The mechanical properties of copper nanocubes by molecular dynamics are investigated in this paper. The [100], [110], [111] nanocubes are created, and their energies, yield stresses, hydrostatic stresses, Mises stress...The mechanical properties of copper nanocubes by molecular dynamics are investigated in this paper. The [100], [110], [111] nanocubes are created, and their energies, yield stresses, hydrostatic stresses, Mises stresses, and the relation- ships between them and strain are analyzed. Some concepts of the microscopic damage mechanics are introduced, which are the basis of studying the damage mechanical properties by molecular dynamics. The [100] nanocube exhibits homo- geneity and isotropy and achieves a balance easily. The [110] nanocube presents transverse isotropy. The [111] nanocube shows the complexity and anisotropy because the orientation sizes in three directions are different. The broken point occurs on a surface, but the other two do not. The [100] orientation model will be an ideal model for studying the microscopic damage theory.展开更多
This study reports the investigation of the thermomechanical behavior of aluminum alloys (AI-1060, A1-6061, and A1-7075) under the combined action of tensile loading and laser irradiations. The continuous wave ytter...This study reports the investigation of the thermomechanical behavior of aluminum alloys (AI-1060, A1-6061, and A1-7075) under the combined action of tensile loading and laser irradiations. The continuous wave ytterbium fiber laser (wavelength 1080 nm) was employed as the irradiation source, while tensile loading was provided by the tensile testing machine. The effects of various pre-loading and laser power densities on the failure time, temperature distribution, and the deformation behavior of aluminum alloys are analyzed. The experimental results represent the significant reduction in failure time for higher laser power densities and for high preloading values, which implies that preloading may contribute a significant role in the failure of the material at elevated temperature. Fracture on a microscopic scale was predominantly ductile comprising micro-void nucleation, growth, and coalescence. The AI-1060 specimens behaved plastically to some extent, while A1-6061 and A1-7075 specimens experienced catastrophic failure. The reason and characterization of ma- terial failure by tensile and laser loading are explored in detail. A comparative behavior of under-tested materials is also investigated. This work suggests that studies considering only combined loading are not enough to fully understand the mechanical behavior of under-tested materials. For complete characterization, one should consider the effect of heating as well as loading rate and the corresponding involved processes with the help of thermomechanical coupling and the thermal elastic-plastic theory.展开更多
The mechanical behavior of rock under uniaxial tensile loading is different from that of rock under compressive loads. A micromechanics-based model was proposed for mesoscopic heterogeneous brittle rock undergoing irr...The mechanical behavior of rock under uniaxial tensile loading is different from that of rock under compressive loads. A micromechanics-based model was proposed for mesoscopic heterogeneous brittle rock undergoing irreversible changes of their microscopic structures due to microcrack growth. The complete stress-strain relation including linear elasticity, nonlinear hardening,rapid stress drop and strain softening was obtained. The influence of all microcracks with different sizes and orientations were introduced into the constitutive relation by using the probability density function describing the distribution of orientations and the probability density function describing the distribution of sizes. The influence of Weibull distribution describing the distribution of orientations and Rayleigh function describing the distribution of sizes on the constitutive relation were researched. Theoretical predictions have shown to be consistent with the experimental results.展开更多
In vitro cell loading experiments are used to investigate stimulation of strain to cellular proliferation. As the flowing conditions of culture fluid in loading systems has been little known, strictly people can not d...In vitro cell loading experiments are used to investigate stimulation of strain to cellular proliferation. As the flowing conditions of culture fluid in loading systems has been little known, strictly people can not detect the influence of strain to cellular proliferation exactly because shear flow can enhance cell proliferation either. Based on the working principle and cyclic loading parameters, we simplify Navier-Stokes equation to describe the flow of culture fluid on substrates of uniaxial and equi-biaxial flat tensile loading systems and four point bending system. With approximate solutions, the distributions of velocity field and wall shear flow to cells are gained. Results show: shear flows are zero in the middle (or fixed point or line) of substrate for all systems, and they get larger proportionally to distance from middle and substrate elongate; the shear flow on the substrate of four point bending system is much greater than those of others. This shear flow in four point bending system, confirmed by Owan, I., et al with OPN mRNA increase in their experiment, could cause more influence to osteoblast-like cells than that caused by strain. We estimate the average magnitude of shear stress in Owan’s device, the results are consistent with other experimental data about shear flow. In conclusion our study makes it possible to differentiate the influence of strain on cellular proliferation to that of shear flow in loading experiments with the devices mentioned above quantitatively.展开更多
The mechanism by which electromagnetic forming(EMF)enhances the formability of metals is unclear owing to the coupling effect of multi-physics fields.In the present work,the associated formability improvement mechanis...The mechanism by which electromagnetic forming(EMF)enhances the formability of metals is unclear owing to the coupling effect of multi-physics fields.In the present work,the associated formability improvement mechanisms were qualitatively categorized and illustrated.This was realized by comparing the formability of fully annealed 2219 aluminum alloy(AA 2219-O)sheet under quasi-static(QS),electromagnetic dynamic(EM),and mechanical dynamic(MD)tensile loadings.It was found that the forming limit of AA 2219-O sheet under EM tensile loading was significantly(45.4%)higher than that under QS tensile loading,and was marginally(3.7%–4.3%)higher than that under MD tensile loading.In addition,the forming limit of AA 2219-O sheet demonstrated a negative dependency on the strain rate within the range of the dynamic tensile tests conducted.The deformation conditions common to EM and MD tensile loadings were responsible for the significant formability improvement compared with QS tensile loading.In particular,the inertial effect was dominant.The different deformation conditions that distinguish EM tensile loading from MD tensile loading resulted in the marginal improvement in formability.This was caused by the absence of a sustaining contact force at the later deformation stage and the lower strain rate.The body force exerted little influence on the formability improvement,and the thermal effect under the two dynamic tensile loadings was negligible.展开更多
The functional relation between the residual tensile strength of plain concrete and number of cycles was determined. 99 tappered prism specimens of plain concrete were tested under uniaxial tensile fatigue loading. Ba...The functional relation between the residual tensile strength of plain concrete and number of cycles was determined. 99 tappered prism specimens of plain concrete were tested under uniaxial tensile fatigue loading. Based on the probability distribution of the residual tensile strength, the empirical expressions of the residual tensile strength corresponding to the number of cycles were obtained. The residual tensile strength attenuating curves can be used to predict the residual fatigue life of the specimen under variable-amplitude fatigue loading. There is a good correlation between residual tensile strength and residual secant elastic modulus. The relationship between the residual secant elastic modulus and number of cycles was also established.展开更多
In this paper, the fabrication and investigation of flexible impedance and capacitive tensile load sensors based on carbon nanotube(CNT) composite are reported. On thin rubber substrates, CNTs are deposited from sus...In this paper, the fabrication and investigation of flexible impedance and capacitive tensile load sensors based on carbon nanotube(CNT) composite are reported. On thin rubber substrates, CNTs are deposited from suspension in water and pressed at elevated temperature. It is found that the fabricated load cells are highly sensitive to the applied mechanical force with good repeatability. The increase in impedance of the cells is observed to be 2.0 times while the decrease in the capacitance is found to be 2.1 times as applied force increases up to 0.3 N. The average impedance and capacitive sensitivity of the cell are equal to 3.4 N^(-1) and 1.8 N^(-1), respectively. Experimental results are compared with the simulated values,and they show that they are in reasonable agreement with each other.展开更多
The effect of cathodic hydrogen charging on the tensile and constant load properties was deter- mined for an austenitic stainless steel weldment comprising a 304L steel in the solution treated condition as a base meta...The effect of cathodic hydrogen charging on the tensile and constant load properties was deter- mined for an austenitic stainless steel weldment comprising a 304L steel in the solution treated condition as a base metal and a 308L filler steel as a weld metal. Part of the 304L solution treated steel was separately given additional sensitization treatment to simulate the microstructure that would develop in the heat affected zone. Tests were performed at room temperature on notched round bar specimens. Hydrogen charging resulted in a pronounced embrittlement of the tested materials. This was manifested mainly as a considerable loss in the ductility of tensile specimens and a decrease in the time to failure and threshold stress of constant load specimens. The 308L weld metal exhibited the highest, and the 304L solution treated steel the lowest, resistance to hydrogen embrittlement. Hydrogen embrittlement was associated with the formation of strain induced martensite as well as a transition from brittle to ductile fracture morphology onwards the centre of the specimens.展开更多
Biomedical degradable materials would be subjected to different degrees and forms of static stress after being implanted in the human body.In this work,the biocorrosion behaviors of AZ31B magnesium alloy under differe...Biomedical degradable materials would be subjected to different degrees and forms of static stress after being implanted in the human body.In this work,the biocorrosion behaviors of AZ31B magnesium alloy under different stress forms with different magnitudes(20~150MPa)were studied.It was found that the corrosion behaviors at stressed conditions were severer than those at unstressed conditions and corrosion rates were obviously accelerated.The biocorrosion behaviors are more sensitive to the effects of tensile loads than to compressive loads.A biocorrosion numerical model on the degradation process of Mg alloy under static loads was established.The corrosion current density(i_(corr))of Mg alloy and the applied static stress(σ)matches a linear relationship of ln i_(corr)~σwell during the early stage(within 24 hrs)while deviated gradually in the latter period of corrosion.This work could provide a guidance and theoretical reference for further researches on the biocorrosion behaviors and practical clinical applications of the biomedical materials subjected to physiological loads.展开更多
In order to achieve a better understanding of failure behavior of cruciform specimen under different biaxial loading conditions,a three-dimensional finite element model is established with solid and interface elements...In order to achieve a better understanding of failure behavior of cruciform specimen under different biaxial loading conditions,a three-dimensional finite element model is established with solid and interface elements.Maximum stress criterion,two Hashin-type criteria and the new proposed criteria are used to predict the strength of plain woven textile composites when biaxial loading ratio equals 1.Compared with experimental data,only the new proposed criteria can reach reasonable results.The applicability of the new proposed criteria is also verified by predicting the tensile and compressive strength of cruciform specimen under different biaxial loading ratios.Moreover,the introduction of interface element makes it more intuitive to recognize delamination failure.The shape of the predicted delamination failure region in the interface layer is similar to that of the failure region in neighboring entity layers,but the area of delamination failure region is a little larger.展开更多
The effect of welding current on the weld shape and tensile shear load during laser beam-resistance seam welding (LB-RSW) of aluminum alloy 5052 is studied. Experimental results show that the penetration depth, weld...The effect of welding current on the weld shape and tensile shear load during laser beam-resistance seam welding (LB-RSW) of aluminum alloy 5052 is studied. Experimental results show that the penetration depth, weld width ,tensile shear load and the ratio of penetration depth to weld width of LB-RSW are bigger than those of laser beam welding( LBW) under the same conditions and the former three parameters increase as welding current rises. The weld shape of LB-RSW below 5 kA welding current is nearly the same as that of LBW. The weld morphology is protuberant under the condition of 5 kA welding current and 0. 8 m/min welding speed. Furthermore, the microstructure of the weld seam of LB-RSW is coarser than that of LBW.展开更多
Friction spot welding (FSpW) was successfully used to produce joints of LY12 aluminum alloy. The effects of refilling time on microstructure and mechanical properties of FSpW joints were systematically studied. Resu...Friction spot welding (FSpW) was successfully used to produce joints of LY12 aluminum alloy. The effects of refilling time on microstructure and mechanical properties of FSpW joints were systematically studied. Results show that the cross-section of FSpW joint presents a basin-like morphology. A white bonding ligament exists in the center of the joint. The stir zone can be clarified into sleeve affected zone and pin affected zone based on different grain sizes. With increasing the refilling time from 2. 0 s to 3.5 s, grains in the stir zone become coarser, microhardness of the joint decreases and tensile shear failure load of the joint firstly increases and then decreases. The maximum tensile shear failure load of 8 130 N is attained when the refilling time is 3.0 s. Shear-plug fracture mode and shear fracture mode can be observed in the tensile shear tests. The maximum hardness of 169. 7 HV is attained in the joint center when the refilling time is 2. 0 s.展开更多
In order to achieve a high-quality joining of aluminum(Al)and copper(Cu)dissimilar metals,a new friction stir doubleriveting welding(FSDRW)with a Cu rod as the rivet was proposed,and the rotating tool with a large con...In order to achieve a high-quality joining of aluminum(Al)and copper(Cu)dissimilar metals,a new friction stir doubleriveting welding(FSDRW)with a Cu rod as the rivet was proposed,and the rotating tool with a large concave angle shoulder was specially designed.The results showed that under the thermal–mechanical effect of rotating tool,the Cu rod was deformed to be a double riveting heads structure with a Cu anchor at the upper surface of Al plate and an Al anchor above the lap interface of joint,and these two anchors greatly enhanced the mechanical interlocking of Al/Cu joint.The effective bonding interfaces were formed among the double riveting heads structure,the upper Al plate and the lower Cu plate,which contained the Cu/Cu interface and the Al/Cu interface.The Cu/Cu interface without the kissing bond and the Al/Cu interface with the rationally thin AlCu and Al_(2)Cu intermetallic compounds(IMCs)layers were beneficial to heightening the joint tensile shear strength.The maximum tensile shear load of the FSDRW joint achieved 5.52 kN,and the joint under different plunging depths of rotating tool presented a mixed mode of ductile fracture and brittle fracture.This novel FSDRW technique owns the advantages of strong mechanical interlocking and superb metallurgical bonding,and provides a new approach to acquiring a high-quality Al/Cu dissimilar metals joint.展开更多
This article investigates the interest of using in-situ piezoelectric(PZT and PVDF)disks to perform real-time Structural Health Monitoring(SHM)of glass fiber-reinforced polymer composites submitted to var-ious tensile...This article investigates the interest of using in-situ piezoelectric(PZT and PVDF)disks to perform real-time Structural Health Monitoring(SHM)of glass fiber-reinforced polymer composites submitted to var-ious tensile loadings.The goal is to evaluate the working range and SHM potential of such embedded transducers for relatively simple mechanical loadings,with the long-term aim of using them to monitor complete 3D structures submitted to more complex loadings.SHM is performed acquiring the electrical capacitance variation of the embedded transducers.To study the potential links between the insitu capacitance signal and the global response of the loaded host specimens,a multi-instrumentation composed of external Nondestructive Testing techniques was implemented on the surfaces of the specimens to search for multi-physical couplings between these external measurements and the capacitance curves.Results confirmed the non-intrusiveness of the embedded transducers,and allowed estimating their working domain.PZT capacitance signal follows well the mechanical loadings,but the piezoceramic transducer gets damaged after a determined relatively low strain level due to its brittleness.The limits of this working domain are extended by using a stretchable PolyVinylidene Fluoride(PVDF)polymer transducer,allowing this one to perform in-situ and real-time SHM of its host tensile specimens until failure.展开更多
文摘The mechanical properties of copper nanocubes by molecular dynamics are investigated in this paper. The [100], [110], [111] nanocubes are created, and their energies, yield stresses, hydrostatic stresses, Mises stresses, and the relation- ships between them and strain are analyzed. Some concepts of the microscopic damage mechanics are introduced, which are the basis of studying the damage mechanical properties by molecular dynamics. The [100] nanocube exhibits homo- geneity and isotropy and achieves a balance easily. The [110] nanocube presents transverse isotropy. The [111] nanocube shows the complexity and anisotropy because the orientation sizes in three directions are different. The broken point occurs on a surface, but the other two do not. The [100] orientation model will be an ideal model for studying the microscopic damage theory.
基金Project supported by the National Natural Science Foundation of China(Grant No.61605079)the Fundamental Research Funds for the Central Universities,China(Grant No.30916014112-020)
文摘This study reports the investigation of the thermomechanical behavior of aluminum alloys (AI-1060, A1-6061, and A1-7075) under the combined action of tensile loading and laser irradiations. The continuous wave ytterbium fiber laser (wavelength 1080 nm) was employed as the irradiation source, while tensile loading was provided by the tensile testing machine. The effects of various pre-loading and laser power densities on the failure time, temperature distribution, and the deformation behavior of aluminum alloys are analyzed. The experimental results represent the significant reduction in failure time for higher laser power densities and for high preloading values, which implies that preloading may contribute a significant role in the failure of the material at elevated temperature. Fracture on a microscopic scale was predominantly ductile comprising micro-void nucleation, growth, and coalescence. The AI-1060 specimens behaved plastically to some extent, while A1-6061 and A1-7075 specimens experienced catastrophic failure. The reason and characterization of ma- terial failure by tensile and laser loading are explored in detail. A comparative behavior of under-tested materials is also investigated. This work suggests that studies considering only combined loading are not enough to fully understand the mechanical behavior of under-tested materials. For complete characterization, one should consider the effect of heating as well as loading rate and the corresponding involved processes with the help of thermomechanical coupling and the thermal elastic-plastic theory.
文摘The mechanical behavior of rock under uniaxial tensile loading is different from that of rock under compressive loads. A micromechanics-based model was proposed for mesoscopic heterogeneous brittle rock undergoing irreversible changes of their microscopic structures due to microcrack growth. The complete stress-strain relation including linear elasticity, nonlinear hardening,rapid stress drop and strain softening was obtained. The influence of all microcracks with different sizes and orientations were introduced into the constitutive relation by using the probability density function describing the distribution of orientations and the probability density function describing the distribution of sizes. The influence of Weibull distribution describing the distribution of orientations and Rayleigh function describing the distribution of sizes on the constitutive relation were researched. Theoretical predictions have shown to be consistent with the experimental results.
文摘In vitro cell loading experiments are used to investigate stimulation of strain to cellular proliferation. As the flowing conditions of culture fluid in loading systems has been little known, strictly people can not detect the influence of strain to cellular proliferation exactly because shear flow can enhance cell proliferation either. Based on the working principle and cyclic loading parameters, we simplify Navier-Stokes equation to describe the flow of culture fluid on substrates of uniaxial and equi-biaxial flat tensile loading systems and four point bending system. With approximate solutions, the distributions of velocity field and wall shear flow to cells are gained. Results show: shear flows are zero in the middle (or fixed point or line) of substrate for all systems, and they get larger proportionally to distance from middle and substrate elongate; the shear flow on the substrate of four point bending system is much greater than those of others. This shear flow in four point bending system, confirmed by Owan, I., et al with OPN mRNA increase in their experiment, could cause more influence to osteoblast-like cells than that caused by strain. We estimate the average magnitude of shear stress in Owan’s device, the results are consistent with other experimental data about shear flow. In conclusion our study makes it possible to differentiate the influence of strain on cellular proliferation to that of shear flow in loading experiments with the devices mentioned above quantitatively.
基金financially supported by the National Natural Science Foundation of China(Nos.51575206 and 51705169)the Innovation Funds for Aerospace Science and Technology from China Aerospace Science and Technology Corporation(No.CASC150704)+1 种基金the Science Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body(No.31615006)the Fundamental Research Funds for the Central University(No.2016YXZD055)。
文摘The mechanism by which electromagnetic forming(EMF)enhances the formability of metals is unclear owing to the coupling effect of multi-physics fields.In the present work,the associated formability improvement mechanisms were qualitatively categorized and illustrated.This was realized by comparing the formability of fully annealed 2219 aluminum alloy(AA 2219-O)sheet under quasi-static(QS),electromagnetic dynamic(EM),and mechanical dynamic(MD)tensile loadings.It was found that the forming limit of AA 2219-O sheet under EM tensile loading was significantly(45.4%)higher than that under QS tensile loading,and was marginally(3.7%–4.3%)higher than that under MD tensile loading.In addition,the forming limit of AA 2219-O sheet demonstrated a negative dependency on the strain rate within the range of the dynamic tensile tests conducted.The deformation conditions common to EM and MD tensile loadings were responsible for the significant formability improvement compared with QS tensile loading.In particular,the inertial effect was dominant.The different deformation conditions that distinguish EM tensile loading from MD tensile loading resulted in the marginal improvement in formability.This was caused by the absence of a sustaining contact force at the later deformation stage and the lower strain rate.The body force exerted little influence on the formability improvement,and the thermal effect under the two dynamic tensile loadings was negligible.
基金the Doctoral Authorization Point Foundation of China(No.30300078)
文摘The functional relation between the residual tensile strength of plain concrete and number of cycles was determined. 99 tappered prism specimens of plain concrete were tested under uniaxial tensile fatigue loading. Based on the probability distribution of the residual tensile strength, the empirical expressions of the residual tensile strength corresponding to the number of cycles were obtained. The residual tensile strength attenuating curves can be used to predict the residual fatigue life of the specimen under variable-amplitude fatigue loading. There is a good correlation between residual tensile strength and residual secant elastic modulus. The relationship between the residual secant elastic modulus and number of cycles was also established.
基金Ghulam Ishaq Khan Institute of Engineering Science and Technology, Pakistan for its support
文摘In this paper, the fabrication and investigation of flexible impedance and capacitive tensile load sensors based on carbon nanotube(CNT) composite are reported. On thin rubber substrates, CNTs are deposited from suspension in water and pressed at elevated temperature. It is found that the fabricated load cells are highly sensitive to the applied mechanical force with good repeatability. The increase in impedance of the cells is observed to be 2.0 times while the decrease in the capacitance is found to be 2.1 times as applied force increases up to 0.3 N. The average impedance and capacitive sensitivity of the cell are equal to 3.4 N^(-1) and 1.8 N^(-1), respectively. Experimental results are compared with the simulated values,and they show that they are in reasonable agreement with each other.
文摘The effect of cathodic hydrogen charging on the tensile and constant load properties was deter- mined for an austenitic stainless steel weldment comprising a 304L steel in the solution treated condition as a base metal and a 308L filler steel as a weld metal. Part of the 304L solution treated steel was separately given additional sensitization treatment to simulate the microstructure that would develop in the heat affected zone. Tests were performed at room temperature on notched round bar specimens. Hydrogen charging resulted in a pronounced embrittlement of the tested materials. This was manifested mainly as a considerable loss in the ductility of tensile specimens and a decrease in the time to failure and threshold stress of constant load specimens. The 308L weld metal exhibited the highest, and the 304L solution treated steel the lowest, resistance to hydrogen embrittlement. Hydrogen embrittlement was associated with the formation of strain induced martensite as well as a transition from brittle to ductile fracture morphology onwards the centre of the specimens.
基金supported by the National Natural Science Foundation of China(Grant No.51771054,52171236)State Key Program of National Natural Science Foundation of China(Grant No.51631003)+5 种基金National Key Research and Development Program of China(Grant No.2016YFC1102402)Open Research Fund of Jiangsu Key Laboratory for Advanced Metallic Materials(Grant No.AMM2021A01)the Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology(Grant No.ASMA201901)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX20_0091)Natural Science Foundation of Jiangsu Province(BK20181020)the Introduction of Talent Research Fund in Nanjing Institute of Technology(YKJ201705)
文摘Biomedical degradable materials would be subjected to different degrees and forms of static stress after being implanted in the human body.In this work,the biocorrosion behaviors of AZ31B magnesium alloy under different stress forms with different magnitudes(20~150MPa)were studied.It was found that the corrosion behaviors at stressed conditions were severer than those at unstressed conditions and corrosion rates were obviously accelerated.The biocorrosion behaviors are more sensitive to the effects of tensile loads than to compressive loads.A biocorrosion numerical model on the degradation process of Mg alloy under static loads was established.The corrosion current density(i_(corr))of Mg alloy and the applied static stress(σ)matches a linear relationship of ln i_(corr)~σwell during the early stage(within 24 hrs)while deviated gradually in the latter period of corrosion.This work could provide a guidance and theoretical reference for further researches on the biocorrosion behaviors and practical clinical applications of the biomedical materials subjected to physiological loads.
基金supported by the National Natural Science Foundation of China(No.51205190)the Jiangsu Province Key Laboratory of Aerospace Power System(No.NJ20140019)
文摘In order to achieve a better understanding of failure behavior of cruciform specimen under different biaxial loading conditions,a three-dimensional finite element model is established with solid and interface elements.Maximum stress criterion,two Hashin-type criteria and the new proposed criteria are used to predict the strength of plain woven textile composites when biaxial loading ratio equals 1.Compared with experimental data,only the new proposed criteria can reach reasonable results.The applicability of the new proposed criteria is also verified by predicting the tensile and compressive strength of cruciform specimen under different biaxial loading ratios.Moreover,the introduction of interface element makes it more intuitive to recognize delamination failure.The shape of the predicted delamination failure region in the interface layer is similar to that of the failure region in neighboring entity layers,but the area of delamination failure region is a little larger.
基金National Natural Science Foundation of China (No.50575091).
文摘The effect of welding current on the weld shape and tensile shear load during laser beam-resistance seam welding (LB-RSW) of aluminum alloy 5052 is studied. Experimental results show that the penetration depth, weld width ,tensile shear load and the ratio of penetration depth to weld width of LB-RSW are bigger than those of laser beam welding( LBW) under the same conditions and the former three parameters increase as welding current rises. The weld shape of LB-RSW below 5 kA welding current is nearly the same as that of LBW. The weld morphology is protuberant under the condition of 5 kA welding current and 0. 8 m/min welding speed. Furthermore, the microstructure of the weld seam of LB-RSW is coarser than that of LBW.
基金This work is supported by the National Natural Science Foundation of China (No. 51204111 ), the Natural Science Foundation of Liaoning Province ( No. 2013024004 and No. 2014024008).
文摘Friction spot welding (FSpW) was successfully used to produce joints of LY12 aluminum alloy. The effects of refilling time on microstructure and mechanical properties of FSpW joints were systematically studied. Results show that the cross-section of FSpW joint presents a basin-like morphology. A white bonding ligament exists in the center of the joint. The stir zone can be clarified into sleeve affected zone and pin affected zone based on different grain sizes. With increasing the refilling time from 2. 0 s to 3.5 s, grains in the stir zone become coarser, microhardness of the joint decreases and tensile shear failure load of the joint firstly increases and then decreases. The maximum tensile shear failure load of 8 130 N is attained when the refilling time is 3.0 s. Shear-plug fracture mode and shear fracture mode can be observed in the tensile shear tests. The maximum hardness of 169. 7 HV is attained in the joint center when the refilling time is 2. 0 s.
基金financially supported by the National Natural Science Foundation of China(Nos.51874201 and 52074184).
文摘In order to achieve a high-quality joining of aluminum(Al)and copper(Cu)dissimilar metals,a new friction stir doubleriveting welding(FSDRW)with a Cu rod as the rivet was proposed,and the rotating tool with a large concave angle shoulder was specially designed.The results showed that under the thermal–mechanical effect of rotating tool,the Cu rod was deformed to be a double riveting heads structure with a Cu anchor at the upper surface of Al plate and an Al anchor above the lap interface of joint,and these two anchors greatly enhanced the mechanical interlocking of Al/Cu joint.The effective bonding interfaces were formed among the double riveting heads structure,the upper Al plate and the lower Cu plate,which contained the Cu/Cu interface and the Al/Cu interface.The Cu/Cu interface without the kissing bond and the Al/Cu interface with the rationally thin AlCu and Al_(2)Cu intermetallic compounds(IMCs)layers were beneficial to heightening the joint tensile shear strength.The maximum tensile shear load of the FSDRW joint achieved 5.52 kN,and the joint under different plunging depths of rotating tool presented a mixed mode of ductile fracture and brittle fracture.This novel FSDRW technique owns the advantages of strong mechanical interlocking and superb metallurgical bonding,and provides a new approach to acquiring a high-quality Al/Cu dissimilar metals joint.
文摘This article investigates the interest of using in-situ piezoelectric(PZT and PVDF)disks to perform real-time Structural Health Monitoring(SHM)of glass fiber-reinforced polymer composites submitted to var-ious tensile loadings.The goal is to evaluate the working range and SHM potential of such embedded transducers for relatively simple mechanical loadings,with the long-term aim of using them to monitor complete 3D structures submitted to more complex loadings.SHM is performed acquiring the electrical capacitance variation of the embedded transducers.To study the potential links between the insitu capacitance signal and the global response of the loaded host specimens,a multi-instrumentation composed of external Nondestructive Testing techniques was implemented on the surfaces of the specimens to search for multi-physical couplings between these external measurements and the capacitance curves.Results confirmed the non-intrusiveness of the embedded transducers,and allowed estimating their working domain.PZT capacitance signal follows well the mechanical loadings,but the piezoceramic transducer gets damaged after a determined relatively low strain level due to its brittleness.The limits of this working domain are extended by using a stretchable PolyVinylidene Fluoride(PVDF)polymer transducer,allowing this one to perform in-situ and real-time SHM of its host tensile specimens until failure.