期刊文献+
共找到236篇文章
< 1 2 12 >
每页显示 20 50 100
Facile preparation of Fe/N-based biomass porous carbon composite towards enhancing the thermal decomposition of DAP-4
1
作者 Er-hai An Xiao-xia Li +5 位作者 Cun-juan Yu Ying-xin Tan Zi-jun Fan Qing-xia Li Peng Deng Xiong Cao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期288-294,共7页
Fe/N-based biomass porous carbon composite(Fe/N-p Carbon) was prepared by a facile high-temperature carbonization method from biomass,and the effect of Fe/N-p Carbon on the thermal decomposition of energetic molecular... Fe/N-based biomass porous carbon composite(Fe/N-p Carbon) was prepared by a facile high-temperature carbonization method from biomass,and the effect of Fe/N-p Carbon on the thermal decomposition of energetic molecular perovskite-based material DAP-4 was studied.Biomass porous carbonaceous materials was considered as the micro/nano support layers for in situ deposition of Fe/N precursors.Fe/Np Carbon was prepared simply by the high-temperature carbonization method.It was found that it showed the inherent catalysis properties for thermal decomposition of DAP-4.The heat release of DAP-4/Fe/N-p Carbon by DSC curves tested had increased slightly,compared from DAP-4/Fe/N-p Carbon-0.The decomposition temperature peak of DAP-4 at the presence of Fe/N-p Carbon had reduced by 79°C from384.4°C(pure DAP-4) to 305.4°C(DAP-4/Fe/N-p Carbon-3).The apparent activation energy of DAP-4thermal decomposition also had decreased by 29.1 J/mol.The possible catalytic decomposition mechanism of DAP-4 with Fe/N-p Carbon was proposed. 展开更多
关键词 Biomass materials Porous carbon DAP-4 thermal decomposition Facile method
下载PDF
Study on thermal decomposition kinetics of azobenzene-4,4′-dicarboxylic acid by using compensation parameter method and nonlinear fitting evaluation
2
作者 Shuyi Shen Song Guo +1 位作者 Sining Chen Jinhua Zhao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期269-279,共11页
Recently,azobenzene-4,4'-dicarboxylic acid(ADCA)has been produced gradually for use as an organic synthesis or pharmaceutical intermediate due to its eminent performance.With large quantities put into application ... Recently,azobenzene-4,4'-dicarboxylic acid(ADCA)has been produced gradually for use as an organic synthesis or pharmaceutical intermediate due to its eminent performance.With large quantities put into application in the future,the thermal stability of this substance during storage,transportation,and use will become quite important.Thus,in this work,the thermal decomposition behavior,thermal decomposition kinetics,and thermal hazard of ADCA were investigated.Experiments were conducted by using a SENSYS evo DSC device.A combination of differential iso-conversion method,compensation parameter method,and nonlinear fitting evaluation were also used to analyze thermal kinetics and mechanism of ADCA decomposition.The results show that when conversion rate α increases,the activation energies of ADCA's first and main decomposition peaks fall.The amount of heat released during decomposition varies between 182.46 and 231.16 J·g^(-1).The proposed kinetic equation is based on the Avrami-Erofeev model,which is consistent with the decomposition progress.Applying the Frank-Kamenetskii model,a calculated self-accelerating decomposition temperature of 287.0℃is obtained. 展开更多
关键词 Azobenzene-4 4′-dicarboxylic acid thermal decomposition behavior Kinetic mechanism thermal hazard evaluation Compensation parameter effect
下载PDF
Reactive molecular dynamics insight into the thermal decomposition mechanism of 2,6-Bis(picrylamino)-3,5-dinitropyridine
3
作者 Jianbo Fu Hui Ren +3 位作者 Xinzhou Wu Yongjin Chen Mi Zhang Yazhi Cheng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期134-146,共13页
2,6-bis(picrylamino)-3,5-dinitropyridine(PYX)has excellent thermostability,which makes its thermal decomposition mechanism receive much attention.In this paper,the mechanism of PYX thermal decomposition was investigat... 2,6-bis(picrylamino)-3,5-dinitropyridine(PYX)has excellent thermostability,which makes its thermal decomposition mechanism receive much attention.In this paper,the mechanism of PYX thermal decomposition was investigated thoroughly by the ReaxFF-lg force field combined with DFT-B3LYP(6-311++G)method.The detailed decomposition mechanism,small-molecule product evolution,and cluster evolution of PYX were mainly analyzed.In the initial stage of decomposition,the intramolecular hydrogen transfer reaction and the formation of dimerized clusters are earlier than the denitration reaction.With the progress of the reaction,one side of the bitter amino group is removed from the pyridine ring,and then the pyridine ring is cleaved.The final products produced in the thermal decomposition process are CO_(2),H_(2)O,N_(2),and H_(2).Among them,H_(2)O has the earliest generation time,and the reaction rate constant(k_(3))is the largest.Many clusters are formed during the decomposition of PYX,and the formation,aggregation,and decomposition of these clusters are strongly affected by temperature.At low temperatures(2500 K-2750 K),many clusters are formed.At high temperatures(2750 K-3250 K),the clusters aggregate to form larger clusters.At 3500 K,the large clusters decompose and become small.In the late stage of the reaction,H and N in the clusters escaped almost entirely,but more O was trapped in the clusters,which affected the auto-oxidation process of PYX.PYX's initial decomposition activation energy(E_(a))was calculated to be 126.58 kJ/mol.This work contributes to a theoretical understanding of PYX's entire thermal decomposition process. 展开更多
关键词 PYX thermal decomposition ReaxFF-lg MD simulations Excellent thermostable explosives
下载PDF
Thermal decomposition effect of MgCo_(2)O_(4)nanosheets on ammonium perchlorate-based energetic molecular perovskites 被引量:2
4
作者 Er-hai An Xiao-xia Li +3 位作者 Hai-xia Zhao Ying-xin Tan Xiong Cao Peng Deng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期111-119,共9页
Energetic molecular perovskites have attracted widespread attention in the fields of energy materials due to their high detonation performance.In this work,we reported the effect of MgCo_(2)O_(4) nanosheets on the the... Energetic molecular perovskites have attracted widespread attention in the fields of energy materials due to their high detonation performance.In this work,we reported the effect of MgCo_(2)O_(4) nanosheets on the thermal decomposition of ammonium perchlorate(NH_(4)ClO_(4),AP)-based energetic molecular perovskites(AP-based energetic molecular perovskites).The morphology and structure of the MgCo_(2)O_(4) nanosheets were characterized.And their catalytic effect on the thermal decomposition of AP-based energetic molecular perovskites(H_2pz)[NH_(4)(ClO_(4))_(3)](PAP-4),(H_2dabco)[NH_(4)(ClO_(4))_(3)](DAP-4),(H_2mpz)[NH_(4)(ClO_(4))_(3)](PAP-M_(4)),and (H_2hpz)[NH_(4)(ClO_(4))_(3)](PAP-H_(4)) was analyzed.The results showed that MgCo_(2)O_(4) nanosheets had excellent intrinsically catalytic performance towards enhancing the thermal decomposition of AP-based energetic molecular perovskites.After adding MgCo_(2)O_(4) nanosheets,the thermal decomposition peak temperatures of PAP-4,DAP-4,PAP-M_(4),and PAP-H_(4) had been reduced by35.7℃,48.4℃,37.9℃,and 43.6℃,respectively.And the activation energy(Ea)of the thermal decomposition of AP-based energetic molecular perovskites had been reduced,the Eaof PAP-H_(4) decreased by 46.4 kJ/mol at most among them.The catalytic mechanism of MgCo_(2)O_(4) nanosheets for AP-based energetic molecular perovskites is analyzed.This work provides a reference for the future application of AP-based energetic molecular perovskites. 展开更多
关键词 AP-based energetic molecular perovskites MgCo_(2)O_(4)nanosheets thermal decomposition Catalytic performance
下载PDF
Premature thermal decomposition behavior of 3,4-dinitrofurazanfuroxan with certain types of nitrogen-rich compounds 被引量:1
5
作者 Jiao Huang Ru-fang Peng Bo Jin 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第8期102-110,共9页
3,4-Dinitrofurazanfuroxan(DNTF),as a high-energy-density material,features good thermal stability and wide applications.This study aimed to elucidate the thermal decomposition mechanism of DNTF combined with nitrogen-... 3,4-Dinitrofurazanfuroxan(DNTF),as a high-energy-density material,features good thermal stability and wide applications.This study aimed to elucidate the thermal decomposition mechanism of DNTF combined with nitrogen-rich compounds containing N-H.The thermal stabilities of DNTF and its hybrid systems were investigated using differential thermal analysis/thermogravimetry(TG),vacuum stability test,and accelerating rate calorimetry under isothermal,non-isothermal,and adiabatic conditions,respectively.Results showed that the thermal stability and thermal safety of DNTF significantly decreased after combining with nitrogen-rich compounds containing N-H.Calculation results showed that the activation energy of the DNTF hybrid systems was significantly lower than that of DNTF.The TGIR was used to monitor the generation of fugitive gases during the thermal decomposition of the DNTF/5-aminotetrazole(5-ATZ)hybrid.Moreover,the nitrogen-rich molecules containing N-H interacted extensively with DNTF,and this interaction accelerated the thermal degradation of DNTF. 展开更多
关键词 DNTF NeH rich Nitrogen compounds Advanced thermal decomposition peak
下载PDF
Iron/aluminum nanocomposites prepared by one-step reduction method and their effects on thermal decomposition of AP and AN
6
作者 Yong Kou Yi Wang +2 位作者 Jun Zhang Kai-ge Guo Xiao-lan Song 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第4期74-87,共14页
Aluminum(Al)powder is widely used in solid propellants.In particular,nano-Al has attracted extensive scholarly attention in the field of energetic materials due to its higher reactivity than micro-Al.However,the exist... Aluminum(Al)powder is widely used in solid propellants.In particular,nano-Al has attracted extensive scholarly attention in the field of energetic materials due to its higher reactivity than micro-Al.However,the existence of aluminum oxide film on its surface reduces the heat release performance of the aluminum powder,which greatly limits its application.Hence,this paper used iron,a component of solid propellant,to coat micron-Al and nano-Al to improve the heat release efficiency and reactivity of Al powder.SEM,TEM,EDS,XRD,XPS,and BET were used to investigate the morphological structure and properties of pure Al and Fe/Al composite fuels of different sizes.The results show that Fe was uniformly coated on the surface of Al powder.There was no reaction between Fe and Al,and Fe/Al composite fuels had a larger specific surface area than pure Al,which could better improve the reactivity of pure Al.Besides,the catalytic effects of pure Al and Fe/Al composite fuels of different sizes on ammonium perchlorate and ammonium nitrate were explored.The results show that the catalysis of pure Al powder could be greatly improved by coating Fe on the surface of Al powder.Especially,the micron-Fe/Al composite fuel had a higher catalytic effect than the pure nano-Al powder.Hence,Fe/Al composite fuels are expected to be widely used in solid propellants. 展开更多
关键词 ALUMINUM Fe/Al composite fuel High reactivity thermal decomposition AP AN
下载PDF
Investigation of the Thermal Decomposition Behavior of Oleuropein with Many Pharmacological Activities from Olive by Thermogravimetry
7
作者 Jiaojiao Yuan Su Tuo +3 位作者 Yangyang Liu Jing He Shao-Hwa Hu Junling Tu 《Journal of Renewable Materials》 EI 2023年第8期3371-3385,共15页
Due to the existence of poly-hydroxyl structures,the temperature may have an effect on the thermal stability of oleuropein for its applications.In the current study,the thermal decomposition process and kinetics behav... Due to the existence of poly-hydroxyl structures,the temperature may have an effect on the thermal stability of oleuropein for its applications.In the current study,the thermal decomposition process and kinetics behavior of oleuropein from the olive resource were researched by thermogravimetric theoretical analysis methods and non-isothermal kinetics simulation.The results of thermogravimetry analysis showed the whole thermal decomposi-tion process of oleuropein involved two stages,with 21.22%of residue.It was also revealed that high heating rates of more than 20 K min^(-1) led to significant thermal hysteresis and inhibited the whole thermal decomposition behavior of oleuropein.Moreover,an investigation of the thermal decomposition kinetics indicated that the non-isothermal decomposition behavior followed a D3 model during thefirst stage(three-dimensional diffusion,Jander equation)and a D1 model in the second stage(one-dimensional diffusion).For thefirst and second ther-mal decomposition stages,the Kissinger,Friedman,Flynn-Wall-Ozawa,and Coats–Redfern four methods were applied to determine the activation energy(E=143.72 and 247.01 kJ mol^(-1))and Arrhenius preexponential factor(ln A=26.34 and 42.45 min^(-1)),respectively.Therefore,the study will provide good theoretical guidance for ther-mal stability and thermal transformation application of oleuropein.It will be suitable for low-temperature appli-cations in the cosmetic,food supplement and pharmaceutical industries. 展开更多
关键词 OLEUROPEIN thermal decomposition behavior kinetics process thermogravimetry analysis
下载PDF
Thermal decomposition of magnesium ammonium phosphate and adsorption properties of its pyrolysis products toward ammonia nitrogen 被引量:13
8
作者 陈益清 唐建军 +2 位作者 李文龙 钟振辉 尹娟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第2期497-503,共7页
High-purity magnesium ammonium phosphate (MAP) was precipitated by controlling pH value of the reaction system of 9.0-9.5. The thermal decomposition behavior of MAP and the adsorption properties of its pyrolysis pro... High-purity magnesium ammonium phosphate (MAP) was precipitated by controlling pH value of the reaction system of 9.0-9.5. The thermal decomposition behavior of MAP and the adsorption properties of its pyrolysis products toward ammonia-nitrogen were also studied by XRD, SEM, TGA-DTA and FT-IR methods. The results indicated that high-purity MAP was obtained at pH value of 9.0-9.5. Upon heating to 100-120℃ for 120 min, MAP was thermally decomposed, losing water and ammonia concomitantly with a reduction in grain size and crystallinity. The capacity of pyrolysis products for ammonia nitrogen adsorption reached 72.5 mg/g, with a removal rate of up to 95% from an 800 mg/L solution. The characteristic diffraction peaks corresponding to MAP mainly appeared in their XRD patterns after adsorption of ammonia nitrogen. The pyrolysis products of MAP at 100-120 ℃ could be recycling-used as the chemical treatment regents of ammonia nitrogen in the practical application. 展开更多
关键词 magnesium ammonium phosphate magnesium hydrogen phosphate thermal decomposition ammonia nitrogen adsorption properties
下载PDF
Kinetics of thermal decomposition of lanthanum oxalate hydrate 被引量:11
9
作者 詹光 余军霞 +2 位作者 徐志高 周芳 池汝安 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第4期925-934,共10页
Lanthanum oxalate hydrate La2(C2O4)3·10H2O,the precursor of La2O3 ultrafine powders,was prepared by impinging stream reactor method with PEG 20000 as surfactant.Thermal decomposition of La2(C2O4)3·10H2O ... Lanthanum oxalate hydrate La2(C2O4)3·10H2O,the precursor of La2O3 ultrafine powders,was prepared by impinging stream reactor method with PEG 20000 as surfactant.Thermal decomposition of La2(C2O4)3·10H2O from room temperature to 900 °C was investigated and intermediates and final solid products were characterized by FTIR and DSC-TG.Results show that the thermal decomposition process consists of five consecutive stage reactions.Flynn-Wall-Ozawa(FWO) and Kissinger-Akahira-Sunose(KAS) methods were implemented for the calculation of energy of activation(E),and the results show that E depends on α,demonstrating that the decomposition reaction process of the lanthanum oxalate is of a complex kinetic mechanism.The most probable mechanistic function,G(α)=[1-(1+α)1/3]2,and the kinetic parameters were obtained by multivariate non-linear regression analysis method.The average E-value that is compatible with the kinetic model is close to value which was obtained by FWO and KAS methods.The fitting curve matches the original TG curve very well. 展开更多
关键词 lanthanum oxalate decahydrate TG-DSC thermal decomposition multivariate non-linear regression analysis
下载PDF
Separation of W and Mo from their peroxoacids solutions by thermal decomposition 被引量:4
10
作者 张文娟 李江涛 +1 位作者 赵中伟 李飞 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第10期2731-2737,共7页
A separation method for W and Mo from peroxoacids solution by thermal decomposition wasstudied. Thermal decomposition of peroxotungstic acid and peroxomolybdic acid was investigated respectively. The results confirmed... A separation method for W and Mo from peroxoacids solution by thermal decomposition wasstudied. Thermal decomposition of peroxotungstic acid and peroxomolybdic acid was investigated respectively. The results confirmed that peroxomolybdic acid showed a preferable stability compared with peroxotungstic acid. This thermal stability difference was the basic principle of theseparationof W and Mo. Experiments were performed to study the effects of temperature, stirring speed, free acid concentration and Mo concentration on the separation efficiency. The results indicated that peroxotungstic acid decomposed into tungstic acid(H2WO4) and precipitated selectively,while Mo was rejected in aqueous solution,realizing good separation of W and Mo. The separation factorof W and Moreached 112 under the studied conditions, which indicated that this method has potential for use in separating W and Mo. 展开更多
关键词 W MO W MO SEPARATION thermal decomposition peroxotungstic acid peroxomolybdic acid
下载PDF
Non-isothermal thermal decomposition kinetics of high iron gibbsite ore based on Popescu method 被引量:2
11
作者 柳政根 王峥 +2 位作者 唐珏 王宏涛 龙红明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2415-2421,共7页
The thermal decomposition kinetics of high iron gibbsite ore was investigated under non-isothermal conditions.Popescu method was applied to analyzing the thermal decomposition mechanism.The results show that the most ... The thermal decomposition kinetics of high iron gibbsite ore was investigated under non-isothermal conditions.Popescu method was applied to analyzing the thermal decomposition mechanism.The results show that the most probable thermal decomposition mechanism is the three-dimensional diffusion model of Jander equation,and the mechanism code is D3.The activation energy and pre-exponential factor for thermal decomposition of high iron gibbsite ore calculated by the Popescu method are 75.36 kJ/mol and 1.51×10-5 s-(-1),respectively.The correctness of the obtained mechanism function is validated by the activation energy acquired by the iso-conversional method.Popescu method is a rational and reliable method for the analysis of the thermal decomposition mechanism of high iron gibbsite ore. 展开更多
关键词 high iron gibbsite ore thermal decomposition kinetics activation energy pre-exponential factor Popescu method
下载PDF
Preparation of fibrous nickel powder by precipitation transformation coupled with thermal decomposition 被引量:2
12
作者 邬建辉 刘刚 +3 位作者 苏涛 张文宏 罗妹妹 魏涛 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2653-2660,共8页
Fibrous particulate precursor was obtained by precipitation transformation in the ternary solution system of ammonium oxalate, nickel chloride and ammonia. The composition and morphology of precursor were characterize... Fibrous particulate precursor was obtained by precipitation transformation in the ternary solution system of ammonium oxalate, nickel chloride and ammonia. The composition and morphology of precursor were characterized by XRD, SEM, IR and DTA/TGA analyses. The results show that the chemical composition and morphology of precursor precipitates at pH=8.4?8.8 are different from those of precursor precipitates at pH=6.0, and the mechanisms of the thermal decomposition of the precursors are different. The effects of various conditions in the process of thermal decomposition, including precursor morphology, atmosphere, temperature and time on the morphology and dispersion degree of obtained nickel powders were studied in detail. The final product inherits the morphology of precursor when the thermal decomposition is conducted under a weakly reducing atmosphere at temperature range of 400?440 °C for 30 min. Fibrous nickel powder can be produced with good dispersion, and its shape changes from smooth, straight and compact fiber into loose and curved fiber with rough surface. 展开更多
关键词 PRECURSOR fibrous nickel powder precipitation transformation thermal decomposition
下载PDF
Reactive Molecular Dynamics Simulation on Thermal Decomposition of n-Heptane 被引量:2
13
作者 李娟琴 王繁 +1 位作者 程学敏 李象远 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第2期211-219,I0004,共10页
The thermal decomposition of n-heptane is an important process in petroleum industry. The theoretical investigations show that the main products are C2H4, H2, CH4, and C3H6, which agree well with the experimental resu... The thermal decomposition of n-heptane is an important process in petroleum industry. The theoretical investigations show that the main products are C2H4, H2, CH4, and C3H6, which agree well with the experimental results. The products populations depend strongly on the temperature. The quantity of ethylene increases quickly as the temperature goes up. The conversion of n-heptane and the mole fraction of primary products from reactive molecular dynamic and chemical kinetic modeling are compared with each other. We also investigated the pre-exponential factor and activation energy for thermal decomposition of n-heptane by kinetic analysis from the reactive force field simulations, which were extracted to be 1.78×10^14 s^-1 and 47.32 kcal/mol respectively. 展开更多
关键词 Chemical kinetic modeling REAXFF N-HEPTANE thermal decomposition
下载PDF
Thermal decomposition of ammonium hexafluoroaluminate and preparation of aluminum fluoride 被引量:1
14
作者 胡宪伟 李琳 +4 位作者 高炳亮 石忠宁 李欢 刘敬敬 王兆文 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期2087-2092,共6页
The thermal decomposition process of (NH4)3AlF6 was studied by DTA-TGA method and the related thermodynamic data were obtained. The results show that AlF3 is obtained after three-step decomposition reaction of (NH4... The thermal decomposition process of (NH4)3AlF6 was studied by DTA-TGA method and the related thermodynamic data were obtained. The results show that AlF3 is obtained after three-step decomposition reaction of (NH4)3AlF6, and the solid products of the first two decomposition reactions are NH4AlF4 and AlF3(NH4F)0.69, respectively. The three reactions occur at 194.9, 222.5 and 258.4 ℃, respectively. Gibbs free energy changes of pertinent materials at the reaction temperatures were calculated. Enthalpy and entropy changes of the three reactions were analyzed by DSC method. Anhydrous aluminum fluoride was prepared. The XRD analysis and mass loss calculation show that AlF3 with high purity can be obtained by heating (NH4)3AlF6 at 400 ℃ for 3 h. 展开更多
关键词 ammonium hexafluoroaluminate thermal decomposition aluminum fluoride thermodynamic data
下载PDF
Synthesis and photoluminescence properties of single-crystal ZnO hexagonal pyramids by PEG400-assisted thermal decomposition route 被引量:1
15
作者 刘劲松 张朔 +6 位作者 李子全 朱孔军 陈建康 裘进浩 王春花 高雪琴 王莉萍 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2459-2464,共6页
Large-scale synthesis of ZnO hexagonal pyramids was achieved by a simple thermal decomposition route of precursor at 240 oC in the presence of PEG400. The precursor was obtained by room-temperature solid-state grindin... Large-scale synthesis of ZnO hexagonal pyramids was achieved by a simple thermal decomposition route of precursor at 240 oC in the presence of PEG400. The precursor was obtained by room-temperature solid-state grinding reaction between Zn(CH3COO)2-2H2O and Na2CO3. Crystal structure and morphology of the products were analyzed and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The results of further experiments show that PEG400 has an important role in the formation of ZnO hexagonal pyramids. Difference between the single and double hexagonal pyramid structure may come from the special thermal decomposition reaction. The photoluminescence (PL) spectra of ZnO hexagonal pyramids exhibit strong near-band-edge emission at about 386 nm and weak green emission at about 550 nm. The Raman-active vibration at about 435 cm-1 suggests that the ZnO hexagonal pyramids have high crystallinity. 展开更多
关键词 ZnO hexagonal pyramids thermal decomposition route formation mechanism photoluminescence property
下载PDF
Effects of Metal and Composite Metal Nanopowders on the Thermal Decomposition of Ammonium Perchlorate (AP) and the Ammonium Perchlorate/Hydroxyterminated Polybutadiene (AP/HTPB) Composite Solid Propellant 被引量:9
16
作者 刘磊力 李凤生 +2 位作者 谈玲华 李敏 杨毅 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第4期595-598,共4页
Effects of metal (Ni, Cu, Al) and composite metal (NiB, NiCu, NiCuB) nanopowders on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellant ammonium perchlorate/hydroxyterminated polybuta... Effects of metal (Ni, Cu, Al) and composite metal (NiB, NiCu, NiCuB) nanopowders on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellant ammonium perchlorate/hydroxyterminated polybutadiene (AP/HTPB) were studied by thermal analysis (DTA). The results show that metal and composite metal nanopowders all have good catalytic effects on the thermal decomposition of AP and AP/HTPB composite solid propellant. The effects of metal nanopowders on the thermal decomposition of AP are less than those of the composite metal nanopowders. The effects of metal and composite metal nanopowders on the thermal decomposition of AP are different from those on the thermal decomposition of the AP/HTPB composite solid propellant. 展开更多
关键词 NANOPOWDER metal powder composite metal powder composite solid propellant ammonium perchlo-rate. thermal decompositionrate thermal decomposition
下载PDF
Influence of Ammonium Polyphosphate on Thermal Decomposition of Reconstituted Tobacco and CO Evolution
17
作者 葛少林 佘世科 +7 位作者 徐迎波 宁敏 王程辉 田振峰 周顺 黄兰 张朝 盛六四 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第2期243-248,I0004,共7页
The thermal behaviors and burning characteristics of reconstituted tobacco (RT) are strongly related with evolved gaseous products. The effect of ammonium polyphosphate (APP) as an additive of RT on the pyrolysis ... The thermal behaviors and burning characteristics of reconstituted tobacco (RT) are strongly related with evolved gaseous products. The effect of ammonium polyphosphate (APP) as an additive of RT on the pyrolysis behavior and CO evolution was studied, emphasizing the role of heating velocity in reducing CO delivery of the mainstream smoke by APP. Thermogravimetric analysis (TGA) was employed to investigate the influence of APP on RT thermal behavior. Slow and flash pyrolysis of RT were compared to discuss the role of heating rate in decreasing CO by APP. TGA results demonstrated that, in dependence on APP concentration, APP influenced exothermal amount and weight loss rate during RT thermal decomposition, promoted the formation of char and retarded the thermal decomposition of RT. In addition, APP had a considerable influence on the evolution of gaseous products during thermal decomposition of RT. Both CO delivery per cigarette and that per puff in the smoking process were significantly reduced in dependence on APP content in RT. Comparative analysis of CO evolution patterns in the flash and slow pyrolysis elucidated that heating rate played a key role in decreasing CO evolution by APP. The results suggest that APP is a potential burning additive for controlling CO delivery in mainstream smoke of RT. 展开更多
关键词 thermal decomposition Reconstituted tobacco Ammonium polyphosphate CO
下载PDF
Synthesis of Nano-sized Yttria via a Sol-Gel Process Based on Hydrated Yttrium Nitrate and Ethylene Glycol and Its Catalytic Performance for Thermal Decomposition of NH_4ClO_4 被引量:11
18
作者 陈伟凡 李凤生 +1 位作者 刘磊力 李永绣 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第5期543-548,共6页
Nano-sized yttria particles were synthesized via a non-aqueous sol-gel process based on hydrated yttrium nitrate and ethylene glycol. The effects of the molar ratio of ethylene glycol to yttrium ion and calcination te... Nano-sized yttria particles were synthesized via a non-aqueous sol-gel process based on hydrated yttrium nitrate and ethylene glycol. The effects of the molar ratio of ethylene glycol to yttrium ion and calcination temperature on crystallite size of the products were studied. The catalytic performance of the as-prepared yttria for the ammonium perchlorate (AP) decomposition was investigated by differential scanning calorimetry (DSC). The results indicate that the nano-sized cubic yttria particles with less than 20 nm in average crystallite size can be obtained after 2 h reflux at 70℃, dried at 90 ℃, forming xerogel, and followed by annealing of xerogel for 2 h, and that the addition of the nano-sized yttria to AP incorporates two small exothermic peaks of AP in the temperature ranges of 310 - 350 ℃ and 400 - 470 ℃ into a strong exothermic peak of AP and increases the apparent decomposition heat from 515 to over 1110 J·g^- 1. It is also clear that the temperature of AP decomposition exothermic peak decreases and the apparent decomposition heat of AP increases with the increase of the amount of nano-sized yttria. The fact that the addition of the 5 % nano-sized yttria to AP decreases the temperature of AP exothermic peak to 337.7℃ by reduction of 114.6℃ and increases the apparent decomposition heat from 515 to 1240 J·g^-1, reveals that nano-sized yttria shows strong catalytic property for AP thermal decomposition. 展开更多
关键词 nano-sized yttria ethylene glycol sol-gel ammonium perchlorate thermal decomposition catalytic property rare earths
下载PDF
Thermal decomposition and kinetics of plastic bonded explosives based on mixture of HMX and TATB with polymer matrices 被引量:11
19
作者 Arjun Singh Tirupati C.Sharma +3 位作者 Mahesh Kumar Jaspreet Kaur Narang Prateek Kishore Alok Srivastava 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2017年第1期22-32,共11页
This work describes thermal decomposition behaviour of plastic bonded explosives(PBXs) based on mixture of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX) and 2,4,6-triamino-1,3,5-trinitrobenzene(TATB)with Viton A as poly... This work describes thermal decomposition behaviour of plastic bonded explosives(PBXs) based on mixture of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX) and 2,4,6-triamino-1,3,5-trinitrobenzene(TATB)with Viton A as polymer binder. Thermal decomposition of PBXs was undertaken by applying simultaneous thermal analysis(STA) and differential scanning calorimetry(DSC) to investigate influence of the HMX amount on thermal behavior and its kinetics. Thermogravimetric analysis(TGA) indicated that the thermal decomposition of PBXs based on mixture of HMX and TATB was occurred in a three-steps. The first step was mainly due to decomposition of HMX. The second step was ascribed due to decomposition of TATB, while the third step was occurred due to decomposition of the polymer matrices. The thermal decomposition % was increased with increasing HMX amount. The kinetics related to thermal decomposition were investigated under non-isothermal for a single heating rate measurement. The variation in the activation energy of PBXs based on mixture of HMX and TATB was observed with varying the HMX amount. The kinetics from the results of TGA data at various heating rates under non-isothermal conditions were also calculated by Flynn—Wall—Ozawa(FWO) and Kissinger-Akahira-Sunose(KAS)methods. The activation energies calculated by employing FWO method were very close to those obtained by KAS method. The mean activation energy calculated by FWO and KAS methods was also a good agreement with the activation energy obtained from single heating rate measurement in the first step decomposition. 展开更多
关键词 Plastic bonded explosives Thermogravimetric analysis Differential scanning calorimeter thermal decomposition KINETICS
下载PDF
Syntheses,Crystal Structures and Kinetic Mechanisms of Thermal Decomposition of Rare Earth Complexes with Schiff Base Derived from o-Vanillin and p-Toluidine 被引量:5
20
作者 赵国良 冯云龙 温一航 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第3期268-275,共8页
Three complexes, [Pr(NO3)3(HL)2] (1), [Nd(NO3)3(HL)2] (2) and [Er(NO3)3(HL)2] ·0.5H2O (3), were synthesized from the reaction of a Schiff base ligand 2-[ (4-methylphenylimino)methyl ]-6-methox... Three complexes, [Pr(NO3)3(HL)2] (1), [Nd(NO3)3(HL)2] (2) and [Er(NO3)3(HL)2] ·0.5H2O (3), were synthesized from the reaction of a Schiff base ligand 2-[ (4-methylphenylimino)methyl ]-6-methoxyphenol (C15 H15 NO2, HL) with Ln(NO3)3·6H2O (Ln = Pr, Nd, Er). Characterization by single-crystal X-ray diffraction technique, elemental analysis, molar conductance, FT-IR, UV-Vis, ^1H NMR and thermal analysis shows the title complexes are neutral molecules where the central Ln( Ⅲ) ion is ten-coordinated in biapical anti-hexahedron prism geometry, with four oxygen atoms of the phenolic hydroxy and methoxy groups in the two bidentate Schiff base ligands and six oxygen atoms provided by the three bidentate NO3 - anions. Additionally, the kinetic mechanism of thermal decomposition of complex 3 was determined with a TG-DTG curves by both integral and differential methods. The functions of thermal decomposition reaction mechanism and the equation of kinetic compensation effect were obtained. 展开更多
关键词 O-VANILLIN P-TOLUIDINE Schiff base crystal structure kinetic mechanism of thermal decomposition rare earths
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部