The repetitive unclamped inductive switching(UIS)avalanche stress is conducted to investigate the degradation and breakdown behaviors of conventional shield gate trench MOSFET(C-SGT)and P-ring SGT MOSFETs(P-SGT).It is...The repetitive unclamped inductive switching(UIS)avalanche stress is conducted to investigate the degradation and breakdown behaviors of conventional shield gate trench MOSFET(C-SGT)and P-ring SGT MOSFETs(P-SGT).It is found that the static and dynamic parameters of both devices show different degrees of degradation.Combining experimental and simulation results,the hot holes trapped into the Si/SiO_(2) interface and the increase of crystal lattice temperature should be responsible for the degradation and breakdown behaviors.Moreover,under repetitive UIS avalanche stress,the reliability of P-SGT overcomes that of C-SGT,benefitting from the decreasing of the impact ionization rate at bottom of field oxide caused by the existence of P-ring.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61504049)Jiangsu Province Postdoctoral Science Foundation(Grant No.2018K057B)the Fundamental Research Funds for the Central Universities,China(Grant No.JUSRP51510).
文摘The repetitive unclamped inductive switching(UIS)avalanche stress is conducted to investigate the degradation and breakdown behaviors of conventional shield gate trench MOSFET(C-SGT)and P-ring SGT MOSFETs(P-SGT).It is found that the static and dynamic parameters of both devices show different degrees of degradation.Combining experimental and simulation results,the hot holes trapped into the Si/SiO_(2) interface and the increase of crystal lattice temperature should be responsible for the degradation and breakdown behaviors.Moreover,under repetitive UIS avalanche stress,the reliability of P-SGT overcomes that of C-SGT,benefitting from the decreasing of the impact ionization rate at bottom of field oxide caused by the existence of P-ring.