Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's dis...Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's disease-related dementia.Our previous study identified the upregulation of microRNA-502-3p(miR-502-3p)and downregulation of GABA type A receptor subunitα-1 in Alzheimer's disease synapses.This study investigated a new molecular relationship between miR-502-3p and GABAergic synapse function.In vitro studies were perfo rmed using the mouse hippocampal neuronal cell line HT22 and miR-502-3p agomiRs and antagomiRs.In silico analysis identified multiple binding sites of miR-502-3p at GABA type A receptor subunitα-1 mRNA.Luciferase assay confirmed that miR-502-3p targets the GABA type A receptor subunitα-1 gene and suppresses the luciferase activity.Furthermore,quantitative reve rse transcription-polymerase chain reaction,miRNA in situ hybridization,immunoblotting,and immunostaining analysis confirmed that overexpression of miR-502-3p reduced the GABA type A receptor subunitα-1 level,while suppression of miR-502-3p increased the level of GABA type A receptor subunitα-1 protein.Notably,as a result of the overexpression of miR-502-3p,cell viability was found to be reduced,and the population of necrotic cells was found to be increased.The whole cell patch-clamp analysis of human-GABA receptor A-α1/β3/γ2L human embryonic kidney(HEK)recombinant cell line also showed that overexpression of miR-502-3p reduced the GABA current and overall GABA function,suggesting a negative correlation between miR-502-3p levels and GABAergic synapse function.Additionally,the levels of proteins associated with Alzheimer s disease were high with miR-502-3p overexpression and reduced with miR-502-3p suppression.The present study provides insight into the molecular mechanism of regulation of GABAergic synapses by miR-502-3p.We propose that micro-RNA,in particular miR-502-3p,could be a potential therapeutic to rget to modulate GABAergic synapse function in neurological disorders,including Alzheimer's disease and Alzheimer's diseaserelated dementia.展开更多
The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal percept...The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal perception,but related researches are scarce.Here,we demonstrate an optoelectronic synapse for vision-olfactory crossmodal perception based on MXene/violet phosphorus(VP)van der Waals heterojunctions.Benefiting from the efficient separation and transport of photogenerated carriers facilitated by conductive MXene,the photoelectric responsivity of VP is dramatically enhanced by 7 orders of magnitude,reaching up to 7.7 A W^(−1).Excited by ultraviolet light,multiple synaptic functions,including excitatory postsynaptic currents,pairedpulse facilitation,short/long-term plasticity and“learning-experience”behavior,were demonstrated with a low power consumption.Furthermore,the proposed optoelectronic synapse exhibits distinct synaptic behaviors in different gas environments,enabling it to simulate the interaction of visual and olfactory information for crossmodal perception.This work demonstrates the great potential of VP in optoelectronics and provides a promising platform for applications such as virtual reality and neurorobotics.展开更多
Plaques of amyloid-β(Aβ)and neurofibrillary tangles are the main pathological characteristics of Alzheimer’s disease(AD).However,some older adult people with AD pathological hallmarks can retain cognitive function....Plaques of amyloid-β(Aβ)and neurofibrillary tangles are the main pathological characteristics of Alzheimer’s disease(AD).However,some older adult people with AD pathological hallmarks can retain cognitive function.Unraveling the factors that lead to this cognitive resilience to AD offers promising prospects for identifying new therapeutic targets.Our hypothesis focuses on the contribution of resilience to changes in excitatory synapses at the structural and molecular levels,which may underlie healthy cognitive performance in aged AD animals.Utilizing the Morris Water Maze test,we selected resilient(asymptomatic)and cognitively impaired aged Tg2576 mice.While the enzyme-linked immunosorbent assay showed similar levels of Aβ42 in both experimental groups,western blot analysis revealed differences in tau pathology in the pre-synaptic supernatant fraction.To further investigate the density of synapses in the hippocampus of 16-18 month-old Tg2576 mice,we employed stereological and electron microscopic methods.Our findings indicated a decrease in the density of excitatory synapses in the stratum radiatum of the hippocampal CA1 in cognitively impaired Tg2576 mice compared with age-matched resilient Tg2576 and non-transgenic controls.Intriguingly,through quantitative immunoelectron microscopy in the hippocampus of impaired and resilient Tg2576 transgenic AD mice,we uncovered differences in the subcellular localization of glutamate receptors.Specifically,the density of GluA1,GluA2/3,and mGlu5 in spines and dendritic shafts of CA1 pyramidal cells in impaired Tg2576 mice was significantly reduced compared with age-matched resilient Tg2576 and non-transgenic controls.Notably,the density of GluA2/3 in resilient Tg2576 mice was significantly increased in spines but not in dendritic shafts compared with impaired Tg2576 and non-transgenic mice.These subcellular findings strongly support the hypothesis that dendritic spine plasticity and synaptic machinery in the hippocampus play crucial roles in the mechanisms of cognitive resilience in Tg2576 mice.展开更多
Artificial synapse inspired by the biological brain has great potential in the field of neuromorphic computing and artificial intelligence.The memristor is an ideal artificial synaptic device with fast operation and g...Artificial synapse inspired by the biological brain has great potential in the field of neuromorphic computing and artificial intelligence.The memristor is an ideal artificial synaptic device with fast operation and good tolerance.Here,we have prepared a memristor device with Au/CsPbBr_(3)/ITO structure.The memristor device exhibits resistance switching behavior,the high and low resistance states no obvious decline after 400 switching times.The memristor device is stimulated by voltage pulses to simulate biological synaptic plasticity,such as long-term potentiation,long-term depression,pair-pulse facilitation,short-term depression,and short-term potentiation.The transformation from short-term memory to long-term memory is achieved by changing the stimulation frequency.In addition,a convolutional neural network was constructed to train/recognize MNIST handwritten data sets;a distinguished recognition accuracy of~96.7%on the digital image was obtained in 100 epochs,which is more accurate than other memristor-based neural networks.These results show that the memristor device based on CsPbBr3 has immense potential in the neuromorphic computing system.展开更多
During the development of the nervous system,there is an overproduction of neurons and synapses.Hebbian competition between neighboring nerve endings and synapses performing different activity levels leads to their el...During the development of the nervous system,there is an overproduction of neurons and synapses.Hebbian competition between neighboring nerve endings and synapses performing different activity levels leads to their elimination or strengthening.We have extensively studied the involvement of the brain-derived neurotrophic factor-Tropomyosin-related kinase B receptor neurotrophic retrograde pathway,at the neuromuscular junction,in the axonal development and synapse elimination process versus the synapse consolidation.The purpose of this review is to describe the neurotrophic influence on developmental synapse elimination,in relation to other molecular pathways that we and others have found to regulate this process.In particular,we summarize our published results based on transmitter release analysis and axonal counts to show the different involvement of the presynaptic acetylcholine muscarinic autoreceptors,coupled to downstream serine-threonine protein kinases A and C(PKA and PKC)and voltage-gated calcium channels,at different nerve endings in developmental competition.The dynamic changes that occur simultaneously in several nerve terminals and synapses converge across a postsynaptic site,influence each other,and require careful studies to individualize the mechanisms of specific endings.We describe an activity-dependent balance(related to the extent of transmitter release)between the presynaptic muscarinic subtypes and the neurotrophin-mediated TrkB/p75NTR pathways that can influence the timing and fate of the competitive interactions between the different axon terminals.The downstream displacement of the PKA/PKC activity ratio to lower values,both in competing nerve terminals and at postsynaptic sites,plays a relevant role in controlling the elimination of supernumerary synapses.Finally,calcium entry through L-and P/Q-subtypes of voltage-gated calcium channels(both channels are present,together with the N-type channel in developing nerve terminals)contributes to reduce transmitter release and promote withdrawal of the most unfavorable nerve terminals during elimination(the weakest in acetylcholine release and those that have already become silent).The main findings contribute to a better understanding of punishment-rewarding interactions between nerve endings during development.Identifying the molecular targets and signaling pathways that allow synapse consolidation or withdrawal of synapses in different situations is important for potential therapies in neurodegenerative diseases.展开更多
Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration,however,few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse functi...Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration,however,few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse function.We have previously shown that MET receptor tyrosine kinase in the developing cortical circuits promotes dendritic growth and dendritic spine morphogenesis.To investigate whether enhancing MET in adult cortex has synapse regenerating potential,we created a knockin mouse line,in which the human MET gene expression and signaling can be turned on in adult(10–12 months)cortical neurons through doxycycline-containing chow.We found that similar to the developing brain,turning on MET signaling in the adult cortex activates small GTPases and increases spine density in prefrontal projection neurons.These findings are further corroborated by increased synaptic activity and transient generation of immature silent synapses.Prolonged MET signaling resulted in an increasedα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-Daspartate(AMPA/NMDA)receptor current ratio,indicative of enhanced synaptic function and connectivity.Our data reveal that enhancing MET signaling could be an interventional approach to promote synaptogenesis and preserve functional connectivity in the adult brain.These findings may have implications for regenerative therapy in aging and neurodegeneration conditions.展开更多
Recently,artificial synapses involving an electrochemical reaction of Li-ion have been attributed to have remarkable synaptic properties.Three-terminal synaptic transistors utilizing Li-ion intercalation exhibits reli...Recently,artificial synapses involving an electrochemical reaction of Li-ion have been attributed to have remarkable synaptic properties.Three-terminal synaptic transistors utilizing Li-ion intercalation exhibits reliable synaptic characteristics by exploiting the advantage of nondistributed weight updates owing to stable ion migrations.However,the three-terminal configurations with large and complex structures impede the crossbar array implementation required for hardware neuromorphic systems.Meanwhile,achieving adequate synaptic performances through effective Li-ion intercalation in vertical two-terminal synaptic devices for array integration remains challenging.Here,two-terminal Au/LixCoO_(2)/Pt artificial synapses are proposed with the potential for practical implementation of hardware neural networks.The Au/LixCoO_(2)/Pt devices demonstrated extraordinary neuromorphic behaviors based on a progressive dearth of Li in LixCoO_(2)films.The intercalation and deintercalation of Li-ion inside the films are precisely controlled over the weight control spike,resulting in improved weight control functionality.Various types of synaptic plasticity were imitated and assessed in terms of key factors such as nonlinearity,symmetricity,and dynamic range.Notably,the LixCoO_(2)-based neuromorphic system outperformed three-terminal synaptic transistors in simulations of convolutional neural networks and multilayer perceptrons due to the high linearity and low programming error.These impressive performances suggest the vertical two-terminal Au/LixCoO_(2)/Pt artificial synapses as promising candidates for hardware neural networks.展开更多
Recent studies have shown that microglia/macrophages and astrocytes can mediate synaptic phagocytosis through the MER proto-oncokinase in developmental or stroke models,but it is unclear whether the same mechanism is ...Recent studies have shown that microglia/macrophages and astrocytes can mediate synaptic phagocytosis through the MER proto-oncokinase in developmental or stroke models,but it is unclear whether the same mechanism is also active in traumatic brain injury.In this study,we established a mouse model of traumatic brain injury and found that both microglia/macrophages and astrocytes phagocytosed synapses and expression of the MER proto-oncokinase increased 14 days after injury.Specific knockout of MER in microglia/macrophages or astrocytes markedly reduced injury volume and greatly improved neurobehavioral function.In addition,in both microglia/macrophages-specific and astrocytes-specific MER knock-out mice,the number of microglia/macrophage and astrocyte phagocytosing synapses was markedly decreased,and the total number of dendritic spines was increased.Our study suggested that MER proto-oncokinase expression in microglia/macrophages and astrocytes may play an important role in synaptic phagocytosis,and inhibiting this process could be a new strategy for treating traumatic brain injury.展开更多
Advances in experimental and computational technologies continue to grow rapidly to provide novel avenues for the treatment of neurodegenerative disorders. Despite this, there remain only a handful of drugs that have ...Advances in experimental and computational technologies continue to grow rapidly to provide novel avenues for the treatment of neurodegenerative disorders. Despite this, there remain only a handful of drugs that have shown success in late-stage clinical trials for Tau-associated neurodegenerative disorders. The most commonly prescribed treatments are symptomatic treatments such as cholinesterase inhibitors and N-methyl-D-aspartate receptor blockers that were approved for use in Alzheimer's disease. As diagnostic screening can detect disorders at earlier time points, the field needs pre-symptomatic treatments that can prevent, or significantly delay the progression of these disorders(Koychev et al., 2019). These approaches may be different from late-stage treatments that may help to ameliorate symptoms and slow progression once symptoms have become more advanced should early diagnostic screening fail. This mini-review will highlight five key avenues of academic and industrial research for identifying therapeutic strategies to treat Tau-associated neurodegenerative disorders. These avenues include investigating(1) the broad class of chemicals termed “small molecules”;(2) adaptive immunity through both passive and active antibody treatments;(3) innate immunity with an emphasis on microglial modulation;(4) synaptic compartments with the view that Tau-associated neurodegenerative disorders are synaptopathies. Although this mini-review will focus on Alzheimer's disease due to its prevalence, it will also argue the need to target other tauopathies, as through understanding Alzheimer's disease as a Tau-associated neurodegenerative disorder, we may be able to generalize treatment options. For this reason, added detail linking back specifically to Tau protein as a direct therapeutic target will be added to each topic.展开更多
The neuromorphic systems for sound perception is under highly demanding for the future bioinspired electronics and humanoid robots.However,the sound perception based on volume,tone and timbre remains unknown.Herein,or...The neuromorphic systems for sound perception is under highly demanding for the future bioinspired electronics and humanoid robots.However,the sound perception based on volume,tone and timbre remains unknown.Herein,organic optoelectronic synapses(OOSs)are constructed for unprecedented sound recognition.The volume,tone and timbre of sound can be regulated appropriately by the input signal of voltages,frequencies and light intensities of OOSs,according to the amplitude,frequency,and waveform of the sound.The quantitative relation between recognition factor(ζ)and postsynaptic current(I=I_(light)−I_(dark))is established to achieve sound perception.Interestingly,the bell sound for University of Chinese Academy of Sciences is recognized with an accuracy of 99.8%.The mechanism studies reveal that the impedance of the interfacial layers play a critical role in the synaptic performances.This contribution presents unprecedented artificial synapses for sound perception at hardware levels.展开更多
As key components of artificial afferent nervous systems,synaptic devices can mimic the physiological synaptic behaviors,which have attracted extensive attentions.Here,a flexible tribotronic artificial synapse(TAS)wit...As key components of artificial afferent nervous systems,synaptic devices can mimic the physiological synaptic behaviors,which have attracted extensive attentions.Here,a flexible tribotronic artificial synapse(TAS)with bioinspired neurosensory behavior is developed.The triboelectric potential generated by the external contact electrification is used as the ion-gel-gate voltage of the organic thin film transistor,which can tune the carriers transport through the migration/accumulation of ions.The TAS successfully demonstrates a series of synaptic behaviors by external stimuli,such as excitatory postsynaptic current,paired-pulse facilitation,and the hierarchical memory process from sensory memory to short-term memory and long-term memory.Moreover,the synaptic behaviors remained stable under the strain condition with a bending radius of 20 mm,and the TAS still exhibits excellent durability after 1000 bending cycles.Finally,Pavlovian conditioning has been successfully mimicked by applying force and vibration as food and bell,respectively.This work demonstrates a bioinspired flexible artificial synapse that will help to facilitate the development of artificial afferent nervous systems,which is great significance to the practical application of artificial limbs,robotics,and bionics in future.展开更多
Lamotrigine(LTG)is a widely used drug for the treatment of epilepsy.Emerging clinical evidence suggests that LTG may improve cognitive function in patients with Alzheimer’s disease.However,the underlying molecular me...Lamotrigine(LTG)is a widely used drug for the treatment of epilepsy.Emerging clinical evidence suggests that LTG may improve cognitive function in patients with Alzheimer’s disease.However,the underlying molecular mechanisms remain unclear.In this study,amyloid precursor protein/presenilin 1(APP/PS1)double transgenic mice were used as a model of Alzheimer’s disease.Five-month-old APP/PS1 mice were intragastrically administered 30 mg/kg LTG or vehicle once per day for 3 successive months.The cognitive functions of animals were assessed using Morris water maze.Hyperphosphorylated tau and markers of synapse and glial cells were detected by western blot assay.The cell damage in the brain was investigated using hematoxylin and eosin staining.The levels of amyloid-βand the concentrations of interleukin-1β,interleukin-6 and tumor necrosis factor-αin the brain were measured using enzyme-linked immunosorbent assay.Differentially expressed genes in the brain after LTG treatment were analyzed by high-throughput RNA sequencing and real-time polymerase chain reaction.We found that LTG substantially improved spatial cognitive deficits of APP/PS1 mice;alleviated damage to synapses and nerve cells in the brain;and reduced amyloid-βlevels,tau protein hyperphosphorylation,and inflammatory responses.High-throughput RNA sequencing revealed that the beneficial effects of LTG on Alzheimer’s disease-related neuropathologies may have been mediated by the regulation of Ptgds,Cd74,Map3k1,Fosb,and Spp1 expression in the brain.These findings revealed potential molecular mechanisms by which LTG treatment improved Alzheimer’s disease.Furthermore,these data indicate that LTG may be a promising therapeutic drug for Alzheimer’s disease.展开更多
In the era of accelerated development in artificial intelligence as well as explosive growth of information and data throughput,underlying hardware devices that can integrate perception and memory while simultaneously...In the era of accelerated development in artificial intelligence as well as explosive growth of information and data throughput,underlying hardware devices that can integrate perception and memory while simultaneously offering the bene-fits of low power consumption and high transmission rates are particularly valuable.Neuromorphic devices inspired by the human brain are considered to be one of the most promising successors to the efficient in-sensory process.In this paper,a homojunction-based multi-functional optoelectronic synapse(MFOS)is proposed and testified.It enables a series of basic electri-cal synaptic plasticity,including paired-pulse facilitation/depression(PPF/PPD)and long-term promotion/depression(LTP/LTD).In addition,the synaptic behaviors induced by electrical signals could be instead achieved through optical signals,where its sen-sitivity to optical frequency allows the MFOS to simulate high-pass filtering applications in situ and the perception capability integrated into memory endows it with the information acquisition and processing functions as a visual system.Meanwhile,the MFOS exhibits its performances of associative learning and logic gates following the illumination with two different wave-lengths.As a result,the proposed MFOS offers a solution for the realization of intelligent visual system and bionic electronic eye,and will provide more diverse application scenarios for future neuromorphic computing.展开更多
Different from the common delayed synchronization(DS)in which response appears after stimulation,anticipated synchronization(AS)in unidirectionally coupled neurons denotes a counterintuitive phenomenon in which respon...Different from the common delayed synchronization(DS)in which response appears after stimulation,anticipated synchronization(AS)in unidirectionally coupled neurons denotes a counterintuitive phenomenon in which response of the receiver neuron appears before stimulation of the sender neuron,showing an interesting function of brain to anticipate the future.The dynamical mechanism for the AS remains unclear due to complex dynamics of inhibitory and excitatory modulations.In this article,the paradoxical roles of excitatory synapse and inhibitory autapse in the formation of AS are acquired.Firstly,in addition to the common roles such that inhibitory modulation delays and excitatory modulation advances spike,paradoxical roles of excitatory stimulation to delay spike via type-II phase response and of inhibitory autapse to advance spike are obtained in suitable parameter regions,extending the dynamics and functions of the excitatory and inhibitory modulations.Secondly,AS is related to the paradoxical roles of the excitatory and inhibitory modulations,presenting deep understandings to the AS.Inhibitory autapse induces spike of the receiver neuron advanced to appear before that of the sender neuron at first,and then excitatory synapse plays a delay role to prevent the spike further advanced,resulting in the AS as the advance and delay effects realize a dynamic balance.Lastly,inhibitory autapse with strong advance,middle advance,and weak advance and delay effects induce phase drift(spike of the receiver neuron advances continuously),AS,and DS,respectively,presenting comprehensive relationships between AS and other behaviors.The results present potential measures to modulate AS related to brain function.展开更多
Objective To elucidate the important functions of microRNAs (miRNAs) in regulating synaptic assembly and function, we performed a computational analysis for the genetic loci required for the synaptic structure and f...Objective To elucidate the important functions of microRNAs (miRNAs) in regulating synaptic assembly and function, we performed a computational analysis for the genetic loci required for the synaptic structure and function and their corresponding miRNAs in C. elegans. Methods Total 198 genetic loci required for the synaptic structure and function were selected. Sequence alignment was combined with E value evaluation to investigate and identify the possible corresponding miRNAs. Results Total 163 genes among the 198 genetic loci selected have their possibly corresponding regulatory miRNA (s), which covered most of the important genetic loci required for the synaptic structure and function. Moreover, only 22 genes among the analyzed 38 genetic loci encoding synaptic proteins have more possibility to under the control of non-coding RNA genes. In addition, the distribution of miRNAs along the 3' untranslated region (UTR) of these 22 genes exhibits different patterns. Condusion Here we provide the computational screen and analysis results for the genetic loci required for synaptic structure and function and their possible corresponding miRNAs. These data will be useful for the further attempt to systematically determine the roles of miRNAs in synaptic assembly and function regulation in worms.展开更多
Objective and methods To evaluate synaptic changes using synaptophysin immunohistochemstry in rat and mouse, which spinal cords were subjected to graded compression trauma at the level of Th8-9. Result...Objective and methods To evaluate synaptic changes using synaptophysin immunohistochemstry in rat and mouse, which spinal cords were subjected to graded compression trauma at the level of Th8-9. Results Normal animals showed numerous fine dots of synaptophysin immunoreactivity in the gray matter. An increase in synaptophysin immunoreactivity was observed in the neuropil and synapses at the surface of motor neurons of the anterior horns in the ThS-9 segments lost immunoreactivity at 4-hour point after trauma. The immunoreactive synapses reappeared around motor neurons at 9-day point. Unexpected accumulation of synaptophysin immunoreactivity occurred in injured axons of the white matter of the compressed spinal cord. Conclusion Synaptic changes were important components of secondary injuries in spinal cord trauma. Loss of synapses on motor neurons may be one of the factors causing motor dysfunction of hind limbs and formation of new synapses may play an import,ant role in recovery of motor function. Synaptophysin immunohistochemistry is also a good tool for studies of axonal swellings in spinal cord injuries.展开更多
Very little is known about the effects of transcranial magnetic stimulation and rehabilitation training on pyramidal cell dendrites and synapses of the contralateral, unaffected sensorimotor cortex in a rat model of f...Very little is known about the effects of transcranial magnetic stimulation and rehabilitation training on pyramidal cell dendrites and synapses of the contralateral, unaffected sensorimotor cortex in a rat model of focal cerebral infarct. The present study was designed to explore the mechanisms underlying improved motor function via transcranial magnetic stimulation and rehabilitation training following cerebral infarction. Results showed that rehabilitation training or transcranial magnetic stimulation alone reduced neurological impairment in rats following cerebral infarction, as well as significantly increased synaptic curvatures and post-synaptic density in the non-injured cerebral hemisphere sensorimotor cortex and narrowed the synapse cleft width. In addition, the percentage of perforated synapses increased. The combination of transcranial magnetic stimulation and rehabilitation resulted in significantly increased total dendritic length, dendritic branching points, and dendritic density in layer V pyramidal cells of the non-injured cerebral hemisphere motor cortex. These results demonstrated that transcranial magnetic stimulation and rehabilitation training altered structural parameters of pyramidal cell dendrites and synapses in the non-injured cerebral hemisphere sensorimotor cortex, thereby improving the ability to compensate for neurological functions in rats following cerebral infarction.展开更多
In this study, we investigated the effects of mobile phone radiation on spatial learning, reference memory, and morphology in related brain regions. After the near-field radiation (0.52 1.08 W/kg) was delivered to 8...In this study, we investigated the effects of mobile phone radiation on spatial learning, reference memory, and morphology in related brain regions. After the near-field radiation (0.52 1.08 W/kg) was delivered to 8-week-old Wistar rats 2 hours per day for 1 month, behavioral changes were examined using the Morris water maze. Compared with the sham-irradiated rats, the irradiated rats exhibited impaired performance. Morphological changes were investigated by examining synaptic ultrastructural changes in the hippocampus. Using the physical dissector technique, the number of pyramidal neurons, the synaptic profiles, and the length of postsynaptic densities in the CA1 region were quantified stereologically. The morphological changes included mitochondrial degenerations, fewer synapses, and shorter postsynaptic densities in the radiated rats. These findings indicate that mobile phone radiation can significantly impair spatial learning and reference memory and induce morphological changes in the hippocampal CA1 region.展开更多
The development of electronic devices that possess the functionality of biological synapses is a crucial step towards neuromorphic computing.In this work,we present a WOx-based memristive device that can emulate volta...The development of electronic devices that possess the functionality of biological synapses is a crucial step towards neuromorphic computing.In this work,we present a WOx-based memristive device that can emulate voltage-dependent synaptic plasticity.By adjusting the amplitude of the applied voltage,we were able to reproduce short-term plasticity(STP)and the transition from STP to long-term potentiation.The stimulation with high intensity induced long-term enhancement of conductance without any decay process,thus representing a permanent memory behavior.Moreover,the image Boolean operations(including intersection,subtraction,and union)were also demonstrated in the memristive synapse array based on the above voltage-dependent plasticity.The experimental achievements of this study provide a new insight into the successful mimicry of essential characteristics of synaptic behaviors.展开更多
基金supported by the National Institute on Aging (NIA)National Institutes of Health (NIH)+3 种基金Nos.K99AG065645,R00AG065645R00AG065645-04S1 (to SK)NIH research grants,NINDS,No.R01 NS115834NINDS/NIA,No.R01 NS115834-02S1 (to LG)。
文摘Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's disease-related dementia.Our previous study identified the upregulation of microRNA-502-3p(miR-502-3p)and downregulation of GABA type A receptor subunitα-1 in Alzheimer's disease synapses.This study investigated a new molecular relationship between miR-502-3p and GABAergic synapse function.In vitro studies were perfo rmed using the mouse hippocampal neuronal cell line HT22 and miR-502-3p agomiRs and antagomiRs.In silico analysis identified multiple binding sites of miR-502-3p at GABA type A receptor subunitα-1 mRNA.Luciferase assay confirmed that miR-502-3p targets the GABA type A receptor subunitα-1 gene and suppresses the luciferase activity.Furthermore,quantitative reve rse transcription-polymerase chain reaction,miRNA in situ hybridization,immunoblotting,and immunostaining analysis confirmed that overexpression of miR-502-3p reduced the GABA type A receptor subunitα-1 level,while suppression of miR-502-3p increased the level of GABA type A receptor subunitα-1 protein.Notably,as a result of the overexpression of miR-502-3p,cell viability was found to be reduced,and the population of necrotic cells was found to be increased.The whole cell patch-clamp analysis of human-GABA receptor A-α1/β3/γ2L human embryonic kidney(HEK)recombinant cell line also showed that overexpression of miR-502-3p reduced the GABA current and overall GABA function,suggesting a negative correlation between miR-502-3p levels and GABAergic synapse function.Additionally,the levels of proteins associated with Alzheimer s disease were high with miR-502-3p overexpression and reduced with miR-502-3p suppression.The present study provides insight into the molecular mechanism of regulation of GABAergic synapses by miR-502-3p.We propose that micro-RNA,in particular miR-502-3p,could be a potential therapeutic to rget to modulate GABAergic synapse function in neurological disorders,including Alzheimer's disease and Alzheimer's diseaserelated dementia.
基金supported by National Natural Science Foundation of China(No.51902250).
文摘The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal perception,but related researches are scarce.Here,we demonstrate an optoelectronic synapse for vision-olfactory crossmodal perception based on MXene/violet phosphorus(VP)van der Waals heterojunctions.Benefiting from the efficient separation and transport of photogenerated carriers facilitated by conductive MXene,the photoelectric responsivity of VP is dramatically enhanced by 7 orders of magnitude,reaching up to 7.7 A W^(−1).Excited by ultraviolet light,multiple synaptic functions,including excitatory postsynaptic currents,pairedpulse facilitation,short/long-term plasticity and“learning-experience”behavior,were demonstrated with a low power consumption.Furthermore,the proposed optoelectronic synapse exhibits distinct synaptic behaviors in different gas environments,enabling it to simulate the interaction of visual and olfactory information for crossmodal perception.This work demonstrates the great potential of VP in optoelectronics and provides a promising platform for applications such as virtual reality and neurorobotics.
基金supported by grant PID2021-125875OB-I00 funded by MCIN/AEI/10.13039/501100011033 and by"ERDF A way of making Europe"(to RL)supported by a grant from Junta de Comunidades de Castilla-La Mancha (SBPLY/21/180501/000064)+3 种基金Universidad de Castilla-La Mancha (2023-GRIN-34187)(to RL).Grant PID201 9-104921RB-I00/MCI/AEI/10.13039/501100011033 (to AGO)the Foundation for Applied Medical Research,the University of Navarra (Pamplona,Spain)for financial supporthe Asociación de Amigos of the University of Navarra for the grant (to SB)Margarita Salas fellowship from Ministerio de Universidades and Universidad de Castilla-La Mancha (to AMB)
文摘Plaques of amyloid-β(Aβ)and neurofibrillary tangles are the main pathological characteristics of Alzheimer’s disease(AD).However,some older adult people with AD pathological hallmarks can retain cognitive function.Unraveling the factors that lead to this cognitive resilience to AD offers promising prospects for identifying new therapeutic targets.Our hypothesis focuses on the contribution of resilience to changes in excitatory synapses at the structural and molecular levels,which may underlie healthy cognitive performance in aged AD animals.Utilizing the Morris Water Maze test,we selected resilient(asymptomatic)and cognitively impaired aged Tg2576 mice.While the enzyme-linked immunosorbent assay showed similar levels of Aβ42 in both experimental groups,western blot analysis revealed differences in tau pathology in the pre-synaptic supernatant fraction.To further investigate the density of synapses in the hippocampus of 16-18 month-old Tg2576 mice,we employed stereological and electron microscopic methods.Our findings indicated a decrease in the density of excitatory synapses in the stratum radiatum of the hippocampal CA1 in cognitively impaired Tg2576 mice compared with age-matched resilient Tg2576 and non-transgenic controls.Intriguingly,through quantitative immunoelectron microscopy in the hippocampus of impaired and resilient Tg2576 transgenic AD mice,we uncovered differences in the subcellular localization of glutamate receptors.Specifically,the density of GluA1,GluA2/3,and mGlu5 in spines and dendritic shafts of CA1 pyramidal cells in impaired Tg2576 mice was significantly reduced compared with age-matched resilient Tg2576 and non-transgenic controls.Notably,the density of GluA2/3 in resilient Tg2576 mice was significantly increased in spines but not in dendritic shafts compared with impaired Tg2576 and non-transgenic mice.These subcellular findings strongly support the hypothesis that dendritic spine plasticity and synaptic machinery in the hippocampus play crucial roles in the mechanisms of cognitive resilience in Tg2576 mice.
基金sponsored by the National Natural Science Foundation of China(Grant Nos 11574057,and 12172093)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515012607).
文摘Artificial synapse inspired by the biological brain has great potential in the field of neuromorphic computing and artificial intelligence.The memristor is an ideal artificial synaptic device with fast operation and good tolerance.Here,we have prepared a memristor device with Au/CsPbBr_(3)/ITO structure.The memristor device exhibits resistance switching behavior,the high and low resistance states no obvious decline after 400 switching times.The memristor device is stimulated by voltage pulses to simulate biological synaptic plasticity,such as long-term potentiation,long-term depression,pair-pulse facilitation,short-term depression,and short-term potentiation.The transformation from short-term memory to long-term memory is achieved by changing the stimulation frequency.In addition,a convolutional neural network was constructed to train/recognize MNIST handwritten data sets;a distinguished recognition accuracy of~96.7%on the digital image was obtained in 100 epochs,which is more accurate than other memristor-based neural networks.These results show that the memristor device based on CsPbBr3 has immense potential in the neuromorphic computing system.
基金supported by Catalan Government,Nos.2014SGR344(to JT),2017SGR704(to JT),2021SGR01214(to MAL)MCIN/AEI/10.13039/501100011033/by“ERDF A way of making Europe,”Nos.SAF2015-67143(to JT),PID2019-106332GB-I00(to JT and MAL)and PID2022-141252NB-I00(to MAL).
文摘During the development of the nervous system,there is an overproduction of neurons and synapses.Hebbian competition between neighboring nerve endings and synapses performing different activity levels leads to their elimination or strengthening.We have extensively studied the involvement of the brain-derived neurotrophic factor-Tropomyosin-related kinase B receptor neurotrophic retrograde pathway,at the neuromuscular junction,in the axonal development and synapse elimination process versus the synapse consolidation.The purpose of this review is to describe the neurotrophic influence on developmental synapse elimination,in relation to other molecular pathways that we and others have found to regulate this process.In particular,we summarize our published results based on transmitter release analysis and axonal counts to show the different involvement of the presynaptic acetylcholine muscarinic autoreceptors,coupled to downstream serine-threonine protein kinases A and C(PKA and PKC)and voltage-gated calcium channels,at different nerve endings in developmental competition.The dynamic changes that occur simultaneously in several nerve terminals and synapses converge across a postsynaptic site,influence each other,and require careful studies to individualize the mechanisms of specific endings.We describe an activity-dependent balance(related to the extent of transmitter release)between the presynaptic muscarinic subtypes and the neurotrophin-mediated TrkB/p75NTR pathways that can influence the timing and fate of the competitive interactions between the different axon terminals.The downstream displacement of the PKA/PKC activity ratio to lower values,both in competing nerve terminals and at postsynaptic sites,plays a relevant role in controlling the elimination of supernumerary synapses.Finally,calcium entry through L-and P/Q-subtypes of voltage-gated calcium channels(both channels are present,together with the N-type channel in developing nerve terminals)contributes to reduce transmitter release and promote withdrawal of the most unfavorable nerve terminals during elimination(the weakest in acetylcholine release and those that have already become silent).The main findings contribute to a better understanding of punishment-rewarding interactions between nerve endings during development.Identifying the molecular targets and signaling pathways that allow synapse consolidation or withdrawal of synapses in different situations is important for potential therapies in neurodegenerative diseases.
基金supported by NIH/NIMH grant R01MH111619(to SQ),R21AG078700(to SQ)Institute of Mental Health Research(IMHR,Level 1 funding,to SQ and DF)institution startup fund from The University of Arizona(to SQ)。
文摘Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration,however,few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse function.We have previously shown that MET receptor tyrosine kinase in the developing cortical circuits promotes dendritic growth and dendritic spine morphogenesis.To investigate whether enhancing MET in adult cortex has synapse regenerating potential,we created a knockin mouse line,in which the human MET gene expression and signaling can be turned on in adult(10–12 months)cortical neurons through doxycycline-containing chow.We found that similar to the developing brain,turning on MET signaling in the adult cortex activates small GTPases and increases spine density in prefrontal projection neurons.These findings are further corroborated by increased synaptic activity and transient generation of immature silent synapses.Prolonged MET signaling resulted in an increasedα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-Daspartate(AMPA/NMDA)receptor current ratio,indicative of enhanced synaptic function and connectivity.Our data reveal that enhancing MET signaling could be an interventional approach to promote synaptogenesis and preserve functional connectivity in the adult brain.These findings may have implications for regenerative therapy in aging and neurodegeneration conditions.
基金financially supported by National R&D Program(2018M3D1A1058793,2021M3H4A3A02086430)through NRF(National Research Foundation of Korea)funded by the Ministry of Science and ICTsupported by SAIT,Samsung Electronics Co.,Ltd。
文摘Recently,artificial synapses involving an electrochemical reaction of Li-ion have been attributed to have remarkable synaptic properties.Three-terminal synaptic transistors utilizing Li-ion intercalation exhibits reliable synaptic characteristics by exploiting the advantage of nondistributed weight updates owing to stable ion migrations.However,the three-terminal configurations with large and complex structures impede the crossbar array implementation required for hardware neuromorphic systems.Meanwhile,achieving adequate synaptic performances through effective Li-ion intercalation in vertical two-terminal synaptic devices for array integration remains challenging.Here,two-terminal Au/LixCoO_(2)/Pt artificial synapses are proposed with the potential for practical implementation of hardware neural networks.The Au/LixCoO_(2)/Pt devices demonstrated extraordinary neuromorphic behaviors based on a progressive dearth of Li in LixCoO_(2)films.The intercalation and deintercalation of Li-ion inside the films are precisely controlled over the weight control spike,resulting in improved weight control functionality.Various types of synaptic plasticity were imitated and assessed in terms of key factors such as nonlinearity,symmetricity,and dynamic range.Notably,the LixCoO_(2)-based neuromorphic system outperformed three-terminal synaptic transistors in simulations of convolutional neural networks and multilayer perceptrons due to the high linearity and low programming error.These impressive performances suggest the vertical two-terminal Au/LixCoO_(2)/Pt artificial synapses as promising candidates for hardware neural networks.
基金supported by the National Key R&D Program of China,No.2019YFA0112000(to YHT)the National Natural Science Foundation of China,Nos.82071284(to YHT),81974179(to ZJZ)+4 种基金Shanghai Rising-Star Program,No.21QA1405200(to YHT)the Scientific Research and Innovation Program of Shanghai Education Commission,No.2019-01-07-00-02-E00064(to GYY)Scientific and Technological Innovation Act Program of Shanghai Science and Technology Commission,No.20JC1411900(to GYY)the Notional Research Foundation of Korea,Nos.2020M3E5D9079912(to WSC),2021R1A2C3005704(to WSC),2022M3E5E8081188(to WSC)the Korea Health Technology R&D Project,No.HU20C0290(to WSC)。
文摘Recent studies have shown that microglia/macrophages and astrocytes can mediate synaptic phagocytosis through the MER proto-oncokinase in developmental or stroke models,but it is unclear whether the same mechanism is also active in traumatic brain injury.In this study,we established a mouse model of traumatic brain injury and found that both microglia/macrophages and astrocytes phagocytosed synapses and expression of the MER proto-oncokinase increased 14 days after injury.Specific knockout of MER in microglia/macrophages or astrocytes markedly reduced injury volume and greatly improved neurobehavioral function.In addition,in both microglia/macrophages-specific and astrocytes-specific MER knock-out mice,the number of microglia/macrophage and astrocyte phagocytosing synapses was markedly decreased,and the total number of dendritic spines was increased.Our study suggested that MER proto-oncokinase expression in microglia/macrophages and astrocytes may play an important role in synaptic phagocytosis,and inhibiting this process could be a new strategy for treating traumatic brain injury.
基金the MRC Laboratory of Molecular Biology (to MR)。
文摘Advances in experimental and computational technologies continue to grow rapidly to provide novel avenues for the treatment of neurodegenerative disorders. Despite this, there remain only a handful of drugs that have shown success in late-stage clinical trials for Tau-associated neurodegenerative disorders. The most commonly prescribed treatments are symptomatic treatments such as cholinesterase inhibitors and N-methyl-D-aspartate receptor blockers that were approved for use in Alzheimer's disease. As diagnostic screening can detect disorders at earlier time points, the field needs pre-symptomatic treatments that can prevent, or significantly delay the progression of these disorders(Koychev et al., 2019). These approaches may be different from late-stage treatments that may help to ameliorate symptoms and slow progression once symptoms have become more advanced should early diagnostic screening fail. This mini-review will highlight five key avenues of academic and industrial research for identifying therapeutic strategies to treat Tau-associated neurodegenerative disorders. These avenues include investigating(1) the broad class of chemicals termed “small molecules”;(2) adaptive immunity through both passive and active antibody treatments;(3) innate immunity with an emphasis on microglial modulation;(4) synaptic compartments with the view that Tau-associated neurodegenerative disorders are synaptopathies. Although this mini-review will focus on Alzheimer's disease due to its prevalence, it will also argue the need to target other tauopathies, as through understanding Alzheimer's disease as a Tau-associated neurodegenerative disorder, we may be able to generalize treatment options. For this reason, added detail linking back specifically to Tau protein as a direct therapeutic target will be added to each topic.
基金supported by the NSFC(51925306 and 21774130)National Key R&D Program of China(2018FYA 0305800)+2 种基金Key Research Program of the Chinese Academy of Sciences(XDPB08-2)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB28000000)University of Chinese Academy of Sciences.
文摘The neuromorphic systems for sound perception is under highly demanding for the future bioinspired electronics and humanoid robots.However,the sound perception based on volume,tone and timbre remains unknown.Herein,organic optoelectronic synapses(OOSs)are constructed for unprecedented sound recognition.The volume,tone and timbre of sound can be regulated appropriately by the input signal of voltages,frequencies and light intensities of OOSs,according to the amplitude,frequency,and waveform of the sound.The quantitative relation between recognition factor(ζ)and postsynaptic current(I=I_(light)−I_(dark))is established to achieve sound perception.Interestingly,the bell sound for University of Chinese Academy of Sciences is recognized with an accuracy of 99.8%.The mechanism studies reveal that the impedance of the interfacial layers play a critical role in the synaptic performances.This contribution presents unprecedented artificial synapses for sound perception at hardware levels.
基金supported by the National Natural Science Foundation of China(Grant Nos.51922023,61874011)the China Postdoctoral Science Foundation(Grant No.2021M703159)Fundamental Research Funds for the Central Universities(Grant No.E1EG6804).
文摘As key components of artificial afferent nervous systems,synaptic devices can mimic the physiological synaptic behaviors,which have attracted extensive attentions.Here,a flexible tribotronic artificial synapse(TAS)with bioinspired neurosensory behavior is developed.The triboelectric potential generated by the external contact electrification is used as the ion-gel-gate voltage of the organic thin film transistor,which can tune the carriers transport through the migration/accumulation of ions.The TAS successfully demonstrates a series of synaptic behaviors by external stimuli,such as excitatory postsynaptic current,paired-pulse facilitation,and the hierarchical memory process from sensory memory to short-term memory and long-term memory.Moreover,the synaptic behaviors remained stable under the strain condition with a bending radius of 20 mm,and the TAS still exhibits excellent durability after 1000 bending cycles.Finally,Pavlovian conditioning has been successfully mimicked by applying force and vibration as food and bell,respectively.This work demonstrates a bioinspired flexible artificial synapse that will help to facilitate the development of artificial afferent nervous systems,which is great significance to the practical application of artificial limbs,robotics,and bionics in future.
基金supported by the National Natural Science Foundation of China, No. 81771140 (to YDZ)the Natural Science Foundation of Jiangsu Province of China, No. BK20201117 (to YDZ)Jiangsu “Six One Project” for Distinguished Medical Scholars of China, No. LGY2020013 (to TJ)
文摘Lamotrigine(LTG)is a widely used drug for the treatment of epilepsy.Emerging clinical evidence suggests that LTG may improve cognitive function in patients with Alzheimer’s disease.However,the underlying molecular mechanisms remain unclear.In this study,amyloid precursor protein/presenilin 1(APP/PS1)double transgenic mice were used as a model of Alzheimer’s disease.Five-month-old APP/PS1 mice were intragastrically administered 30 mg/kg LTG or vehicle once per day for 3 successive months.The cognitive functions of animals were assessed using Morris water maze.Hyperphosphorylated tau and markers of synapse and glial cells were detected by western blot assay.The cell damage in the brain was investigated using hematoxylin and eosin staining.The levels of amyloid-βand the concentrations of interleukin-1β,interleukin-6 and tumor necrosis factor-αin the brain were measured using enzyme-linked immunosorbent assay.Differentially expressed genes in the brain after LTG treatment were analyzed by high-throughput RNA sequencing and real-time polymerase chain reaction.We found that LTG substantially improved spatial cognitive deficits of APP/PS1 mice;alleviated damage to synapses and nerve cells in the brain;and reduced amyloid-βlevels,tau protein hyperphosphorylation,and inflammatory responses.High-throughput RNA sequencing revealed that the beneficial effects of LTG on Alzheimer’s disease-related neuropathologies may have been mediated by the regulation of Ptgds,Cd74,Map3k1,Fosb,and Spp1 expression in the brain.These findings revealed potential molecular mechanisms by which LTG treatment improved Alzheimer’s disease.Furthermore,these data indicate that LTG may be a promising therapeutic drug for Alzheimer’s disease.
基金supported by the National Natural Science Foundation of China under Grant(62174068,61625404).
文摘In the era of accelerated development in artificial intelligence as well as explosive growth of information and data throughput,underlying hardware devices that can integrate perception and memory while simultaneously offering the bene-fits of low power consumption and high transmission rates are particularly valuable.Neuromorphic devices inspired by the human brain are considered to be one of the most promising successors to the efficient in-sensory process.In this paper,a homojunction-based multi-functional optoelectronic synapse(MFOS)is proposed and testified.It enables a series of basic electri-cal synaptic plasticity,including paired-pulse facilitation/depression(PPF/PPD)and long-term promotion/depression(LTP/LTD).In addition,the synaptic behaviors induced by electrical signals could be instead achieved through optical signals,where its sen-sitivity to optical frequency allows the MFOS to simulate high-pass filtering applications in situ and the perception capability integrated into memory endows it with the information acquisition and processing functions as a visual system.Meanwhile,the MFOS exhibits its performances of associative learning and logic gates following the illumination with two different wave-lengths.As a result,the proposed MFOS offers a solution for the realization of intelligent visual system and bionic electronic eye,and will provide more diverse application scenarios for future neuromorphic computing.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12072236,12162002,and11802086)the Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(Grant No.NJYT-20-A09)the Program for Excellent Young Talents in Colleges and Universities of Anhui Province of China(Grant No.gxyq ZD2020077)。
文摘Different from the common delayed synchronization(DS)in which response appears after stimulation,anticipated synchronization(AS)in unidirectionally coupled neurons denotes a counterintuitive phenomenon in which response of the receiver neuron appears before stimulation of the sender neuron,showing an interesting function of brain to anticipate the future.The dynamical mechanism for the AS remains unclear due to complex dynamics of inhibitory and excitatory modulations.In this article,the paradoxical roles of excitatory synapse and inhibitory autapse in the formation of AS are acquired.Firstly,in addition to the common roles such that inhibitory modulation delays and excitatory modulation advances spike,paradoxical roles of excitatory stimulation to delay spike via type-II phase response and of inhibitory autapse to advance spike are obtained in suitable parameter regions,extending the dynamics and functions of the excitatory and inhibitory modulations.Secondly,AS is related to the paradoxical roles of the excitatory and inhibitory modulations,presenting deep understandings to the AS.Inhibitory autapse induces spike of the receiver neuron advanced to appear before that of the sender neuron at first,and then excitatory synapse plays a delay role to prevent the spike further advanced,resulting in the AS as the advance and delay effects realize a dynamic balance.Lastly,inhibitory autapse with strong advance,middle advance,and weak advance and delay effects induce phase drift(spike of the receiver neuron advances continuously),AS,and DS,respectively,presenting comprehensive relationships between AS and other behaviors.The results present potential measures to modulate AS related to brain function.
文摘Objective To elucidate the important functions of microRNAs (miRNAs) in regulating synaptic assembly and function, we performed a computational analysis for the genetic loci required for the synaptic structure and function and their corresponding miRNAs in C. elegans. Methods Total 198 genetic loci required for the synaptic structure and function were selected. Sequence alignment was combined with E value evaluation to investigate and identify the possible corresponding miRNAs. Results Total 163 genes among the 198 genetic loci selected have their possibly corresponding regulatory miRNA (s), which covered most of the important genetic loci required for the synaptic structure and function. Moreover, only 22 genes among the analyzed 38 genetic loci encoding synaptic proteins have more possibility to under the control of non-coding RNA genes. In addition, the distribution of miRNAs along the 3' untranslated region (UTR) of these 22 genes exhibits different patterns. Condusion Here we provide the computational screen and analysis results for the genetic loci required for synaptic structure and function and their possible corresponding miRNAs. These data will be useful for the further attempt to systematically determine the roles of miRNAs in synaptic assembly and function regulation in worms.
基金This study was approved by the Uppsala Ethical Committee for Animal Research. It was supported by grants from the Swedish Association of Neurologically Disabled the Swedish Society for Medical Research (project no.950006) and the National Natural Scien
文摘Objective and methods To evaluate synaptic changes using synaptophysin immunohistochemstry in rat and mouse, which spinal cords were subjected to graded compression trauma at the level of Th8-9. Results Normal animals showed numerous fine dots of synaptophysin immunoreactivity in the gray matter. An increase in synaptophysin immunoreactivity was observed in the neuropil and synapses at the surface of motor neurons of the anterior horns in the ThS-9 segments lost immunoreactivity at 4-hour point after trauma. The immunoreactive synapses reappeared around motor neurons at 9-day point. Unexpected accumulation of synaptophysin immunoreactivity occurred in injured axons of the white matter of the compressed spinal cord. Conclusion Synaptic changes were important components of secondary injuries in spinal cord trauma. Loss of synapses on motor neurons may be one of the factors causing motor dysfunction of hind limbs and formation of new synapses may play an import,ant role in recovery of motor function. Synaptophysin immunohistochemistry is also a good tool for studies of axonal swellings in spinal cord injuries.
基金Yantai Science and Technology Development Projects, No. 2008142-5
文摘Very little is known about the effects of transcranial magnetic stimulation and rehabilitation training on pyramidal cell dendrites and synapses of the contralateral, unaffected sensorimotor cortex in a rat model of focal cerebral infarct. The present study was designed to explore the mechanisms underlying improved motor function via transcranial magnetic stimulation and rehabilitation training following cerebral infarction. Results showed that rehabilitation training or transcranial magnetic stimulation alone reduced neurological impairment in rats following cerebral infarction, as well as significantly increased synaptic curvatures and post-synaptic density in the non-injured cerebral hemisphere sensorimotor cortex and narrowed the synapse cleft width. In addition, the percentage of perforated synapses increased. The combination of transcranial magnetic stimulation and rehabilitation resulted in significantly increased total dendritic length, dendritic branching points, and dendritic density in layer V pyramidal cells of the non-injured cerebral hemisphere motor cortex. These results demonstrated that transcranial magnetic stimulation and rehabilitation training altered structural parameters of pyramidal cell dendrites and synapses in the non-injured cerebral hemisphere sensorimotor cortex, thereby improving the ability to compensate for neurological functions in rats following cerebral infarction.
基金supported by the Natural Science Foundation of Hebei Province,No. C2007000921
文摘In this study, we investigated the effects of mobile phone radiation on spatial learning, reference memory, and morphology in related brain regions. After the near-field radiation (0.52 1.08 W/kg) was delivered to 8-week-old Wistar rats 2 hours per day for 1 month, behavioral changes were examined using the Morris water maze. Compared with the sham-irradiated rats, the irradiated rats exhibited impaired performance. Morphological changes were investigated by examining synaptic ultrastructural changes in the hippocampus. Using the physical dissector technique, the number of pyramidal neurons, the synaptic profiles, and the length of postsynaptic densities in the CA1 region were quantified stereologically. The morphological changes included mitochondrial degenerations, fewer synapses, and shorter postsynaptic densities in the radiated rats. These findings indicate that mobile phone radiation can significantly impair spatial learning and reference memory and induce morphological changes in the hippocampal CA1 region.
基金the fund from Ministry of Science and Technology of China(Nos.2018YFE0118300 and 2019YFB2205100)the NSFC Program(Nos.11974072,51701037,51732003,51872043,51902048,61774031,61574031 and U19A2091)+4 种基金the“111”Project(No.B13013)the fund from Ministry of Education of China(No.6141A02033414)The fund from China Postdoctoral Science Foundation(No.2019M661185)The Fundamental Research Funds for the Central Universities(No.2412019QD015)the Fund from Jilin Province(JJKH20201163KJ).
文摘The development of electronic devices that possess the functionality of biological synapses is a crucial step towards neuromorphic computing.In this work,we present a WOx-based memristive device that can emulate voltage-dependent synaptic plasticity.By adjusting the amplitude of the applied voltage,we were able to reproduce short-term plasticity(STP)and the transition from STP to long-term potentiation.The stimulation with high intensity induced long-term enhancement of conductance without any decay process,thus representing a permanent memory behavior.Moreover,the image Boolean operations(including intersection,subtraction,and union)were also demonstrated in the memristive synapse array based on the above voltage-dependent plasticity.The experimental achievements of this study provide a new insight into the successful mimicry of essential characteristics of synaptic behaviors.