the influence of chemical and electrochemical side reactions on the interfacial deterioration is rarely studied specifically.In this work,the deterioration mechanism of the interface between LiNi0.85-xCo0.15AlxO2 and Li10GeP2S12 is investigated in detail by combining in/ex-situ Raman spectra and Electrochemical Impedance Spectroscopy(EIS).It can be determined that chemical side reaction between LiNi0.8Co0.15Al0.05O2 and Li10GeP2S12 will occur immediately once contacted,and the interfacial deterioration becomes more serious after charge-discharge process under the dual effects of chemical and electrochemical side reactions.Moreover,our research reveals that the interfacial stability and the cycle performance of ASSLB can be greatly enhanced by increasing Al-substitution for Ni in LiNi0.85-xCo0.15AlxO2.In particular,the capacity retention of LiNi0.6Co0.15Al0.25O2 cathode after 200 cycles can reach 81.9%,much higher than that of LiNi0.8Co0.15Al0.05O2 cathode(12.5%@200 cycles).This work gives an insight to study the interfacial issues between Ni-rich layered oxide cathode and sulfide electrolyte for ASSLBs.
基金supported by the National Key R&D Program of China(2022YFB3807700)the National Natural Science Foundation of China(U1964205,51872303,52172253)+3 种基金the Ningbo S&T Innovation 2025 Major Special Programme(2019B10044,2021Z122)the Zhejiang Provincial Key R&D Program of China(2022C01072)the Jiangsu Provincial S&T Innovation Special Programme for carbon peak and carbon neutrality(BE2022007)the Youth Innovation Promotion Association CAS(Y2021080)。
文摘Sulfide solid electrolytes are promising for high energy density and safety in all-solid-state batteries due to their high ionic conductivity and good mechanical properties.However,the application of sulfide solid electrolytes in all-solid-state batteries with lithium anode is restricted by the side reactions at lithium/electrolytes interfaces and the growth of lithium dendrite caused by nonuniform lithium deposition.Herein,a homogeneous LiF-Li_(3)N composite protective layer is in situ formed via a manipulated reaction of pentafluorobenzamide with Li metal.The LiF-Li_(3)N layer with both high interfacial energy and interfacial adhesion energy can synergistically suppress side reactions and inhibit the growth of lithium dendrite,achieving uniform deposition of lithium.The critical current densities of Li_(10)GeP_(2)S_(12)and Li_(6)PS_(5)Cl are increased to 3.25 and 1.25 mA cm^(-2)with Li@LiF-Li_(3)N layer,which are almost triple and twice as those of Li-symmetric cells in the absence of protection layer,respectively.Moreover,the Li@LiF-Li_(3)N/Li10GeP2S12/Li@LiF-Li_(3)N cell can stably cycle for 9000 h at 0.1 mA cm^(-2)under 0.1 mA h cm^(-2),and Li@LiF-Li_(3)N/Li_(6)PS_(5)Cl/Li@LiF-Li_(3)N cell achieves stable Li plating/stripping for 8000 h at 0.1 mA cm^(-2)under10 m A h cm^(-2).The improved dynamic stability of lithium plating/stripping in Li@LiF-Li_(3)N/Li_(10)GeP_(2)S_(12)or Li_(6)PS_(5)Cl interfaces is proved by three-electrode cells.As a result,LiCoO_(2)/electrolytes/Li@LiF-Li_(3)N batteries with Li_(10)GeP_(2)S_(12)and Li_(6)PS_(5)Cl exhibit remarkable cycling stability of 500 cycles with capacity retentions of 93.5%and 89.2%at 1 C,respectively.
基金supported by the Guangdong“Pearl River Talents Plan”(no.2017GC010218)R&D Program in Key Areas of Guangdong Province(no.2020B0101030005)+2 种基金Guangdong Basic and Applied Basic Research Foundation(nos.2020B15151200492021A1515010153)the National Natural Science Foundation of China(no.NSFC51621001).
文摘All-solid-state lithium batteries(ASSLBs)based on sulfide solid electrolytes(SEs)are one of the most promising strategies for next-generation energy storage systems and electronic devices.However,the poor chemical/electrochemical stability of sulfide SEs with oxide cathode materials and high interfacial impedance,particularly due to physical contact failure,are the major limiting factors to the development of sulfide SEs in ASSLBs.Herein,the composite cathode of MOF-derived Fe_(7)S_(8)@C and Li_(6)PS_(5)Br fabricated by an infiltration method(IN-Fe_(7)S_(8))with dissoluble sulfide electrolyte(dissoluble SE)is reported.Dissoluble SE can easily infiltrate the porous sheet-type Fe_(7)S_(8)@C cathode to homogeneously contact with Fe_(7)S_(8)nanoparticles that are embedded in the surrounding carbon matrixes and form a fast ionic transport network.Benefiting from applying dissoluble SE and Fe_(7)S_(8)@C,the IN-Fe_(7)S_(8)-based cells displayed a reversible capacity of 510 mAh g^(-1)after 180 cycles at 0.045 mA cm^(-2)at 30℃.This work demonstrates a novel and practical method for the development of high-performance all-sulfide-based solid state batteries.
基金supported by the Beijing Natural Science Foundation(grant No.L223009)the National Natural Science Foundation of China(grant No.22075029)+1 种基金the National Key Research and Development Program of China(grant No.2021YFB2500300)the Key Research and Development(R&D)Projects of Shanxi Province(grant No.2021020660301013).
文摘Sulfide solid electrolytes(SEs)have attracted ever-increasing attention due to their superior roomtemperature ionic conductivity(~10^(-2) S cm^(-1)).Additionally,the integration of sulfide SEs and highvoltage cathodes is promising to achieve higher energy density.However,the incompatible interfaces between sulfide SEs and high-voltage cathodes have been one of the key factors limiting their applications.Therefore,this review presents a critical summarization of the interfacial issues in all-solid-state lithium batteries based on sulfide SEs and high-voltage cathodes and proposes strategies to stabilize the electrolyte/cathode interfaces.Moreover,the future research direction of electrolyte/cathode interfaces and application prospects of powder technology in sulfide-based ASSLBs were also discussed.
基金Fiscal Year 2023-2024 High-Level and Growth Research and Development Subsidy for supporting the research and development activities for small and medium-size enterprise(SMEs),which is administered by Chiba Industry Advancement Center(Grant No.2066 and 2027)。
文摘This paper is aimed to present a clean,inexpensive and sustainable method to synthesize high purity lithium sulfide(Li_(2)S)powder through hydrogen reduction of lithium sulfate(Li_(2)SO_(4)).A three-step reduction process has been successfully developed to synthesize well-crystallized and single-phase Li_(2)S powder by investigating the melting,sintering and reduction behavior of the mixtures of Li_(2)SO_(4)-Li_(2)S.High purity alumina was found to be the most suitable crucible material for producing high purity Li_(2)S,because it was not attacked by the Li_(2)SO_(4)-Li_(2)S melt during heating,as compared with other materials,such as carbon,mullite,quartz,boron nitride and stainless steel.The use of synthesized LizS resulted in higher purity and substantially higher room temperature ionic conductivity(2.77 mS·cm^(-1))for the argyrodite sulfide electrolyte Li_(6)PS_(5)Cl than commercial Li_(2)S(1.12 mS·cm^(-1)).This novel method offers a great opportunity to produce battery grade Li_(2)S for sulfide solid electrolyte applications.
基金supported by the National Key R&D Program of China(Grant No.2018YFB0905400)the National Natural Science Foundation of China(Grant Nos.51872303,U1964205,51902321)+4 种基金the Zhejiang Provincial Natural Science Foundation of China(Grant No.LD18E020004,LY18E020018)the Ningbo S&T Innovation 2025 Major Special Programme(Grant Nos.2018B10061,2018B10087,2019B10044)the Natural Science Foundation of Ningbo(Grant Nos.2018A610010,2019A610007)the Jiangxi Provincial Key R&D Program of China(Grant No.20182ABC28007)the Youth Innovation Promotion Association CAS(2017342).
文摘All-solid-state lithium batteries(ASSLBs)have attracted increasing attention due to their high safety and energy density.Among all corresponding solid electrolytes,sulfide electrolytes are considered to be the most promising ion conductors due to high ionic conductivities.Despite this,many challenges remain in the application of ASSLBs,including the stability of sulfide electrolytes,complex interfacial issues between sulfide electrolytes and oxide electrodes as well as unstable anodic interfaces.Although oxide cathodes remain the most viable electrode materials due to high stability and industrialization degrees,the matching of sulfide electrolytes with oxide cathodes is challenging for commercial use in ASSLBs.Based on this,this review will present an overview of emerging ASSLBs based on sulfide electrolytes and oxide cathodes and high-light critical properties such as compatible electrolyte/electrode interfaces.And by considering the current challenges and opportunities of sulfide electrolyte-based ASSLBs,possible research directions and perspectives are discussed.
基金the National Natural Science Foundation of China(Nos.21808124,21825501,U1801257)National Key Research and Development Program of China(Nos.2016YFA0202500,2016YFA0200102)the China Postdoctoral Science Foundation(No.2019T120098)。
文摘Sulfide-based solid-state electrolytes with ultrahigh lithium ion conductivities have been considered as the most promising electrolyte system to enable practical all-solid-state batteries.However,the practical applications of the sulfide-based all-solid-state batteries are hindered by severe interfacial issues as well as large-scale material preparation and battery fabrication problems.Liquid-involved interfacial treatments and preparation processes compatible with current battery manufacturing capable of improving electrode/electrolyte interface contacts and realizing the mass production of sulfide electrolytes and the scalable fabrication of sulfide-based battery component have attracted considerable attention.In this perspective,the current advances in liquid-involved treatments and processes in sulfide-based all-solid-state batteries are summarized.Then relative chemical mechanisms and existing challenges are included.Finally,future guidance is also proposed for sulfide-based batteries.Focusing on the sulfide-based all-solid-state batteries,we aim at providing a fresh insight on understandings towards liquid-involved processes and promoting the development of all-solid-state batteries with higher energy density and better safety.
基金financially supported by the National Key Research and Development Program of China (No.2018YFE0111600)the National Natural Science Foundation of China (Nos.52172224 and 22279090)the Science and Technology Major Project of China National Machinery Industry Corporation (No.SINOMAST-ZDZX-2019-04)。
文摘The interface instability between layered oxide cathode and sulfide electrolyte is a key point affecting the perform ance of sulfide-based all-solid-state lithium batteries.Coating with fast-ionic conductor and constructing core-shell structure can effectively alleviate the interfacial side reactions and improve the interfacial stability between layered oxide and sulfide electrolyte.However,what have been neglected is the surface base(including Li_(2)CO_(3) and LiOH)of layered oxide can also affect the interfacial stability.To clarify this point clearly and improve the interfacial stability,the surface base of LiCoO_(2)(LCO)is regulated and investigated in this work.First,LCO with surface base Li_(2)CO_(3)(LCO@Li_(2)CO_(3))is prepared by the reaction of Co_(3)O_4 and excess Li_(2)CO_(3).Then,the bare LCO is obtained after LCO@Li_(2)CO_(3) is washed with deionized water and calcined again.Besides,LCO with surface base Li_(2)O(LCO@Li_(2)O)is also prepared with the bare LCO and LiOH.As a result,the electrochemical performances of LCO@Li_(2)O are significantly improved and much higher than those of LCO@Li_(2)CO_(3) and the bare LCO electrodes.In particular,LCO@Li_(2)O-2 cathode display the most outstanding electrochemical performances(discharge capacity138.4 mAh·g^(-1)at 0.2C,105 mAh·g^(-1)at 2C and a capacity retention of 95.4%after 150 cycles at 0.5C).The high discharge capacity and excellent cycle stability of LCO@Li_(2)O electrode confirm the effectiveness of regulating the surface base of layered oxide from Li_(2)CO_(3) to Li_(2)O.The surface base regulating is expected to be a simple but effective strategy to construct the stable interface between the cathode and the sulfide electrolyte of the all-solid-state lithium batteries.
基金supported by the Key Scientific and Technological Innovation Project of Shandong(No.2020CXGC010401)Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA22010602)+2 种基金the National Natural Science Foundation of China(Nos.52203150 and 52037006)CAS Key Technology Talent Program,Key Research and Development Plan of Shandong Province(No.2019GHZ009)Qingdao Key Laboratory of Solar Energy Utilization and Energy Storage Technology,and the Public Projects of Zhejiang Province(No.LGG19E020001).
文摘Lithium-sulfur(Li-S)batteries are considered as promising candidates for novel energy storage technology that achieves energy density of 500 Wh·kg^(−1).However,poor cycle stability resulting from notorious shuttle effect and the safety concerns deriving from flammability of ether-based electrolyte hinder the practical application of Li-S batteries.Because of low solubility to polysulfide,high ionic conductivity,and safety property,sulfide-based electrolytes can fundamentally address above issues.It is widely known that the effective transports of both electrons and ions are basic requirement for redox reaction of active materials in cathode.Thereby,construction of fast and stable ionic and electronic transport paths in cathode is especially pivotal for cycle stability of solid-state Li-S batteries(SSLSBs).In this review,we provide research progresses on facilitating transport of charge carriers in composite cathode of SSLSBs.From perspective of materials,intrinsically conductivity of electrolyte and carbon shows dramatic effect on migration of charge carriers in cathode of SSLSBs,thereby the conductive additives are summarized in the manuscript.Additionally,the charge transport in cathode of SSLSBs fully depends on the physical contact between active materials and conductive additives,therefore we summarized the strategies optimizing interfacial contact and reducing interfacial resistance.Finally,potential future research directions and prospects for SSLSBs with improved energy density and cycle performance are also proposed.
基金Project supported by the Major Program of the National Natural Science Foundation of China (Grant No.22393904)the National Key Research and Development Program of China (Grant No.2022YFB2502200)+1 种基金Beijing Municipal Science&Technology Commission (Grant No.Z221100006722015)the New Energy Vehicle Power Battery Life Cycle Testing and Verification Public Service Platform Project (Grant No.2022-235-224)。
文摘Silicon(Si)is a competitive anode material owing to its high theoretical capacity and low electrochemical potential.Recently,the prospect of Si anodes in solid-state batteries(SSBs)has been proposed due to less solid electrolyte interphase(SEI)formation and particle pulverization.However,major challenges arise for Si anodes in SSBs at elevated temperatures.In this work,the failure mechanisms of Si-Li_(6)PS_(5)Cl(LPSC)composite anodes above 80℃are thoroughly investigated from the perspectives of interface stability and(electro)chemo-mechanical effect.The chemistry and growth kinetics of Lix Si|LPSC interphase are demonstrated by combining electrochemical,chemical and computational characterizations.Si and/or Si–P compound formed at Lix Si|LPSC interface prove to be detrimental to interface stability at high temperatures.On the other hand,excessive volume expansion and local stress caused by Si lithiation at high temperatures damage the mechanical structure of Si-LPSC composite anodes.This work elucidates the behavior and failure mechanisms of Si-based anodes in SSBs at high temperatures and provides insights into upgrading Si-based anodes for application in SSBs.
基金supported by the National Key Research and Development Program of China(No.2018YFE0111600)the Haihe Laboratory of Sustainable Chemical Transformations(No.CYZC202307)for financial support。
文摘All-solid-state lithium-metal batteries(ASSLMBs)are widely considered as the ultimately advanced lithium batteries owing to their improved energy density and enhanced safety features.Among various solid electrolytes,sulfide solid electrolyte(SSE)Li_(6)PS_(5)Cl has garnered significant attention.However,its application is limited by its poor cyclability and low critical current density(CCD).In this study,we introduce a novel approach to enhance the performance of Li_(6)PS_(5)Cl by doping it with fluorine,using lithium fluoride nanoparticles(LiFs)as the doping precursor.The F-doped electrolyte Li_(6)PS_(5)Cl-0.2LiF(nano)shows a doubled CCD,from 0.5 to 1.0 mA/cm^(2) without compromising the ionic conductivity;in fact,conductivity is enhanced from 2.82 to 3.30 mS/cm,contrary to the typical performance decline seen in conventionally doped Li_(6)PS_(5)Cl electrolytes.In symmetric Li|SSE|Li cells,the lifetime of Li_(6)PS_(5)Cl-0.2LiF(nano)is 4 times longer than that of Li_(6)PS_(5)Cl,achieving 1500 h vs.371 h under a charging/discharging current density of 0.2 mA/cm^(2).In Li|SSE|LiNbO_(3)@NCM721 full cells,which are tested under a cycling rate of 0.1 C at 30℃,the lifetime of Li_(6)PS_(5)Cl-0.2LiF(nano)is four times that of Li_(6)PS_(5)Cl,reaching 100 cycles vs.26 cycles.Therefore,the doping of nano-LiF off ers a promising approach to developing high-performance Li_(6)PS_(5)Cl for ASSLMBs.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A3B070050296)。
文摘Li7P3S11solid electrolytes with high lithium-ion conductivity are promising candidates for use in all-solidstate lithium batteries.However,this electrolyte’s poor interfacial compatibility with lithium electrodes causes unstable cyclability.In this study,in order to address this problem,(100-x)Li7P3S11-xLi2OHBr(x=0,2,5,10,20,30,40,and 50)electrolytes are prepared by a high energy ball-milling technique and heat-treatment process.The resulting(100-x)Li7P3S11-xLi2OHBr(x=2,5,10,20,30,40,and 50)electrolytes provide improved electrochemical performance with good cycling stability and a wide electrochemical window of up to 10 V(vs.Li/Li+).Moreover,these electrolytes have high ionic conductivity of 10-4–10-5S/cm at room temperature.Particularly,the 90Li7P3S11-10Li2OHBr electrolyte displays the highest conductivity of 4.4×10-4S/cm at room temperature as well as improved cyclability.Moreover,90Li7P3S11-10Li2OHBr shows decreased interfacial resistance between the solid electrolyte and cathode electrode,which was revealed by Electrochemical Impedance Spectroscopy(EIS)analysis.The initial discharge capacity of 90Li7P3S11-10Li2OHBr was found to be 135 m Ah/g when used in a In|solid electrolyte|Li(Ni0.6Co0.2Mn0.2)O2 all-solid-state lithium battery(ASSLB).Thus,we can conclude the addition of Li2OHBr into the Li7P3S11results in enhanced electrochemical properties.
基金supported by the National Natural Science Foundation of China(U20A20126,51971201)the Key Research and Development Program of Zhejiang Province(2021C01175)。
文摘All-solid-state lithium batteries(ASSLBs),utilizing sulfide solid electrolyte,are considered as the promising design on account of their superior safety and high energy density,whereas the time-consuming preparation process of sulfide electrolyte powders and the thickness of electrolyte layer hinder their practical application.Herein,an innovative ultimate-energy mechanical alloying plus rapid thermal processing approach is employed to rapidly synthesize the crystalline Argyrodite-type conductor Li_(5.3)PS_(4.3)ClBr_(0.7)(LPSCIBr)with superior ionic conductivity(11.7 mS cm^(-1)).Furthermore,to realize the higher energy density of the battery,an ultrathin LPSCIBr sulfide electrolyte membrane with superior ionic conductivity of 6.5 mS cm^(-1)is fabricated with the aid of polytetrafluoroethylene(PTFE)binder and the reinforced cellulose mesh.Moreover,a simple solid electrolyte interphase(SEI)is constructed on the surface of lithium metal to enhance anodic stability.Benefiting from the joint efforts of these merits,the modified ASSLBs with a high cell-level energy density of 311 Wh kg^(-1) show an excellent cyclic stability.The assembled all-solid-state Li_(2) S/Li pouch cell can operate even under the severe conditions of bending and cutting,demonstrating the enormous potential of the sulfide electrolyte membrane for ASSLBs application.
基金supported in part by the 1000 Talents Program of China, the Zhengzhou Materials Genome Institute (ZMGI)the Natural Science Foundation of China (Nos. 51001091, 91233101)the Fundamental Research Program from the Ministry of Science and Technology of China (no. 2014CB931704)。
文摘All-solid-state batteries(ASSB) with lithium anode have attracted ever-increasing attention towards developing safer batteries with high energy densities.While great advancement has been achieved in developing solid electrolytes(SE) with superb ionic conductivity rivalling that of the current liquid technology,it has yet been very difficult in their successful application to ASSBs with sustaining rate and cyclic performances.Here in this work,we have realized a stable ASSB using the Li_(6.25)PS_(5.25)Cl_(0.75) fast ionconducting electrolyte together with LiNbO_3 coated LiCoO_2 as cathode and lithium foil as the anode.The effective diffusion coefficient of Li-ions in the battery is higher than 10^(-12) cm~2 s^(-1),and the significantly enhanced electrochemical matching at the cathode-electrolyte interface was essential to enable long-term stability against high oxidation potential,with the LCO@LNO/Li_(6.25)PS_(5.25)Cl_(0.75)/Li battery to retain 74.12% capacity after 430 cycles at 100 μA cm-2 and 59.7% of capacity after 800 cycles at 50 μA cm^(-2),at a high charging cut-off voltage of 4.2 V.This demonstrates that the Li_(6.25)PS_(5.25)Cl_(0.75) can be an excellent electrolyte for the realization of stable ASSBs with high-voltage cathodes and metallic lithium as anode,once the electrochemical compatibility between cathode and electrolyte can be addressed with a suitable buffer coating.
基金supported by the National Natural Science Foundation of China of China(No.51771076)Innovative Research Groups of the National Natural Science Foundation of China(No.NSFC51621001)+2 种基金the‘‘1000 plan”from Chinese Government,the Guangdong‘‘Pearl River Talents Plan”(No.2017GC010218)the Guangzhou Science and Technology Plan Projects(No.201804010104)the R&D Program in Key Areas of Guangdong Province(No.2020B0101030005)。
文摘All-solid-state lithium battery(ASLB)based on sulfide-based electrolyte is considered to be a candidate for the next-generation high-energy storage system.Despite the high ionic conductivity of sulfide solid electrolyte,the poor interfacial stability(mechanically and chemically)between active materials and sulfide solid electrolytes in composite cathodes leads to inferior electrochemical performances,which impedes the practical application of sulfide electrolytes.In the past years,various of strategies have been carried out to achieve an interface with low impedance in the composite cathodes.Herein,a review of recent progress of composite cathodes for all-solid-state sulfide-based lithium batteries is summarized,including the interfacial issues,design strategies,fabrication methods,and characterization techniques.Finally,the main challenges and perspectives of composite cathodes for high-performance all-solidstate batteries are highlighted for future development.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.52072136,52272201,52172229,51972257)Yanchang Petroleum-WHUT Joint Program(yc-whlg-2022ky-05)Fundamental Research Funds for the Central Universities(104972024RSCrc0006)for financial support.
文摘A commentary on pressure-induced pre-lithiation towards Si anodes in allsolid-state Li-ion batteries(ASSLIBs)using sulfide electrolytes(SEs)is presented.First,feasible pre-lithiation technologies for Si anodes in SE-based ASSLIBs especially the significant pressure-induced pre-lithiation strategies are briefly reviewed.Then,a recent achievement by Meng et al.in this field is elaborated in detail.Finally,the significance of Meng’s work is discussed.
基金financially supported partly by the National Key Research and Development Program of China (2018YFB0104302)NSFC (21503148)Major Programs of the Innovation Driven Plan of Guilin (No. 20160203)
文摘In order to obtain high power density,energy density and safe energy storage lithium ion batteries(LIB)to meet growing demand for electronic products,oxide cathodes have been widely explored in all-solidstate lithium batteries(ASSLB)using sulfide solid electrolyte.However,the electrochemical performances are still not satisfactory,due to the high interfacial resistance caused by severe interfacial instability between sulfide solid electrolyte and oxide cathode,especially Ni-rich oxide cathodes,in charge-discharge process.Ni-rich LiNi0.8Co0.1Mn0.1O2(NCM811)material at present is one of the most key cathode candidates to achieve the high energy density up to 300 Wh kg^-1 in liquid LIB,but rarely investigated in ASSLB using sulfide electrolyte.To design the stable interface between NCM811 and sulfide electrolyte should be extremely necessary.In this work,in view of our previous work,LiNbO3 coating with about 1 wt% content is adopted to improve the interfacial stability and the electrochemical performances of NCM811 cathode in ASSLB using Li10GeP2S12 solid electrolyte.Consequently,LiNbO3-coated NCM811 cathode displays the higher discharge capacity and rate performance than the reported oxide electrodes in ASSLB using sulfide solid electrolyte to our knowledge.