Real-time,contact-free temperature monitoring of low to medium range(30℃-150℃)has been extensively used in industry and agriculture,which is usually realized by costly infrared temperature detection methods.This pap...Real-time,contact-free temperature monitoring of low to medium range(30℃-150℃)has been extensively used in industry and agriculture,which is usually realized by costly infrared temperature detection methods.This paper proposes an alternative approach of extracting temperature information in real time from the visible light images of the monitoring target using a convolutional neural network(CNN).A mean-square error of<1.119℃was reached in the temperature measurements of low to medium range using the CNN and the visible light images.Imaging angle and imaging distance do not affect the temperature detection using visible optical images by the CNN.Moreover,the CNN has a certain illuminance generalization ability capable of detection temperature information from the images which were collected under different illuminance and were not used for training.Compared to the conventional machine learning algorithms mentioned in the recent literatures,this real-time,contact-free temperature measurement approach that does not require any further image processing operations facilitates temperature monitoring applications in the industrial and civil fields.展开更多
The plastic work-heat conversion coefficient is one key parameter for studying the work-heat conversion under dynamic deformation of materials. To explore this coefficient of 7075-T651 aluminum alloy under dynamic com...The plastic work-heat conversion coefficient is one key parameter for studying the work-heat conversion under dynamic deformation of materials. To explore this coefficient of 7075-T651 aluminum alloy under dynamic compression, dynamic compression experiments using the Hopkinson bar under four groups of strain rates were conducted, and the temperature signals were measured by constructing a transient infrared temperature measurement system. According to stress versus strain data as well as the corresponding temperature data obtained through the experiments, the influences of the strain and the strain rate on the coefficient of plastic work converted to heat were analyzed.The experimental results show that the coefficient of plastic work converted to heat of 7075-T651 aluminum alloy is not a constant at the range of 0.85–1 and is closely related to the strain and the strain rate. The change of internal structure of material under high strain rate reduces its energy storage capacity, and makes almost all plastic work convert into heat.展开更多
A new method for reconstructing the geological history of hydrocarbon accumulation is developed, which are constrained by U-Pb isotope age and clumped isotope((35)47) temperature of host minerals of hydrocarbon-bearin...A new method for reconstructing the geological history of hydrocarbon accumulation is developed, which are constrained by U-Pb isotope age and clumped isotope((35)47) temperature of host minerals of hydrocarbon-bearing inclusions. For constraining the time and depth of hydrocarbon accumulation by the laser in-situ U-Pb isotope age and clumped isotope temperature, there are two key steps:(1) Investigating feature, abundance and distribution patterns of liquid and gaseous hydrocarbon inclusions with optical microscopes.(2) Dating laser in-situ U-Pb isotope age and measuring clumped isotope temperature of the host minerals of hydrocarbon inclusions. These technologies have been applied for studying the stages of hydrocarbon accumulation in the Sinian Dengying gas reservoir in the paleo-uplift of the central Sichuan Basin. By dating the U-Pb isotope age and measuring the temperature of clumped isotope((35)47) of the host minerals of hydrocarbon inclusions in dolomite, three stages of hydrocarbon accumulation were identified:(1) Late Silurian: the first stage of oil accumulation at(416±23) Ma.(2) Late Permian to Early Triassic: the second stage of oil accumulation between(248±27) Ma and(246.3±1.5) Ma.(3) Yanshan to Himalayan period: gas accumulation between(115±69) Ma and(41±10) Ma. The reconstructed hydrocarbon accumulation history of the Dengying gas reservoir in the paleo-uplift of the central Sichuan Basin is highly consistent with the tectonic-burial history, basin thermal history and hydrocarbon generation history, indicating that the new method is a reliable way for reconstructing the hydrocarbon accumulation history.展开更多
A novel method based on wavelength-multiplexed line-of-sight absorption and profile fitting for nonuniform flow field measurement is reported. A wavelength scanning combing laser temperature and current modulation WMS...A novel method based on wavelength-multiplexed line-of-sight absorption and profile fitting for nonuniform flow field measurement is reported. A wavelength scanning combing laser temperature and current modulation WMS scheme is used to implement the wavelength-multi- plexed-profile fitting method. Second harmonic (2f) signal of eight H20 transitions features near 7,170 cm^-1 are measured in one period using a single tunable diode laser. Spatial resolved temperature distribution upon a CH4/air premixed flat flame burner is obtained. The result validates the feasibility of strategy for non-uniform flow field diagnostics by means of WMS-2f TDLAS.展开更多
This report describes a new method for measuring the temperature of the gas behind the reflected shock wave in shock tube, corresponding to the reservoir temperature of a shock tunnel, based on the chemical reaction o...This report describes a new method for measuring the temperature of the gas behind the reflected shock wave in shock tube, corresponding to the reservoir temperature of a shock tunnel, based on the chemical reaction of small amount of CF4 premixed in the test gas. The final product C2F4 is used as the temperature indicator, which is sampled and detected by a gas chromatography in the experiment. The detected concentration of C2F4 is correlated to the temperature of the reflected shock wave with the initial pressure P-1 and test time tau as parameters in the temperature range 3 300 K < T < 5 600 K, pressure range 5 kPa < P1 <12 kPa and tau similar or equal to 0.4 ms.展开更多
We demonstrate an experimental method for the in situ temperature measurement of atomic vapor using the saturated absorption spectrum. By separately manipulating the frequency of the pump and probe beams, the position...We demonstrate an experimental method for the in situ temperature measurement of atomic vapor using the saturated absorption spectrum. By separately manipulating the frequency of the pump and probe beams, the position of the crossover peaks can move along the spectrum. Different velocity classes of atoms contribute to the crossover during the movement. We study the relationship between the intensity change of peaks and vapor temperature. Our experimental result around room temperature shows a deviation of less than 0.3 K. Compared with traditional thermometry using absorption spectroscopy, higher accuracy can theoretically be achieved with real-time thermometry.展开更多
Under coronal conditions, the steady state rate-equations are used to calculate the inter-stage line ratios between Li-like ls22p(2P3/2)→ls22s(2S1/2) and He-like ls2p(1P1)→1s2(1S0) transitions for Ti in the electron...Under coronal conditions, the steady state rate-equations are used to calculate the inter-stage line ratios between Li-like ls22p(2P3/2)→ls22s(2S1/2) and He-like ls2p(1P1)→1s2(1S0) transitions for Ti in the electronic temperature ranges from 0.1keV to 20 keV. The results show that the temperature sensitivities are higher at the electronic temperature less than 5000 eV and the temperature sensitivities will decrease with the increase of electronic temperature.展开更多
In the research of primary spectrum pyrometry, this paper discussed the definition problem of radiation temperature measurement area based on the measurement coordinates. For the linear spectrum emissivity model and i...In the research of primary spectrum pyrometry, this paper discussed the definition problem of radiation temperature measurement area based on the measurement coordinates. For the linear spectrum emissivity model and improved monotonic spectrum emissivity model, the characteristics of radiation temperature measurement area restricted by the measurement coordinates were theoretically analyzed, through the investigations of the temperature and emissivity coordinate axes. Choosing the specific primary spectrum pyrometer as an example in applications, the theoretical area of radiation temperature measurement of this pyrometer was given and it was verified through blackbody experiments. The discussions of this paper will provide the necessary foundation for the theory research development of primary spectrum pyrometry and the realization of technical applications.展开更多
In the phase of the normalized COVID-19 prevention and control,non-contact temperature measurement is one of the most efficient and convenient methods for initial screening of suspected cases.In the year of 2020 in Wu...In the phase of the normalized COVID-19 prevention and control,non-contact temperature measurement is one of the most efficient and convenient methods for initial screening of suspected cases.In the year of 2020 in Wuhan,such non-contact equipment was urgently demanded,standards development in the traditional way cannot satisfy the market needs.So,the research and development of this standard for infrared intelligent body temperature measurement system was carried out in a rapid way.展开更多
Accurate and reliable information about the temperature of the synchronous generators excitation winding hot spot is necessary to determine the dynamic limit caused by excitation winding overheating in the PQ diagram....Accurate and reliable information about the temperature of the synchronous generators excitation winding hot spot is necessary to determine the dynamic limit caused by excitation winding overheating in the PQ diagram. For good estimation of a position and the hot spot temperature it is decided to mount 19 temperature probes on one pole of the 6-pole, 400 kVA. 50 llz synchronous generator. Due to a large number of the probes and because the probes should be glued with the metal epoxy it was assumed that mounting of the probes will disrupt the temperature field of the excitation winding. To get the answer to this question the excitation winding resistance was measured betbre and after mounting the probes, in a hot and a cold state. Temperature rise can be estimated if the resistance ratio in the hot and the cold state is known. The paper also addresses the analysis of the measurement accuracy. The result shows that, there is no significant influence on the temperature when mounting the 19 temperature probes which covered 10% of the pole excitation winding surface.展开更多
This paper addresses some of the problems related to direct surface temperature measurement of a salient pole synchronous generator excitation winding in rotation. Excitation winding temperature is used for determinin...This paper addresses some of the problems related to direct surface temperature measurement of a salient pole synchronous generator excitation winding in rotation. Excitation winding temperature is used for determining the dynamic limit in a PQ diagram. The paper also addresses procedures of improving the accuracy of surface temperature measurement using the contact DS 18B20 digital temperature probes. The paper also provides experimental results of direct temperature measurement of the excitation winding surface conducted in the salient pole synchronous generator in the rotation.展开更多
The function,features,and architecture of a robot that performs automatic temperature measurement and sampling applied on a 150-t AC electric arc furnace(EAF)production line of Baosteel were presented,and the key poin...The function,features,and architecture of a robot that performs automatic temperature measurement and sampling applied on a 150-t AC electric arc furnace(EAF)production line of Baosteel were presented,and the key points of design and revamping experience on the site layout,device protection,lance tool,probe container,measuring position control,and system safety were summarized.Furthermore,a valuable reference for the application of automatic temperature measuring and sampling robots in EAF steelmaking plants will be provided.展开更多
Noninvasive technology for measuring instantaneously two-dimensional (2D) temperature distributions of flame using two-color planar laser induced fluorescence (PLIF) of OH is investigated. A calibration method is ...Noninvasive technology for measuring instantaneously two-dimensional (2D) temperature distributions of flame using two-color planar laser induced fluorescence (PLIF) of OH is investigated. A calibration method is researched and developed. This method is based on the calibration experiments with a laminar premixed flame and thermocouple, and avoids complex calculation and uncertainty of the spectrum parameters. Measurements for a flat burner at ambient temperature under atmospheric pressure are also presented; calibration results are used to diagnose a supersonic combustion in scramjet combustor. The conclusion indicates that this method is useful, and a better precision of calibration can be acquired by correcting the line shapes of the spectral lines and lasers.展开更多
A temperature measurement model of radiation thermometry for the surface covered by participating media was developed. The model was based on the radiation heat transfer of participating media and principles of radiat...A temperature measurement model of radiation thermometry for the surface covered by participating media was developed. The model was based on the radiation heat transfer of participating media and principles of radiation pyrometers, and solved by integral formulation of discrete ordinate method on spectral waveband. The influence of water mist on the indicated temperature of Raytek MR1SB one/two color pyrometer was discussed. Mie theory was used to calculate the radiative properties of water mist. In order to verify the model, a laboratory temperature measurement experiment was executed. The result shows that temperature of radiation thermometry is sensitive to the spectral response wavelength of pyrometer, and the simulated temperature of pyrometer agrees well with the experimental measurements on a suitable wavelength. The simulated temperature was lower than the real temperature of surface for one-color pyrometer, and it could be higher or lower than the real one for two-color pyrometer with the influence of participating media.展开更多
Hot air and hot water treatments are practical,environmentally-friendly and non-chemical heating methods,which are widely used for postharvest insect control and quality preservation in agricultural products.Taking ap...Hot air and hot water treatments are practical,environmentally-friendly and non-chemical heating methods,which are widely used for postharvest insect control and quality preservation in agricultural products.Taking apple and pear as representative fruits,this study mainly analyzed influences of their thermal properties,diameter,and medium speed on the heating rates of fruits through their real-time measured temperatures at surface and center.Based on the reported thermal death kinetic models of the target codling moth,the minimum heating time was estimated to achieve 100%insect mortality.The results showed that the heating rates in fruits decreased gradually with the increasing depth from the surface to the center.With increasing heating time,the heating rate became small.The apple was heated faster than the pear.Hot water was more effective than hot air in treating fruits.Increasing hot air speed increased the heating rate but increasing water circulating speed had no clear effects on the heating rate.Based on the measured temperature-time history of the fruit center,the minimum heating time could be effectively determined for codling moth control through the estimated total equivalent thermal lethal time.The results could provide reliable validation data for the computer simulation and a scientific basis to improve the hot air and hot water treatments.展开更多
It is well known that optical tomography can accurately and quantitatively reconstruct the refractive index field of a transparent medium and display the three dimensional image of other physical quantities relevant t...It is well known that optical tomography can accurately and quantitatively reconstruct the refractive index field of a transparent medium and display the three dimensional image of other physical quantities relevant to temperature or density. In this paper, a new multidirectional holographic interferometric system is built, and two kinds of image reconstruction algorithms are introduced and an automatic image processing system of interferogram is designed. A three dimentsional asymmetric gas flow field above a combustor is expertmentally investigated with holographic interferometry. The reconstructed temperatures are similar to those measured with a thermocouple.展开更多
Exhaust gas temperature is an important factor in NOx, THC and PM emissions of engines. Especially 2D temperature and concentration distribution plays an important role for the engine efficiency. A thermocouple is int...Exhaust gas temperature is an important factor in NOx, THC and PM emissions of engines. Especially 2D temperature and concentration distribution plays an important role for the engine efficiency. A thermocouple is intrinsically a point temperature measurement method and noncontact 2D temperature distribution cannot be attained by thermocouples. Recently, as a measurement technique with high sensitivity and high response, laser diagnostics has been developed and applied to the actual engine combustions. With these engineering developments, transient phenomena such as start-ups and load changes in engines have been gradually elucidated in various conditions. In this study, the theoretical and experimental research has been conducted in order to develop the noncontact and fast response 2D temperature and concentration distribution measurement method. The method is based on a Computed Tomography (CT) method using absorption spectra of water vapor at 1388 nm. It has been demonstrated that the method has been successfully applied to engine exhausts to measure 2D temperature distributions.展开更多
Resistance-to-time converter is always used for digital temperature measurement. An reset-set (RS) trigger based, relaxation oscillator based temperature measurement circuit, which is used to convert the change of t...Resistance-to-time converter is always used for digital temperature measurement. An reset-set (RS) trigger based, relaxation oscillator based temperature measurement circuit, which is used to convert the change of thermistor sensor into a frequency signal for later processing, has been presented in this article. The RS trigger, which is composed of two inverters designed with distinct logical transition threshold voltages by changing the metal-oxide-semiconductor (MOS) transistor gains, has the same function as the Schmitt trigger in the relaxation oscillator. The advantage of the RS trigger based Schmitt trigger is that it reduces the dependence to supply voltage, chip temperature, and process variation. This temperature measurement circuit has been applied in a clinical thermometer chip that can measure temperature to an accuracy of better than 0.05 ℃ down to 1.1 V battery voltage. It is fabricated in 0.5 μm double metal single poly complementary MOS (CMOS) process.展开更多
Temperature is one of the physical quantifies through which quantitative evaluation of the safety and reliability of industrial products can be achieved, and this has been used widely in practice. Under any environmen...Temperature is one of the physical quantifies through which quantitative evaluation of the safety and reliability of industrial products can be achieved, and this has been used widely in practice. Under any environmental condifion, regardless of the size of the object to be inspected, accurate and reliable measurement of temperature is of great practical importance. This review article presents a simple and direct method of temperature measurement, that can be applied to the local areas with difficulty in measuring the temperature by using normal thermometers. In the present article, two different application examples are demonstrated. One addresses the study of the electromigration of solders which are used as bonding metals in electronic devices (micro-structures). The application of the method to the shaft of a motor used in heavy industrial fields is explained as the second.展开更多
Chaotic Brillouin optical correlation domain analysis(BOCDA)has been proposed and experimentally demonstrated with the advantage of high spatial resolution.However,it faces the same issue of the temperature and strain...Chaotic Brillouin optical correlation domain analysis(BOCDA)has been proposed and experimentally demonstrated with the advantage of high spatial resolution.However,it faces the same issue of the temperature and strain cross-sensitivity.In this paper,the simultaneous measurement of temperature and strain can be preliminarily achieved by analyzing the two Brillouin frequencies of the chaotic laser in a large-effective-area fiber(LEAF).A temperature resolution of 1℃ and a strain resolution of 20μξ can be obtained with a spatial resolution of 3.9cm.The actual temperature and strain measurement errors are 0.37℃ and 10μξ,respectively,which are within the maximum measurement errors.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61975072 and 12174173)the Natural Science Foundation of Fujian Province,China (Grant Nos.2022H0023,2022J02047,ZZ2023J20,and 2022G02006)。
文摘Real-time,contact-free temperature monitoring of low to medium range(30℃-150℃)has been extensively used in industry and agriculture,which is usually realized by costly infrared temperature detection methods.This paper proposes an alternative approach of extracting temperature information in real time from the visible light images of the monitoring target using a convolutional neural network(CNN).A mean-square error of<1.119℃was reached in the temperature measurements of low to medium range using the CNN and the visible light images.Imaging angle and imaging distance do not affect the temperature detection using visible optical images by the CNN.Moreover,the CNN has a certain illuminance generalization ability capable of detection temperature information from the images which were collected under different illuminance and were not used for training.Compared to the conventional machine learning algorithms mentioned in the recent literatures,this real-time,contact-free temperature measurement approach that does not require any further image processing operations facilitates temperature monitoring applications in the industrial and civil fields.
基金supported by the National Nature Science Foundation of China (Grants 11132011 and 11472288)
文摘The plastic work-heat conversion coefficient is one key parameter for studying the work-heat conversion under dynamic deformation of materials. To explore this coefficient of 7075-T651 aluminum alloy under dynamic compression, dynamic compression experiments using the Hopkinson bar under four groups of strain rates were conducted, and the temperature signals were measured by constructing a transient infrared temperature measurement system. According to stress versus strain data as well as the corresponding temperature data obtained through the experiments, the influences of the strain and the strain rate on the coefficient of plastic work converted to heat were analyzed.The experimental results show that the coefficient of plastic work converted to heat of 7075-T651 aluminum alloy is not a constant at the range of 0.85–1 and is closely related to the strain and the strain rate. The change of internal structure of material under high strain rate reduces its energy storage capacity, and makes almost all plastic work convert into heat.
基金Supported by the China National Science and Technology Major Project(2016ZX05004-002)Basic Research and Strategic Reserve Technology Research Fund of Institutes Directly Under CNPC(2018D-5008-03)PetroChina Science and Technology Project(2019D-5009-16)。
文摘A new method for reconstructing the geological history of hydrocarbon accumulation is developed, which are constrained by U-Pb isotope age and clumped isotope((35)47) temperature of host minerals of hydrocarbon-bearing inclusions. For constraining the time and depth of hydrocarbon accumulation by the laser in-situ U-Pb isotope age and clumped isotope temperature, there are two key steps:(1) Investigating feature, abundance and distribution patterns of liquid and gaseous hydrocarbon inclusions with optical microscopes.(2) Dating laser in-situ U-Pb isotope age and measuring clumped isotope temperature of the host minerals of hydrocarbon inclusions. These technologies have been applied for studying the stages of hydrocarbon accumulation in the Sinian Dengying gas reservoir in the paleo-uplift of the central Sichuan Basin. By dating the U-Pb isotope age and measuring the temperature of clumped isotope((35)47) of the host minerals of hydrocarbon inclusions in dolomite, three stages of hydrocarbon accumulation were identified:(1) Late Silurian: the first stage of oil accumulation at(416±23) Ma.(2) Late Permian to Early Triassic: the second stage of oil accumulation between(248±27) Ma and(246.3±1.5) Ma.(3) Yanshan to Himalayan period: gas accumulation between(115±69) Ma and(41±10) Ma. The reconstructed hydrocarbon accumulation history of the Dengying gas reservoir in the paleo-uplift of the central Sichuan Basin is highly consistent with the tectonic-burial history, basin thermal history and hydrocarbon generation history, indicating that the new method is a reliable way for reconstructing the hydrocarbon accumulation history.
基金supported by the National Natural Science Foundation of China(10772188)
文摘A novel method based on wavelength-multiplexed line-of-sight absorption and profile fitting for nonuniform flow field measurement is reported. A wavelength scanning combing laser temperature and current modulation WMS scheme is used to implement the wavelength-multi- plexed-profile fitting method. Second harmonic (2f) signal of eight H20 transitions features near 7,170 cm^-1 are measured in one period using a single tunable diode laser. Spatial resolved temperature distribution upon a CH4/air premixed flat flame burner is obtained. The result validates the feasibility of strategy for non-uniform flow field diagnostics by means of WMS-2f TDLAS.
基金The project supported by the China Aerodynamics Project for Basic Researches(J13.5.2 ZK04)
文摘This report describes a new method for measuring the temperature of the gas behind the reflected shock wave in shock tube, corresponding to the reservoir temperature of a shock tunnel, based on the chemical reaction of small amount of CF4 premixed in the test gas. The final product C2F4 is used as the temperature indicator, which is sampled and detected by a gas chromatography in the experiment. The detected concentration of C2F4 is correlated to the temperature of the reflected shock wave with the initial pressure P-1 and test time tau as parameters in the temperature range 3 300 K < T < 5 600 K, pressure range 5 kPa < P1 <12 kPa and tau similar or equal to 0.4 ms.
基金supported by the National Natural Science Foundation of China (Grant No. 61703025)。
文摘We demonstrate an experimental method for the in situ temperature measurement of atomic vapor using the saturated absorption spectrum. By separately manipulating the frequency of the pump and probe beams, the position of the crossover peaks can move along the spectrum. Different velocity classes of atoms contribute to the crossover during the movement. We study the relationship between the intensity change of peaks and vapor temperature. Our experimental result around room temperature shows a deviation of less than 0.3 K. Compared with traditional thermometry using absorption spectroscopy, higher accuracy can theoretically be achieved with real-time thermometry.
文摘Under coronal conditions, the steady state rate-equations are used to calculate the inter-stage line ratios between Li-like ls22p(2P3/2)→ls22s(2S1/2) and He-like ls2p(1P1)→1s2(1S0) transitions for Ti in the electronic temperature ranges from 0.1keV to 20 keV. The results show that the temperature sensitivities are higher at the electronic temperature less than 5000 eV and the temperature sensitivities will decrease with the increase of electronic temperature.
基金This research was supported by the National Natural Science Foundation of China ( Grant No. 50606033);National High Technology Research and Development Program of China (Grant No. 2007AA04Z178 )
文摘In the research of primary spectrum pyrometry, this paper discussed the definition problem of radiation temperature measurement area based on the measurement coordinates. For the linear spectrum emissivity model and improved monotonic spectrum emissivity model, the characteristics of radiation temperature measurement area restricted by the measurement coordinates were theoretically analyzed, through the investigations of the temperature and emissivity coordinate axes. Choosing the specific primary spectrum pyrometer as an example in applications, the theoretical area of radiation temperature measurement of this pyrometer was given and it was verified through blackbody experiments. The discussions of this paper will provide the necessary foundation for the theory research development of primary spectrum pyrometry and the realization of technical applications.
文摘In the phase of the normalized COVID-19 prevention and control,non-contact temperature measurement is one of the most efficient and convenient methods for initial screening of suspected cases.In the year of 2020 in Wuhan,such non-contact equipment was urgently demanded,standards development in the traditional way cannot satisfy the market needs.So,the research and development of this standard for infrared intelligent body temperature measurement system was carried out in a rapid way.
文摘Accurate and reliable information about the temperature of the synchronous generators excitation winding hot spot is necessary to determine the dynamic limit caused by excitation winding overheating in the PQ diagram. For good estimation of a position and the hot spot temperature it is decided to mount 19 temperature probes on one pole of the 6-pole, 400 kVA. 50 llz synchronous generator. Due to a large number of the probes and because the probes should be glued with the metal epoxy it was assumed that mounting of the probes will disrupt the temperature field of the excitation winding. To get the answer to this question the excitation winding resistance was measured betbre and after mounting the probes, in a hot and a cold state. Temperature rise can be estimated if the resistance ratio in the hot and the cold state is known. The paper also addresses the analysis of the measurement accuracy. The result shows that, there is no significant influence on the temperature when mounting the 19 temperature probes which covered 10% of the pole excitation winding surface.
文摘This paper addresses some of the problems related to direct surface temperature measurement of a salient pole synchronous generator excitation winding in rotation. Excitation winding temperature is used for determining the dynamic limit in a PQ diagram. The paper also addresses procedures of improving the accuracy of surface temperature measurement using the contact DS 18B20 digital temperature probes. The paper also provides experimental results of direct temperature measurement of the excitation winding surface conducted in the salient pole synchronous generator in the rotation.
文摘The function,features,and architecture of a robot that performs automatic temperature measurement and sampling applied on a 150-t AC electric arc furnace(EAF)production line of Baosteel were presented,and the key points of design and revamping experience on the site layout,device protection,lance tool,probe container,measuring position control,and system safety were summarized.Furthermore,a valuable reference for the application of automatic temperature measuring and sampling robots in EAF steelmaking plants will be provided.
基金supported by the National Natural Science Foundation of China under Grant No.11272338
文摘Noninvasive technology for measuring instantaneously two-dimensional (2D) temperature distributions of flame using two-color planar laser induced fluorescence (PLIF) of OH is investigated. A calibration method is researched and developed. This method is based on the calibration experiments with a laminar premixed flame and thermocouple, and avoids complex calculation and uncertainty of the spectrum parameters. Measurements for a flat burner at ambient temperature under atmospheric pressure are also presented; calibration results are used to diagnose a supersonic combustion in scramjet combustor. The conclusion indicates that this method is useful, and a better precision of calibration can be acquired by correcting the line shapes of the spectral lines and lasers.
基金The support of this work by the National Natural Science Foundation of China under Grant No.50074006 is gratefully acknowledged.
文摘A temperature measurement model of radiation thermometry for the surface covered by participating media was developed. The model was based on the radiation heat transfer of participating media and principles of radiation pyrometers, and solved by integral formulation of discrete ordinate method on spectral waveband. The influence of water mist on the indicated temperature of Raytek MR1SB one/two color pyrometer was discussed. Mie theory was used to calculate the radiative properties of water mist. In order to verify the model, a laboratory temperature measurement experiment was executed. The result shows that temperature of radiation thermometry is sensitive to the spectral response wavelength of pyrometer, and the simulated temperature of pyrometer agrees well with the experimental measurements on a suitable wavelength. The simulated temperature was lower than the real temperature of surface for one-color pyrometer, and it could be higher or lower than the real one for two-color pyrometer with the influence of participating media.
基金grants from PhD Programs Foundation of Ministry of Education of China(20120204110022)Special Talent Fund of Northwest A&F University(No.Z111021101).
文摘Hot air and hot water treatments are practical,environmentally-friendly and non-chemical heating methods,which are widely used for postharvest insect control and quality preservation in agricultural products.Taking apple and pear as representative fruits,this study mainly analyzed influences of their thermal properties,diameter,and medium speed on the heating rates of fruits through their real-time measured temperatures at surface and center.Based on the reported thermal death kinetic models of the target codling moth,the minimum heating time was estimated to achieve 100%insect mortality.The results showed that the heating rates in fruits decreased gradually with the increasing depth from the surface to the center.With increasing heating time,the heating rate became small.The apple was heated faster than the pear.Hot water was more effective than hot air in treating fruits.Increasing hot air speed increased the heating rate but increasing water circulating speed had no clear effects on the heating rate.Based on the measured temperature-time history of the fruit center,the minimum heating time could be effectively determined for codling moth control through the estimated total equivalent thermal lethal time.The results could provide reliable validation data for the computer simulation and a scientific basis to improve the hot air and hot water treatments.
文摘It is well known that optical tomography can accurately and quantitatively reconstruct the refractive index field of a transparent medium and display the three dimensional image of other physical quantities relevant to temperature or density. In this paper, a new multidirectional holographic interferometric system is built, and two kinds of image reconstruction algorithms are introduced and an automatic image processing system of interferogram is designed. A three dimentsional asymmetric gas flow field above a combustor is expertmentally investigated with holographic interferometry. The reconstructed temperatures are similar to those measured with a thermocouple.
文摘Exhaust gas temperature is an important factor in NOx, THC and PM emissions of engines. Especially 2D temperature and concentration distribution plays an important role for the engine efficiency. A thermocouple is intrinsically a point temperature measurement method and noncontact 2D temperature distribution cannot be attained by thermocouples. Recently, as a measurement technique with high sensitivity and high response, laser diagnostics has been developed and applied to the actual engine combustions. With these engineering developments, transient phenomena such as start-ups and load changes in engines have been gradually elucidated in various conditions. In this study, the theoretical and experimental research has been conducted in order to develop the noncontact and fast response 2D temperature and concentration distribution measurement method. The method is based on a Computed Tomography (CT) method using absorption spectra of water vapor at 1388 nm. It has been demonstrated that the method has been successfully applied to engine exhausts to measure 2D temperature distributions.
基金Natural Science Foundation of Hubei Province of China (226ABA080)
文摘Resistance-to-time converter is always used for digital temperature measurement. An reset-set (RS) trigger based, relaxation oscillator based temperature measurement circuit, which is used to convert the change of thermistor sensor into a frequency signal for later processing, has been presented in this article. The RS trigger, which is composed of two inverters designed with distinct logical transition threshold voltages by changing the metal-oxide-semiconductor (MOS) transistor gains, has the same function as the Schmitt trigger in the relaxation oscillator. The advantage of the RS trigger based Schmitt trigger is that it reduces the dependence to supply voltage, chip temperature, and process variation. This temperature measurement circuit has been applied in a clinical thermometer chip that can measure temperature to an accuracy of better than 0.05 ℃ down to 1.1 V battery voltage. It is fabricated in 0.5 μm double metal single poly complementary MOS (CMOS) process.
文摘Temperature is one of the physical quantifies through which quantitative evaluation of the safety and reliability of industrial products can be achieved, and this has been used widely in practice. Under any environmental condifion, regardless of the size of the object to be inspected, accurate and reliable measurement of temperature is of great practical importance. This review article presents a simple and direct method of temperature measurement, that can be applied to the local areas with difficulty in measuring the temperature by using normal thermometers. In the present article, two different application examples are demonstrated. One addresses the study of the electromigration of solders which are used as bonding metals in electronic devices (micro-structures). The application of the method to the shaft of a motor used in heavy industrial fields is explained as the second.
基金This work was supported in part by the National Natural Science Foundation of China(NSFC)(Grant Nos.61527819 and 61875146)in part by the Research Project Supported by Shanxi Province Youth Science and Technology Foundation(Grant No.201601D021069)+1 种基金in part by the Key Research and Development Program(High-Tech Field)of Shanxi Province(Grant Nos.201803D121064 and 201803D31044)in part by the Program for Sanjin Scholar,in part by the Transformation of Scientific and Technological Achievements Programs(TSTAP)of Higher Education Institutions in Shanxi,and in part by the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi.
文摘Chaotic Brillouin optical correlation domain analysis(BOCDA)has been proposed and experimentally demonstrated with the advantage of high spatial resolution.However,it faces the same issue of the temperature and strain cross-sensitivity.In this paper,the simultaneous measurement of temperature and strain can be preliminarily achieved by analyzing the two Brillouin frequencies of the chaotic laser in a large-effective-area fiber(LEAF).A temperature resolution of 1℃ and a strain resolution of 20μξ can be obtained with a spatial resolution of 3.9cm.The actual temperature and strain measurement errors are 0.37℃ and 10μξ,respectively,which are within the maximum measurement errors.