This study numerically involves the performance of thermal insulation of different types of composite walls and roofs to demonstrate the best model that can be used for energy-efficient building construction in Iraq.T...This study numerically involves the performance of thermal insulation of different types of composite walls and roofs to demonstrate the best model that can be used for energy-efficient building construction in Iraq.The mathematical model is solved by building its code using the Transmission Matrix Method in MATLAB software.The weather data of 21st July 2022 in Baghdad City/Iraq is selected as a test day.The wall types are selected:the first type consists of cement mortar,brick,and gypsum,the second type consists of cement mortar,brick,gypsum,and plaster and the third type consists of cement mortar,brick,gypsum,air cavity,and sheathing timber.The roof types are chosen:the first type consists of reinforced concrete,gypsum,and plaster,and the second type consists of the precast concrete flag,river sand,tar,reinforced concrete,gypsum,and plaster.The obtained solutions are compared with previous studies for the same city but with different types of walls and roofs.The findings display that the second and third types of walls reduce the entry heat flux by 4%and 10%as compared to the first type of wall.Also,the results indicate that the second type of roof reduces the entry heat flux by 21%as compared to the first type of roof.The results confirm that the best models of walls and roofs in Iraq are the third and second types,respectively,as compared to other models and hence,the performance of insulation material strongly depends on the materials used while building them.展开更多
The axial bearing capacity of prefabricated composite walls composed of inner and outer concrete wythes,expandable polystyrene(EPS)boards and steel sleeve connectors is investigated.An experimental study on the axial ...The axial bearing capacity of prefabricated composite walls composed of inner and outer concrete wythes,expandable polystyrene(EPS)boards and steel sleeve connectors is investigated.An experimental study on the axial bearing capacity of four prefabricated composite walls after fire treatment is carried out.Two of the prefabricated composite walls are normal-temperature specimens,and the others are treated with fire.The damage modes and crack development are observed,and the axial bearing capacity,lateral deformation of the specimens,and the concrete and reinforcing bar strain are tested.The results show that the ultimate bearing capacity of specimens after a fire is less than that of normal-temperature specimens;when the insulation board thicknesses are 40 mm and 60 mm,the decrease amplitudes are 20.8%and 16.8%,respectively.The maximum lateral deformation of specimens after a fire is greater than that of normal-temperature specimens,and under the same level of load,the lateral deformation increases as the insulation board thickness increases.Moreover,the strain values of the concrete and reinforcing bars of specimens after a fire are greater than those of normal-temperature specimens,and the strain values increase as the thickness of insulation board increases.展开更多
Computational fluid dynamics( CFD) techniques are used to investigate effects of both wind direction and wind speed on net solar heat gain of south wall with internal insulation in winter.Results show that wind effect...Computational fluid dynamics( CFD) techniques are used to investigate effects of both wind direction and wind speed on net solar heat gain of south wall with internal insulation in winter.Results show that wind effect has a significant influence on the net solar heat gain,where the impact of wind direction is stronger than that of wind speed. For regions in lower reaches of the Yangtze River,difference of their average net solar heat gains( NSHGS) is about 20% due to various wind speeds and wind directions.Buildings in districts with a dominant wind direction of north achieve the highest solar energy utilization.展开更多
In this paper, the suitability and construction technology of self-insulation walls were studied under the specific climatic conditions and regional resources of Hanzhong and Ankang in the hot summer and cold winter z...In this paper, the suitability and construction technology of self-insulation walls were studied under the specific climatic conditions and regional resources of Hanzhong and Ankang in the hot summer and cold winter zone of Southern Shaanxi. Through the calculation of heat transfer coefficient and thermal inertia index, combined with the specifications of the shale hollow brick and aerated concrete block of Hanzhong and Ankang in southern Shaanxi, the thermal performance and suitable thickness of the external wall using self-insulation materials that meet the Design Standard for Energy Efficiency of Residential Buildings(DBJ61-65-2011) in Shaanxi Province were obtained. The results showed that the self-insulation wall had technical suitability in the hot summer and cold winter zone. The research results provide not only a theoretical basis for the external wall insulation design of urban residential buildings in the hot summer and cold winter zone of southern Shaanxi, but also a reference for designers to carry out energy-saving design of external walls of residential buildings in other similar climate zones.展开更多
The energy efficiency design of the exterior wall in the buildings of the hot summer and cold winter zone of China should consider the heat prevention in summer and the heat insulation in winter. The self-insulation o...The energy efficiency design of the exterior wall in the buildings of the hot summer and cold winter zone of China should consider the heat prevention in summer and the heat insulation in winter. The self-insulation of the exterior?wall is a more feasible design to satisfy the energy efficiency of buildings in the?zone. However, the systematic research is urgently needed for the self-insulation of the exterior wall in the hot summer and cold winter zone of China. The paper tested the thermal performance of the common non-clay materials such as shale sintered hollow brick, sand autoclaved aerated concrete block, etc. by means of indoor experiments. The energy efficiency effect of the common materials was verified using dynamic calculation soft PKPM and several constitutions of exterior wall with different main bricks and insulation materials on the heat bridge were simulated, too. Besides, the tests of the thermal performance of exterior wall in real constructions were carried out to testify the practical effect of the recommended constitutions of exterior wall with different main bricks and insulation materials on the heat bridge. The conclusions are: the physical and thermal properties of the six non-clay wall material are better than the clay porous brick;the thermal performance of the non-clay brick can be improved obviously through the rational arrangement of the holes;shale sintered hollow brick after increasing the holes and rationalizing the hole arrangement and sand autoclaved aerated concrete block are recommended for buildings in the hot summer and cold winter area of China. The dynamic calculation results show that the thermal performances?of the non-clay materials are all satisfied with the energy efficiency;The heat transfer coefficient of the exterior wall with composition?③,?in which?the main wall was sand autoclaved aerated concrete block and the material on the heat bridge was sand autoclaved aerated concrete plate, is the smallest among the three recommended compositions.展开更多
We theoretically study the Josephson effect in a quantum anomalous Hall insulator(QAHI)nanoribbon with a domain wall structure and covered by the superconductor.The anomalous Josephson current,the nonzero supercurrent...We theoretically study the Josephson effect in a quantum anomalous Hall insulator(QAHI)nanoribbon with a domain wall structure and covered by the superconductor.The anomalous Josephson current,the nonzero supercurrent at the zero superconducting phase difference,appears with the nonzero magnetization and the suitable azimuth angle of the domain wall.Dependent on the configuration of the domain wall,the anomalous current peaks in the Bloch type but disappears in the Néel type because the y-component of magnetization is necessary to break symmetry to arouse the anomalous current.The phase shift of the anomalous current is tunable by the magnetization,the azimuth angle,or the thickness of the domain wall.By introducing a bare QAHI region in the middle of the junction which is not covered by the superconductor,the anomalous Josephson effect is enhanced such that the phase shift can exceedπ.Thus,a continuous change between 0 andπjunctions is realized via regulating the configuration of the domain wall or the magnetization strength.As long as an s-wave superconductor is placed on the top of the QAHI with a domain wall structure,this proposal can be experimentally fabricated and useful for the phase battery or superconducting quantum bit.展开更多
The purpose of this research is to assess thermal performance and energy saving of a residential building in the hot semi-arid climate of Marrakech(Morocco).The studied house is built as usual in Marrakech without any...The purpose of this research is to assess thermal performance and energy saving of a residential building in the hot semi-arid climate of Marrakech(Morocco).The studied house is built as usual in Marrakech without any thermal insula-tion except for its external walls,facing East and West,which are double walls with a 5 cm air gap in between(“cavity wall”technique).The cavity wall effec-tive thermal conductivity was carefully calculated taking into account both radia-tion and convection heat transfers.Experimental results,obtained from winter and summer monitoring of the house,show well dampening of air temperature,thanks to its thermal inertia.However,this temperature remained outside the standard thermal comfort zone leading to large cooling/heating load.Simula-tion results indicate that the cavity wall contributes to an overall reduction of 13%and 5%of the house heating and cooling loads respectively.Moreover,the addition of XPS roof thermal insulation significantly enhances the heating and cooling energy savings to 26%and 40%respectively.展开更多
Light frame walls(LFWs) serve as common partition walls in prefabricated buildings due to their lightweight nature, costeffectiveness, energy efficiency, and adaptability for rapid on-site assembly. However, their aco...Light frame walls(LFWs) serve as common partition walls in prefabricated buildings due to their lightweight nature, costeffectiveness, energy efficiency, and adaptability for rapid on-site assembly. However, their acoustic insulation capability is hindered by issues such as sound bridges, resonance, and coincidence dips, resulting in inadequate sound insulation. This study aims to propose LFW designs with superior acoustic insulation suitable for practical engineering while meeting prevailing national standards. Nine full-scale LFW configurations were subjected to laboratory testing to evaluate the impact of staggered stud arrangements, stud types, and incorporation of compounded materials. The tests were performed between 100 and 5000 Hz,and the sound pressure level and reverberation time at 1/3 octave band were measured and used to calculate the weighted sound insulation index(Rw). Results demonstrated that the outlined design modifications significantly enhanced the sound insulation of the LFW. These modifications effectively mitigate the influence of sound bridges while addressing resonance and coincidence dips inherent in the wall system. Particularly noteworthy was the superior sound insulation achieved by staggered-stud LFWs with compounded materials, surpassing that of autoclaved lightweight concrete walls commonly used in prefabricated constructions despite having lesser thickness and surface density. Rwvalues increased from 43 to 54 dB compared to conventional LFWs, translating to a notable elevation in airborne sound insulation level from 4 to 7 as an internal separation component,meeting the requisite standards for most applications.展开更多
This paper mainly uses the method of numerical simulation, and study thermal insulation and energy saving characteristics on the exterior walls of the building and analyze the optimal layout scheme of building exterio...This paper mainly uses the method of numerical simulation, and study thermal insulation and energy saving characteristics on the exterior walls of the building and analyze the optimal layout scheme of building exterior wall and thermal insulation system. Finally, the paper study optimal thickness of insulation materials. The paper elaborate scheme of the existing building energy-saving for exterior wall and the scope of application, the system structure and the construction technology. The results showed that: extruded benzene board that can be used for exterior insulation, frame structure filled with wall preferred ceramsite hollow block. The paper can provides reference selection of insulation for building external wall energy-saving transformation scheme.展开更多
The initial high moisture content of concrete and the low vapor permeability of insu-lation layers on both sides of the concrete complicate the drying process of Insulated Concrete Forms(ICF).In order to facilitate th...The initial high moisture content of concrete and the low vapor permeability of insu-lation layers on both sides of the concrete complicate the drying process of Insulated Concrete Forms(ICF).In order to facilitate the moisture transport and enhance the drying process,different moisture control stratcgics and wall designs can be implc-mented.The application of an air and vapor barrier is one of the most common moisture control stratcgics.In this paper,the impact of vapor permcance of an air and vapor barriers on the hygrothermal performance of an ICF wall in three differ cnt cold and wet climates is examined using a validated Hcat-Air-Moisture transfer model.The hygrothermal performance of an ICF wall assembly with different types of barriers and locations in the wall system for scveral wall designs is invcstigated.Results indicate that a smaller thickness of insulation on the outside facilitates remov-ing the moisture towards the outside and installing low permcance air/vapor barrier systems on the outside prohibits drying and drives the moisture to the inside.Our findings also show that with the proper sclection of insulation thickncss and vapor control stratcgy moisture-related problems can be avoided.展开更多
文摘This study numerically involves the performance of thermal insulation of different types of composite walls and roofs to demonstrate the best model that can be used for energy-efficient building construction in Iraq.The mathematical model is solved by building its code using the Transmission Matrix Method in MATLAB software.The weather data of 21st July 2022 in Baghdad City/Iraq is selected as a test day.The wall types are selected:the first type consists of cement mortar,brick,and gypsum,the second type consists of cement mortar,brick,gypsum,and plaster and the third type consists of cement mortar,brick,gypsum,air cavity,and sheathing timber.The roof types are chosen:the first type consists of reinforced concrete,gypsum,and plaster,and the second type consists of the precast concrete flag,river sand,tar,reinforced concrete,gypsum,and plaster.The obtained solutions are compared with previous studies for the same city but with different types of walls and roofs.The findings display that the second and third types of walls reduce the entry heat flux by 4%and 10%as compared to the first type of wall.Also,the results indicate that the second type of roof reduces the entry heat flux by 21%as compared to the first type of roof.The results confirm that the best models of walls and roofs in Iraq are the third and second types,respectively,as compared to other models and hence,the performance of insulation material strongly depends on the materials used while building them.
基金The National Key Research and Development Program of China(No.2016YFC0701703)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.2016TM045J)the Scientific Innovation Research of Graduate Students in Jiangsu Province(No.KYLX_0151)
文摘The axial bearing capacity of prefabricated composite walls composed of inner and outer concrete wythes,expandable polystyrene(EPS)boards and steel sleeve connectors is investigated.An experimental study on the axial bearing capacity of four prefabricated composite walls after fire treatment is carried out.Two of the prefabricated composite walls are normal-temperature specimens,and the others are treated with fire.The damage modes and crack development are observed,and the axial bearing capacity,lateral deformation of the specimens,and the concrete and reinforcing bar strain are tested.The results show that the ultimate bearing capacity of specimens after a fire is less than that of normal-temperature specimens;when the insulation board thicknesses are 40 mm and 60 mm,the decrease amplitudes are 20.8%and 16.8%,respectively.The maximum lateral deformation of specimens after a fire is greater than that of normal-temperature specimens,and under the same level of load,the lateral deformation increases as the insulation board thickness increases.Moreover,the strain values of the concrete and reinforcing bars of specimens after a fire are greater than those of normal-temperature specimens,and the strain values increase as the thickness of insulation board increases.
基金National Natural Science Foundation of China(No.51478098)Innovation Foundation of Shanghai Education Commission,China(No.13ZZ054)
文摘Computational fluid dynamics( CFD) techniques are used to investigate effects of both wind direction and wind speed on net solar heat gain of south wall with internal insulation in winter.Results show that wind effect has a significant influence on the net solar heat gain,where the impact of wind direction is stronger than that of wind speed. For regions in lower reaches of the Yangtze River,difference of their average net solar heat gains( NSHGS) is about 20% due to various wind speeds and wind directions.Buildings in districts with a dominant wind direction of north achieve the highest solar energy utilization.
文摘In this paper, the suitability and construction technology of self-insulation walls were studied under the specific climatic conditions and regional resources of Hanzhong and Ankang in the hot summer and cold winter zone of Southern Shaanxi. Through the calculation of heat transfer coefficient and thermal inertia index, combined with the specifications of the shale hollow brick and aerated concrete block of Hanzhong and Ankang in southern Shaanxi, the thermal performance and suitable thickness of the external wall using self-insulation materials that meet the Design Standard for Energy Efficiency of Residential Buildings(DBJ61-65-2011) in Shaanxi Province were obtained. The results showed that the self-insulation wall had technical suitability in the hot summer and cold winter zone. The research results provide not only a theoretical basis for the external wall insulation design of urban residential buildings in the hot summer and cold winter zone of southern Shaanxi, but also a reference for designers to carry out energy-saving design of external walls of residential buildings in other similar climate zones.
文摘The energy efficiency design of the exterior wall in the buildings of the hot summer and cold winter zone of China should consider the heat prevention in summer and the heat insulation in winter. The self-insulation of the exterior?wall is a more feasible design to satisfy the energy efficiency of buildings in the?zone. However, the systematic research is urgently needed for the self-insulation of the exterior wall in the hot summer and cold winter zone of China. The paper tested the thermal performance of the common non-clay materials such as shale sintered hollow brick, sand autoclaved aerated concrete block, etc. by means of indoor experiments. The energy efficiency effect of the common materials was verified using dynamic calculation soft PKPM and several constitutions of exterior wall with different main bricks and insulation materials on the heat bridge were simulated, too. Besides, the tests of the thermal performance of exterior wall in real constructions were carried out to testify the practical effect of the recommended constitutions of exterior wall with different main bricks and insulation materials on the heat bridge. The conclusions are: the physical and thermal properties of the six non-clay wall material are better than the clay porous brick;the thermal performance of the non-clay brick can be improved obviously through the rational arrangement of the holes;shale sintered hollow brick after increasing the holes and rationalizing the hole arrangement and sand autoclaved aerated concrete block are recommended for buildings in the hot summer and cold winter area of China. The dynamic calculation results show that the thermal performances?of the non-clay materials are all satisfied with the energy efficiency;The heat transfer coefficient of the exterior wall with composition?③,?in which?the main wall was sand autoclaved aerated concrete block and the material on the heat bridge was sand autoclaved aerated concrete plate, is the smallest among the three recommended compositions.
基金Project supported by the National Key R&D Program of China(Grant No.2017YFA0303301)the National Natural Science Foundation of China(Grant Nos.11921005 and 11574007)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)Beijing Municipal Science&Technology Commission,China(Grant No.Z191100007219013).
文摘We theoretically study the Josephson effect in a quantum anomalous Hall insulator(QAHI)nanoribbon with a domain wall structure and covered by the superconductor.The anomalous Josephson current,the nonzero supercurrent at the zero superconducting phase difference,appears with the nonzero magnetization and the suitable azimuth angle of the domain wall.Dependent on the configuration of the domain wall,the anomalous current peaks in the Bloch type but disappears in the Néel type because the y-component of magnetization is necessary to break symmetry to arouse the anomalous current.The phase shift of the anomalous current is tunable by the magnetization,the azimuth angle,or the thickness of the domain wall.By introducing a bare QAHI region in the middle of the junction which is not covered by the superconductor,the anomalous Josephson effect is enhanced such that the phase shift can exceedπ.Thus,a continuous change between 0 andπjunctions is realized via regulating the configuration of the domain wall or the magnetization strength.As long as an s-wave superconductor is placed on the top of the QAHI with a domain wall structure,this proposal can be experimentally fabricated and useful for the phase battery or superconducting quantum bit.
基金supported by the PARS grant from the Hassan Ⅱ Academy of Sciences and Techniques,Morocco。
文摘The purpose of this research is to assess thermal performance and energy saving of a residential building in the hot semi-arid climate of Marrakech(Morocco).The studied house is built as usual in Marrakech without any thermal insula-tion except for its external walls,facing East and West,which are double walls with a 5 cm air gap in between(“cavity wall”technique).The cavity wall effec-tive thermal conductivity was carefully calculated taking into account both radia-tion and convection heat transfers.Experimental results,obtained from winter and summer monitoring of the house,show well dampening of air temperature,thanks to its thermal inertia.However,this temperature remained outside the standard thermal comfort zone leading to large cooling/heating load.Simula-tion results indicate that the cavity wall contributes to an overall reduction of 13%and 5%of the house heating and cooling loads respectively.Moreover,the addition of XPS roof thermal insulation significantly enhances the heating and cooling energy savings to 26%and 40%respectively.
基金supported by Jiangsu Science and Technology Project (Grant No. BE2022790)the Special Fund for Green Building Development in Jiangsu Province (Grant No. (2021) 62-42)the Open Research Fund of Key Laboratory of Architectural Acoustic Environment of Anhui Higher Education Institutes (Grant No. AAE2021YB02)。
文摘Light frame walls(LFWs) serve as common partition walls in prefabricated buildings due to their lightweight nature, costeffectiveness, energy efficiency, and adaptability for rapid on-site assembly. However, their acoustic insulation capability is hindered by issues such as sound bridges, resonance, and coincidence dips, resulting in inadequate sound insulation. This study aims to propose LFW designs with superior acoustic insulation suitable for practical engineering while meeting prevailing national standards. Nine full-scale LFW configurations were subjected to laboratory testing to evaluate the impact of staggered stud arrangements, stud types, and incorporation of compounded materials. The tests were performed between 100 and 5000 Hz,and the sound pressure level and reverberation time at 1/3 octave band were measured and used to calculate the weighted sound insulation index(Rw). Results demonstrated that the outlined design modifications significantly enhanced the sound insulation of the LFW. These modifications effectively mitigate the influence of sound bridges while addressing resonance and coincidence dips inherent in the wall system. Particularly noteworthy was the superior sound insulation achieved by staggered-stud LFWs with compounded materials, surpassing that of autoclaved lightweight concrete walls commonly used in prefabricated constructions despite having lesser thickness and surface density. Rwvalues increased from 43 to 54 dB compared to conventional LFWs, translating to a notable elevation in airborne sound insulation level from 4 to 7 as an internal separation component,meeting the requisite standards for most applications.
文摘This paper mainly uses the method of numerical simulation, and study thermal insulation and energy saving characteristics on the exterior walls of the building and analyze the optimal layout scheme of building exterior wall and thermal insulation system. Finally, the paper study optimal thickness of insulation materials. The paper elaborate scheme of the existing building energy-saving for exterior wall and the scope of application, the system structure and the construction technology. The results showed that: extruded benzene board that can be used for exterior insulation, frame structure filled with wall preferred ceramsite hollow block. The paper can provides reference selection of insulation for building external wall energy-saving transformation scheme.
文摘The initial high moisture content of concrete and the low vapor permeability of insu-lation layers on both sides of the concrete complicate the drying process of Insulated Concrete Forms(ICF).In order to facilitate the moisture transport and enhance the drying process,different moisture control stratcgics and wall designs can be implc-mented.The application of an air and vapor barrier is one of the most common moisture control stratcgics.In this paper,the impact of vapor permcance of an air and vapor barriers on the hygrothermal performance of an ICF wall in three differ cnt cold and wet climates is examined using a validated Hcat-Air-Moisture transfer model.The hygrothermal performance of an ICF wall assembly with different types of barriers and locations in the wall system for scveral wall designs is invcstigated.Results indicate that a smaller thickness of insulation on the outside facilitates remov-ing the moisture towards the outside and installing low permcance air/vapor barrier systems on the outside prohibits drying and drives the moisture to the inside.Our findings also show that with the proper sclection of insulation thickncss and vapor control stratcgy moisture-related problems can be avoided.